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Abstract

A class of involutive Wick algebras (called anyonic-type Wick algebras) is selected
and some its elementary properties are described. In particular, the Fock representa-
tions of the selected anyonic-type commutation relations are described. For the class
of so-called r-yonic systems the question of the existence of the limiting thermody-
namic functions is being addressed. The corresponding r-yonic partition functions are
described in terms of interacting bosonic systems. Methods originally developed for
a purely bosonic system are being adopted and successfully applied to this class of
anyonic systems under considerations.

1 Introduction

The basic homotopy group on which the notion of statistics of a system of indistinguishable
particles is based depends critically on whether the system under consideration in the two
space dimensions or in higher. If the system is two–dimensional then the corresponding
group Bn (called the braid group with n generators {ei}

n−1
i=0 obeying the following defining

relations eiej = ejei for |i − j| > 1, eiei+1ei = ei+1eiei+1 for i = 1, . . . , n − 2 and the
unit e0) is infinite for n ≥ 2. This is in contrast to higher space dimensions, where the
underlying group is being identified easily with the symmetric group Sn. Although at the
level of defining relations both groups differs only by the additional idempotency relation
e2
i = e0 for i ∈ {1, . . . , n− 1}, the physical and mathematical consequences of this fact are

very deep.

As is well known, several very interesting new quantum phenomena (integer and frac-
tional Hall effects, high temperature superconductivity etc.) have been experimentally
detected in systems confined to live essentially on two dimensional space surfaces.

Most of the formulated in the current literature theoretical explanations of them exploit
intensively the fact that collective excitations in the (dense) two–dimensional electronic
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gas may obey some nonstandard statistical rules. Presumably, the best known examples
of that sort are anyons of Leinass–Myrheim type [1, 2] and composite fermions [1, 3].

However there are only few papers treating such questions with full mathematical
physics rigor. Let us mention among them: the functional integral approach to the quanti-
zation of anyonic systems [4], and the Wick algebra approach [5, 6]. The present contribu-
tion contains some ideas related to the recent developments in the Wick algebra approach
to the physics of anyons.

2 Wick algebras and their second quantizations

Let H be a separable Hilbert space and let T ∈ B(H⊗H) and such that for some complete
ON system {ei} in H the corresponding matrix representation of T in the basis {ei⊗ej}i,j ,
given by T kl

ij =< ek ⊗ el|Tei ⊗ ej > has the property that for each pair (i, j) the number

of those (k, l) : that T kl
ij 6= 0 is finite.

A Wick algebra W (H, T ) is defined as an abstract linear algebra generated by the

system {af , a+
g : f, g ∈ h} which obeys the following relations: a

#
f+g = a

#
f + a

#
g , aαf =

ᾱaf , a+
αf = αa+

f , and defining a
#
k ≡ a(ek)# the following commutation relations hold:

aka
+
l −

∑

i,j

T
ij
kla

+
i aj = δkl (2.1)

It is easy to find a concrete realization of just defined algebra W (H, T ) in the full tensor
algebra of H ⊗ H∗, see e.g., [5]. Given W (H, T ), we define its corresponding Fock module
ΓT (h) as a cyclic left module generated by the cyclic vector Ω. It follows easily that there
exists uniquely defined sesquilinear form < ·, · > on ΓT (H) with respect to which a+(f)
becomes adjoint to a(f). As we know from [5, 7]:

< Φ, Ψ >T =< Φ|P (T )Ψ > (2.2)

where P (T ) =
⊕∞

n=0 Pn(T ) in
⊕∞

n=0 H⊗n is defined recursively: P0(T ) = 1, P1(T ) = 1
and

Pn+1(T ) = (1 ⊗ Pn(T ))(1 + T 1 + T 2T 1 + · · · + T nT n−1 . . . T 1) (2.3)

(where T k denotes an operator acting in H⊗n+1 by 1H ⊗ . . . ⊗ 1H
︸ ︷︷ ︸

k−1 times

⊗T ⊗ 1H ⊗ . . . ⊗ 1H).

Of major importance is the question of positivity of the considered metric operator
P (T ). The following sufficient conditions for this to hold might be useful, [5, 7]:

P1 T ≥ 0

P2 ‖T‖ < 1
2 and if ‖T‖ < 1

2 then P (T ) > 0

P3 ‖T‖ ≤ 1 and T obeys the Yang–Baxter (Y −B) relations on H⊗3: T 1T 2T 1 = T 2T 1T 2,
and if ‖T‖ < 1 then ker P (T ) = {0}.
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Let h = h+ be a selfadjoint, nonnegative operator acting in H and such that for any
β > 0, Tre−βh < ∞. The second quantization of the one–particle Gibbs semigroup
ΓT (e−βh) is defined in the space ΓT (H) by ΓT (e−βh) =

⊕∞
n=0(e−βh)⊗n (the mathematical

meaning of this is discussed in [6]). The main questions we are interested in are the
following ones:

Question 1: When ZT (β) ≡ TrΓT (H)ΓT (e−βh) < ∞ ?

