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Abstract

Described are classical and quantized systems on linear and affine groups. Unlike
the traditional models applied in astrophysics, nuclear physics, molecular vibrations
and elasticity, our models are not only kinematically ruled by the affine group, but
also their kinetic energies are affinely invariant. There are geodetic SL(n,R)-invariant
models with an open family of bounded solutions and with discrete spectra on the
quantized level. They seem to be applicable in nuclear physics, theory of defects in
solids, astrophysics, dynamics of inclusions, small droplets of fluids and gas bubbles.
Independently of these hypothetical applications, they are interesting in themselves.

Analytically, the configuration space Q of affinely-rigid body in n dimensions may be
identified with the proper affine group GAf+(n,R) ≃ GL+(n,R) ×s Rn (the semi-direct
product is meant here). The configuration q = (Φ, x) ∈ Q is to be understood in such a
way that the material point with reference (Lagrange) coordinates a ∈ Rn occupies the
spatial position with the current (Euler) coordinates q(a, t) = Φ(t)a + x(t); x denotes
the instantaneous position of the center of mass. Lagrange coordinates are chosen in
such a way that the center of mass is characterized by a = 0. If the center of mass
motion is frozen or neglected, the configuration space reduces to Qint, identified with
GL+(n,R). If one does not deal with continuous medium but with a finite or countable
system of material points, we can also admit some elements of GL−(n,R), i.e., the coset of
GL(n,R) consisting of orientation-reversing transformations; also some singular elements
are admissible. In any case, the configuration space is then an open subset of L(n,R)
containing GL+(n,R), GL−(n,R) and nontrivially intersecting the manifold of matrices
with vanishing determinants. If we impose additional constraints of incompressible, rigid
or shape-preserving motions, GL+(n,R) is replaced respectively by SL(n,R), SO(n,R), or
R+SO(n,R) = eRSO(n,R). Lie-algebraic objects, i.e., affine velocities, will be denoted by
Ω = (dΦ/dt)Φ−1 and Ω̂ = Φ−1(dΦ/dt) = Φ−1ΩΦ, where Ω is invariant under right regular
translations in Qint and suffers the adjoint rule under left regular translations, and Ω̂
behaves in an opposite way with the proviso that right translations act through the inverse
adjoint rule. Let us stress that the left regular translations describe transformations acting
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in the physical space, whereas the right ones describe transformations of the body material
itself. Ω and Ω̂ represent essentially the same kinematical object respectively in laboratory
(space-fixed) and co-moving (body-fixed) representations. Similarly, translational velocity
v = dx/dt may be represented in the co-moving terms by v̂ = Φ−1v.

When the affine body is subject to the mentioned constraints, the affine velocities be-
come elements of the corresponding Lie subalgebras of L(n,R), thus, respectively the trace-
less, skew-symmetric, or skew-symmetric combined with unity-proportional matrices. In
other words, one is dealing then with Lie algebras SL(n,R)′, SO(n,R)′, or R⊗SO(n,R)′.
It is geometrically interesting to consider rotationless motion, when Ω is permanently sym-
metric, i.e., the case complementary to SO(n,R)′. As symmetric matrices do not form a Lie
algebra, such constraints are non-holonomic and may be studied both on the d’Alembert
and sub-Riemannian (VAK-onomic) level. Something similar (but non-equivalent) may be
done on the co-moving level of Ω̂. Obviously, in the rigid body case the skew-symmetric
Ω, Ω̂ become the usual angular velocity in laboratory and co-moving representations.

The dual quantities of Ω, Ω̂, i.e., linear R-valued functions of affine velocities, are
identified with elements Σ, Σ̂ of the same space L(n,R) ≃ L(n,R)∗ in the sense of pairing
< Σ, Ω >=< Σ̂, Ω̂ >=Tr(ΣΩ) =Tr(Σ̂Ω̂). The quantities Σ, Σ̂ are respectively Hamiltonian
generators of the left and right regular translations on Qint. Poisson brackets for Σ, Σ are
determined by the structure constants for GL+(n,R), those for Σ̂, Σ̂ have the reversed
sign, and the mutual ones between Σ and Σ̂ do vanish. By analogy to rigid body mechanics,
Σ and Σ̂ are referred to as the affine spin, or hypermomentum, in laboratory and spatial
representations. The mutual relationship between them and their transformation rules are
identical with those for Ω and Ω̂. When the aforementioned group-based constraints are
imposed, the dual objects of Ω, Ω̂ also may be identified (through the trace-pairing) with
the same subspaces to which they themselves belong, e.g., for the SO(n,R)-rigid body Σ
and Σ̂ are skew-symmetric. For the general affine body S := Σ − ΣT and V := Σ̂ − Σ̂T

generate left and right orthogonal translations on Qint and are referred to respectively as
spin and vorticity [3]. To preserve the correspondence with some classical 3-dimensional
formulas we shall use the following convention for the pairing between canonical spins
and angular velocities: < Σ, Ω >=< Σ̂, Ω̂ >= (1/2)Tr(ΣΩ) = (1/2)Tr(Σ̂Ω̂). The double
summation over the repeating terms is then avoided. It is interesting that V is not a
co-moving representation of S.