Question 2: Providing ZT (β) < ∞, how to control the corresponding thermodynamic
formalism, especially, the thermodynamic limit.

Observation. Let T ∈ B(H ⊗ H) obey one of the conditions P(1)–P(3) and let P(T) be
the corresponding metric operator in ΓT (H). If ker P (T ) = {0} then for any h = h+ ≥ 0
such that trHe−βh < ∞, the partition function ZT (h) ≡ TrΓT (H)ΓT (e−βh) does exist for
any β > 0, but ZT (h) = ZT=0(h)!

However the triviality of the kernel of the metric form P (T ) only is not sufficient to
guarantee that the partition function ZT (h) depends on T in an interesting way.

Example. Let {a+
i , aj}i,j=1,...,N be the twisted commutation relations (or anticommu-

tation) algebra generators [8, 9], and let h = h+ be a hermitian matrix in C
N . The

corresponding Fock modules will be denoted by ΓTB(F )(C
N ). Then

TrΓTB(F )
Γ(e−βh) = TrΓB(F )

Γ(e−βh),

where ΓTB(F ) denotes the (standard) Boson (resp. Fermion) Fock module.

Proof. By explicit computations [6]. �

3 Anyonic-type Wick algebras

A Wick algebra W (H, T ) is called an anyonic-type Wick algebra if the operator T ∈
B(H ⊗ H) obeys the following conditions:

1. T 1T 2T 1 = T 2T 1T 2 in H⊗3

2. (1 − T )(1 + T̂ ) = 0,

where T̂ is the partial (with respect to the first factor) adjoint to T in H ⊗ H.

Let ΓT (H) be the corresponding Fock module and let P (T ) be the corresponding metric
form. It seems to be a special feature an the anyonic-type Wick algebra when the explicit
form of P (T ) and, in particular, ker(P (T )) can be easily given.

Proposition 1 ([6]). Let W (H, T ) be an anyonic-type Wick algebra. Then the metric
form P (T ) is an orthogonal projector in ΓT (H) and

ker P (T ) = P (T )⊥,

where P (T ) is by definition equal to the range of P (T ), i.e., P (T ) = P (T )ΓT (H).
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3.1 Examples:

The standard bosons and fermions are of course, the best known examples of anyonic-type
Wick algebras and the corresponding kernels are well known. In the case of bosons the
corresponding kernel is equal to the orthogonal complement of symmetric tensors in Γ(H)
and in the case of fermions this kernel is equal to the complement of antisymmetric tensors
in Γ(H). The introduced class of anyonic-type commutation relations provides examples,
where the corresponding kernels interpolate between bosonic and fermionic ones.

An interesting example of this type is that introduced by Faddeev and Zamolodchikov
[10] and called an “exchange algebra” and further studied in [11].

For this goal let H = L2(Rd), d ≥ 1 and r : R
2d 7→ R such that r(x, y)+r(y, x) = 0. Then

we define Tr(f)(x, y) = eir(x,y)f(y, x). Next one easily checks that Tr defines anyonic-type
commutation relations. In the corresponding Fock module Γr(H) the following algebra of
r–commutation relations is represented by:

[r − CR]







ar(x)ar(y)+ − eir(x,y)ar(y)+ar(x) = δ(x − y)

ar(x)ar(y) − eir(x,y)ar(y)ar(x) = 0

ar(x)+ar(y)+ − eir(x,y)ar(y)+ar(x)+ = 0

In particular, taking d = 2; r(x, y) = −Θarg(x−y,n) where Θ is a so–called statistical
parameter and n is a fixed unit vector in R

2 we obtain exactly the Leinaas–Myrheim
commutation relations [2].

4 Regularized, Leinaas–Myrheim anyons

Let Λ ⊂ R
d, d ≥ 1 be a bounded region with the boundary ∂Λ of a class C3 (at least

piecewise). For σ ∈ C3(∂Λ), σ(x) ≥ 0 one can define a selfadjoint operator ∆σ
Λ, being a

suitable extension of the Laplace operator defined on C∞
0 (Λ). Then σ denotes a corre-

sponding (classical) boundary condition. Each Laplace operator ∆σ
Λ is nonpositive with

discrete spectrum and such that for any β > 0 (inverse temperature), µ > 0 (chemical
potential) the corresponding one particle density operator e−βh(µ), h ≡ −∆σ

Λ + µ1 is of
trace class:

Zσ
Λ ≡ TrL2(Λ)e

−βh(µ) < ∞

Now let r : R
2 7→ R be of class (at least) C1 and such that r(x, y) + r(y, x) = 0.

The restriction of r to Λ × Λ is denoted by rΛ. The local one–particle Hilbert space
HΛ = L2(Λ, dx) and the corresponding Trf(x, y) = eir(x,y)f(y, x). The pair HΛ, Tr leads
to the anyonic-type Wick algebra W (HΛ, Tr) with the corresponding Fock module Γr(HΛ)
and creation and annihilation operators a+

r (x), ar(y) acting there (in the sense of operator
valued distributions) and obeying the (rCR) algebra.