The linear (translational) momentum p ∈ Rn∗ is a linear functional on translational
velocities, acting through the pairing < p, v >= piv

i = pT v =Tr(pv). The total affine
momentum with respect to the origin of spatial coordinates xi (total hypermomentum)
consists of the translational and internal parts (in analogy to the angular momentum –
its doubled skew-symmetric part): Ia

b = Λa
b + Σa

b = xapb + Σa
b. Poisson brackets for

I and Λ are identical with those for Σ, the brackets between Λ and Σ do vanish. The
quantities I are Hamiltonian generators of the center-affine mappings preserving the origin
of coordinates. Shifting the origin by ξ ∈ Rn, we modify Λa

b by ξapb.

Of particular geometric interest are kinetic energies (geodetic models), i.e., Riemann
structures on groups, which are invariant under the group of all left or right or both regular
translations. For the macroscopic elastic systems with affine degrees of freedom such
models might seem “academic”. Nevertheless, they are not only geometrically interesting
and related to the dynamics of integrable lattices, but also hopefully seem to be applicable
in nuclear dynamics, astrophysics and in certain non-standard problems of continuum
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mechanics, e.g., defect theory. There is also a correspondence between them and the
Arnold description of ideal fluids as Hamiltonian systems on the diffeomorphism group
[2]. SDiff(Rn) is then “discretized” to SL(n,R).

Let us begin with the translationless case, when only internal (relative) motion is
taken into account and configuration space is identified with Qint. The most general
“kinetic energy” (metric structure) on Qint invariant under all left and right regular trans-
lations has the form: TKC

int = (A/2)Tr(Ω2) + (B/2)(TrΩ)2 = (A/2)Tr(Ω̂2) + (B/2)(TrΩ̂)2.
As SL(n,R) is semisimple and non-compact, it is never positively definite, apparently,
non-acceptable as a kinetic energy. Geometrically, TKC

int is an affine counterpart of a
free and materially-invariant gyroscope with two generalized constant inertial scalars A
and B. Nevertheless, it turns out that just such a model is convenient and may en-
code partially a large part of elastic interactions without deriving them from a sep-
arate potential term. The above expression reduces to the Killing form of GL(n,R)
when A = 2n and B = −2. This special case is mechanically useless, because the
corresponding metric is degenerate due to non-semisimplicity of GL(n,R). It is al-
ways so when generalized inertial moments satisfy A/B = −n. The dominant A-term
has the signature (n(n + 1)/2) +, n(n − 1)/2 −) (respectively non-compact and com-
pact dimensions) and with the normalization B = −2 it reduces on SL(n,R) to its
Killing tensor with the signature ((n(n + 1)/2 − 1) +, n(n − 1)/2 −). After perform-
ing the Legendre transformation we obtain from TKC

int the following geodetic Hamiltonian:
ℑKC

int = (1/2A)Tr(Σ2)−(B/2A(A+nB))(TrΣ)2 = (1/2A)Tr(Σ̂2)−(B/2A(A+nB))(TrΣ̂)2.
Without translational motion both Σ and Σ̂ are constants of motion, i.e., they have the
vanishing Poisson brackets with the above ℑKC

int . Let us observe that without any exter-
nal potential the above purely geodetic models are not useful for describing deformative
motion, although not so strongly as those based on the d’Alembert principle [4]. The
catastrophic phenomena happen in the purely dilatational sector. Namely, volume of the
body suffers an exponential expansion or contraction (its logarithm moves uniformly).
So, the body may collapse or expand in a non-limited way, although both catastrophic
phenomena hold in an infinite time (in the usual d’Alembert model [6] the contraction
and return to the normal size in geodetic motion are possible after a finite lapse of
time). There exist constant-volume solutions, but they are exponentially unstable. There-
fore, this part of motion must be stabilized by external potentials [5], e.g., of the form:
Vdil = k(l2 + l−2−2)/8 = k(ch(2q)−1)/4 or Vdil = k(th2q−1)/2, where k > 0, l = exp(q),
detΦ = ln, Φ = lφ, φ ∈ SL(n,R). These phenomenological models predict anharmonic
volume vibrations about the equilibrium det Φ = 1, i.e., l = 1, q = 0. The second of them
admits the collapse and unlimited expansion when some energy threshold is exceeded.
One can also quite easily construct phenomenological models admitting dissociation but
preventing contraction. When it is not det Φ or l but just q itself that is used as a primary
variable, one can simply postulate the harmonic model: Vdil = kq2/2, k > 0 (but there is
no physical symmetry between the collapse and expansion).

It is clear that the general solution of geodetic Killing-Casimir models (TKC
int and ℑKC

int ) is
given by one-parameter subgroups of GL+(n,R) and their cosets, i.e., Φ(t) = exp(Et)Φ0 =
Φ0 exp(Êt), where Φ0 ∈ GL+(n,R) and E ∈ GL(n,R)′ ≃ L(n,R) are arbitrary; obviously,
Ê = Φ−1

0 EΦ0 also runs over the whole of L(n,R). The pairs (Φ0, E) or (Φ0, Ê) are
differently expressed initial conditions, namely Φ0 = Φ(0) is an initial configuration and
E = Ω(0), Ê = Ω̂(0) are initial constant values of the affine velocity. The initial value of
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generalized velocity is Φ̇(0) = EΦ0 = Φ0Ê. The same holds for an incompressible body,
when Qint = SL(n,R). Obviously, then Φ0 ∈ SL(n,R); E, Ê ∈ SL(n,R)′ (traceless) and
there is no B-term in TKC

int and ℑKC
int .

As mentioned, the size dynamics of geodetic models on GL+(n,R) is non-stable. To
help against this in a minimal-correction way, one has to introduce a stabilizing dilatational
potential Vdil(det Φ), like above. First, let us introduce some auxiliary symbols ω :=
(dφ/dt)φ−1 and ω̂ := φ−1dφ/dt; ω, ω̂ ∈ SL(n,R)′. Obviously, Ω = ω + (dq/dt)Id, Ω̂ =
ω̂ + (dq/dt)Id (as usual, Id denotes the identity matrix). Similarly, for the affine spin we
have the splitting: Σ = σ + (p/n)Id, Σ̂ = σ̂ + (p/n)Id, σ, σ̂ ∈ SL(n,R)′, where p denotes
dilatational canonical momentum, and Tr(ΣΩ) = Tr(Σ̂Ω̂) = Tr(σω) + pq̇ = Tr(σ̂ω̂) + pq̇.
Poisson brackets for σ are determined by the structure constants of SL(n,R), those for
σ̂ have reversed signs, and obviously, the mixed ones do vanish. Similarly, all Poisson
brackets between shape (shear) and dilatational quantities are vanishing.

Kinetic energies TKC
int and ℑKC

int split additively in the shear-dilatation sense,

TKC
int =

ATr(ω2)

2
+

n(A + nB)q̇2

2
= Tsh+Tdil, ℑ

KC
int =

Tr(σ2)

2A
+

p2

2n(A + nB)
= ℑsh+ℑdil.

These expressions are related to each other via Legendre transformation: σ = Aω, p =
n(A + nB)q̇. Obviously, (ω, σ) may be replaced in these formulas by (ω̂, σ̂). When dilata-
tions are controlled, we use Lagrangians and Hamiltonians of the form: L = Lsh + Ldil =
Tsh + Tdil + V (q), H = Hsh + Hdil = ℑsh + ℑdil + V (q). Dilatational and shear motions
are then completely independent, and they remain so if we admit in addition a purely
shear potential Vsh(φ). The question arises however whether there exists a sufficiently
large family of bounded, vibrating solutions when Vsh = 0, i.e., when the isochoric motion
is free (geodetic). It is obvious that

Proposition 1. If α ∈ SL(n,R)′ is similar to a skew-symmetric matrix λ ∈ SO(n,R)′

(thus λ = −λT ), i.e., if there exists Ψ ∈ SL(n,R) such that α = ΨλΨ−1, then every
motion φ(t) = exp(αt)φ0 is bounded. It is clear that for n = 2, 3 such motions are periodic
(for n > 3 it may be so but need not).

The question is of course “how large” this subset of the general solution is. It turns
out that it has the dimension of SL(n,R), i.e., (n2 − 1).

Proposition 2. The subset of SL(n,R)′ consisting of matrices ΨλΨ−1, where λ, Ψ as in
Proposition 1, contains an open neighborhood of the null matrix O in SL(n,R)′.