An explicate description as well as other elementary properties of the Fock represen-
tation of the algebra (rCR) can be extracted from [11] (see also [10], see also the general
construction of section 2 above).

Our main interest will be focused on the problem of the existence of the thermodynam-
ical formalism (in the so called thermodynamical limit) for the system of particles obeying
(rCR) algebra. For this goal we define:
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• the finite volume, grand canonical Gibbs ensemble partition function

Zr
Λ(β, µ) ≡ TrΓr(HΛ)Γr(e−βh(µ)) (4.1)

• the finite volume energy density

pr
Λ(β, µ) ≡

1

|Λ|
ln Zr

Λ(β, µ) (4.2)

As it is well known, for the existence of the thermodynamic formalism (in the thermo-
dynamical limit lim

ΛրRd
), i.e., it is sufficient to control lim

ΛրRd
pr
Λ(β, µ) ≡ pr

∞(β, µ), i.e., the

infinite volume free energy density.
Let Γ1(HΛ) be the bosonic Fock module built over HΛ. It is proved in [11] that Zr

Λ(β, µ)
can be exposed in purely bosonic terms:

Zr
Λ(β, µ) = TrΓ1(HΛ)e

−βHλ(β,µ), (4.3)

where

Hλ(β, µ) =

∫

Λ
dx a+(x)(−∆σ

Λ + µ1)a(x) +

∫

Λ×2

∫

dx dy a+(x)a+(y)V r
2 (x, y)a(y)a(x)

+

∫∫

Λ×3

∫

dx dy dz a+(x)a+(y)a+(z)V r
3 (x, y, z)a(z)a(y)a(x),

where a+(x), a(y) are canonical bosonic creation, and resp. annihilation operators:

V r
2 (x, y) =

1

8
(∇xr(x, y))2 +

1

8
(∇yr(x, y))2 (4.4)

∇ is the two–body interaction and

V r
3 (x, y, z) = ∇xr(x, y)∇yr(y, z) + c. terms (4.5)

Equality (4.3) is a starting point of our approach.
It is well known that any operator −∆σ

Λ as above generates a Markovian semigroup
[12] the kernel of which can be expressed by the Wiener integral representation formula:

eβ∆σ
Λ(x, y) =

∫

C([0,β],Λ̂)

dW
σ,β

x|y (ω), (4.6)

where dW
σ,β
x|y is the corresponding conditional Wiener bridge measure.

Proposition 2. The following Poisson–Wiener representation formula does hold:

Zr
Λ(β, µ) =

∞∑

n=0

∑

j1,...,jn≥1

zn+|j|

n!
n∏

k=1

jk

∫

⊗n
i=1dW

j1β
xi|xi

(ωi)e
−Eβ(ω1,...,ωn) (4.7)
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where we have denoted j ≡ (j1, . . . , jn), |j| ≡
∑n

k=1 jk and if ω = (ω1, . . . , ωn) is a sequence
of n–loops of length jiβ respectively, then the self–energy of it is given explicitly by

Eβ(ω) =
∑

1≤α≤γ≤n

jα∑

iα=1

jγ∑

iγ=1

β∫

0

dτ V r
2 (ωα(τ + (iα − 1)β), ωγ(τ + (iγ − 1)β))

+
∑

1≤α≤δ≤γ≤n

jα∑

iα=1

jδ∑

iδ=1

jγ∑

iγ=1

β∫

0

dτ

× V r
3 (ωα(τ + (iα − 1)β), ωδ(τ + (iδ − 1)β), ωγ(τ + (iγ − 1)β)) (4.8)

Our main result is the following

Theorem 1. Let us suppose that V r
2 , V r

3 obey the following conditions:

1. ∃B > 0 ∀N ≥ 0 Eβ(x1, . . . , xN ) ≥ −NB (stability)

2. • sup
x

{
∫

dy |e−βV r
2 (x,y) − 1| ≡ C2(β)

}

< ∞

• sup
x,x1,...,xn

{
∫

dy |e
−β

n∑

j=1
V r
3 (x,xj ,y)

− 1|

}

= C3(n, β) < ∞

• sup
n

{
∞∑

p=0

1
p!C3(n + p, β)ξp

}

< ∞ for any ξ ≥ 0.

Then there exists z0 ∈ C depending on β (small) and µ (big) such that a unique
lim

ΛրRd
pr
Λ(β, µ) = pr

∞(β, µ) does exist. This limit does not depends on choice of an in-

creasing sequence of compact sets Λ ⊂ R
d and on a particular choice of σΛ. A limiting

free energy density pr
∞(β, µ) is holomorphic in µ, providing |eβµ| < z0. In particular the

virial expansion, i.e.,

ρ∞(β, µ) ≡
∂

∂µ
p∞(β, µ) ≡

∞∑

n=0

bn(β)
zn

n!

is convergent if |z| < z0.

Proof. By an extension of the classical methods of Ginibre [13] developed for the case of
two–body interactions. For details we refer to [6]. �
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