Roughly speaking, the set of such matrices is controlled by (n2−1) parameters. Deform-
ing skew-symmetric matrices by means of similarity transformations we can infinitesimally
move in any direction in SL(n,R)′. This is seen from the polar decomposition Ψ = UL,
where U ∈ SO(n,R), LT = L, det L = 1. Deforming SO(n,R)′ with the help of U -
similarities we obtain just SO(n,R)′ itself, i.e., the subspace of skew-symmetric matrices.
The point is what we obtain from deformations SO(n,R)′ ∋ λ 7→ LλL−1 using the symmet-
ric L-matrices. In terms of infinitesimal arguments this may be transformed into the ques-
tion concerning the structure of the commutator set {[α, λ] : αT = α, Tr(α) = 0, λT = −λ}.
But it is clear from the structure of commutation relations of GL(n,R)′ ≃ L(n,R)
(antisymmetric-antisymmetric, antisymmetric-symmetric, symmetric-symmetric) that the
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above commutator set just consists of all symmetric trace-less matrices. Properties of the
matrix exponent imply that

Corollary 1. General solutions φ(t) = exp(αt)φ0 = φ0 exp(α̂t) of the SL(n,R)-restricted
geodetic problem

(

TKC
int , ℑKC

int

)

contains an open subset of bounded solutions, where α,
α̂ = φ−1

0 αφ0 ∈ SL(n,R)′, and “open” is meant in the sense of these initial conditions. For
any stabilizing dilatational potential V (q) there exists an open subset of general solutions
for L and H consisting of bounded motions of the form: Φ(t) = exp(αt + q(t))φ0 =
φ0 exp(α̂t+q(t)), where t 7→ q(t) is a general solution of the one-dimensional Hamiltonian
problem with the Lagrangian Ldil = Tdil − V (q) and Hamiltonian Hdil = ℑdil + V (q).

In this sense some kind of shear dynamics (shape vibrations) may be encoded in a
purely geodetic left and right invariant model on SL(n,R).

Let us now return to GAf(n,R) ≃ GL(n,R) ×s Rn, i.e., include the translational
motion. There is no symmetry under right Rn-translations, because Lagrange coordinates
a = 0 of the center of mass are fixed and realistic bodies have a finite size. But the full
group of left regular translations in GAf(n,R) (including the spatial Rn-translations) is
physically meaningful. The total kinetic energy is postulated as a sum T = Ttr + Tint

of translational and internal parts. There are no models simultaneously invariant under
the left and right action of GL(n,R). This is due to the very specific non-semisimplicity
of GAf(n,R). Translational kinetic energy invariant under the left action of GL(n,R) is
given by: Ttr = (m/2)v̂T v̂ = (m/2)vT Cv, where C = φ−1T φ−1 is the Cauchy deformation
tensor. Now Ttr is not any longer invariant under the right regular action of GL(n,R), but
only under the right regular action of O(n,R). In the geodetic case (more generally for x-
independent potentials) the canonical linear momentum pi = Cijv

j is a constant of motion,
but the velocity vi is not so (the “drunk-missile” effect). Geodetics in GL+(n,R)×sR

n do
not project onto geodetics (straight lines) in Rn. For the geodetic model the total affine
momentum Ia

b is a constant of motion, but the affine spin Σa
b itself is not so. Translational

kinetic energies invariant under the right action of GL(n,R) have the classical form: Tint =
(m/2)vT v = (m/2)v̂T Gv̂, where G = φT φ is the Green deformation tensor. What concerns
the left regular action, there is only the orthogonal O(n,R)-invariance, but no higher one.

These invariance properties (shared by those of the total T ) fix our attention on the
subclass of kinetic energies (metrics) on Qint = GL+(n,R) which are invariant under

the right action of GL+(n,R) and left action of SO(n,R): T right
int = (J/2)Tr(ΩT Ω) +

(A/2)Tr(Ω2) + (B/2)(TrΩ)2, or left invariant under GL+(n,R) and right invariant under
SO(n,R): T left

int = (J/2)Tr(Ω̂T Ω̂) + (A/2)Tr(Ω̂2) + (B/2)(TrΩ̂)2. In both formulas J , A,
and B are constant generalized scalar moments of inertia. Obviously, the second and third
terms in both formulas are respectively equal to each other. There is an open range of
(J,A,B) ∈ Rn for which T right

int and T left
int are positively definite.

It is important that now the general solution of the corresponding geodetic problem is
not any longer given by one-parameter subgroups and their cosets Φ(t) = exp(Et)Φ0 =
Φ0 exp(Êt). Nevertheless, such solutions do exist and form a continuous family.

Proposition 3. For geodetic models T right
int there exist solutions Φright(t) = exp(Et)Φ0,

where Φ0 is arbitrary, and E is normal, i.e., [ET , E] = 0 (e.g., symmetric or skew-
symmetric). Similarly, for T left

int there exist solutions Φleft(t) = Φ0 exp(Et). The same
holds for incompressible models, i.e., there are respectively solutions of the form φright(t) =
exp(αt)φ0, φleft(t) = φ0 exp(αt), where φ0 is arbitrary, and α satisfies [αT , α] = 0.
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These are affine counterparts of stationary rotations (relative equilibria [1, 2]) in rigid
body mechanics. For the compressible motion this result may be easily combined with
the volume-stabilizing solutions for the Ldil Lagrangian. The question arises whether the
volume-stabilizing term V (q) is sufficient for the existence of an open set of bounded
solutions. The answer is affirmative.

Proposition 4. The general solutions for SL(n,R)-restricted geodetic systems based on

T right
int , T left

int contain open subsets of bounded solutions. The general solutions of these sys-
tems non-restricted from GL+(n,R) to SL(n,R) but modified by volume-stabilizing terms
V (q) also contain open subsystems of bounded solutions.

It is impossible to report the details here. Everything follows from the fact that the cor-
responding geodetic Hamiltonians for T right

int , T left
int may be respectively expressed as follows:

ℑright
int = Tr(Σ2)/2α+(TrΣ)2/2β−Tr(S2)/4µ, ℑleft

int = Tr(Σ̂2)/2α+(TrΣ̂)2/2β−Tr(V 2)/4µ,
where the inertial constants α = J +A, β = −(J +A)(J +A+nB)/B and µ = (J2−A2)/J .
It is seen that structurally these expressions differ from ℑKC

int by the terms proportional
to Tr(S2), Tr(V 2). These quantities are constants of motion of the geodetic problems

based respectively on ℑright
int , ℑleft

int . They remain constants of motion after introducing
volume-stabilizing potentials V (q), moreover, even after introducing any doubly-isotropic
potential, i.e., one invariant under Φ 7→ UΦW , where U , W run over SO(n,R). Besides,
Tr(S2), Tr(V 2) have non-vanishing Poisson brackets only with those phase-space variables
which, having compact geometry, cannot make the motion unbounded.

These problems become very lucid when one uses the two-polar decomposition of
GL+(n,R): Φ = LDR−1, where L,R ∈ SO(n,R), D is diagonal and positive. One
can introduce co-moving angular velocities λ = L−1dL/dt, ρ = R−1dR/dt, and quantities
qi = log Dii. By the way, the previously used q-variable is the “center of mass” of qi’s:
q = (q1 + . . .+qn)/n. Then we introduce canonical spins j, k conjugated respectively to λ,
ρ, and canonical momenta pi conjugated to qi. The previously used p-quantity is canon-
ically conjugated to q. So, our phase space is “parameterized” by arrays (j, k, q, p; L,R).
The subarrays (j, k, q, p) are closed under Poisson brackets. In geodetic models described
above Hamiltonians depend only on these quantities. The same concerns models with
volume-stabilizing potentials V (q) and even with all doubly-isotropic potentials V (qi).
Formulating equations of motion in terms of Poisson brackets, dF/dt = {F,H}, and mak-
ing use of the fact that Tr(S2), Tr(V 2) Poisson-commute with the (j, k, q, p)-variables [7],
we conclude that all discussed here geodetic models have the same dynamics on the level
of these coordinates. The difference appears only in the time evolution of L,R-variables.
But due to the compactness of SO(n,R), this has nothing to do with the boundness

of motion. An important fact: for the general geodetic models T right
int , T left

int restricted to
SL(n,R) even for n = 2, 3 the bounded solutions need not to be periodic in the total phase
space SL(n,R)× SL(n,R)′ (i.e., when the L,R-variables are included). It is interesting
that the dynamics of our reduced variables (j, k, q, p) is closely related to the theory of
one-dimensional lattices. The quantities qa are then interpreted as lattice points [6], e.g.,
for the special case J = 0, B = 0, and Rab = −jab − kab, Aab = jab − kab, we obtain:

H =
1

2A

∑

a

p2
a +

1

32A

∑

a,b

R2
ab

sh2[(qa − qb)/2]
−

1

32A

∑

a,b

A2
ab

ch2[(qa − qb)/2]
.
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On the quantum level the existence of an open subset of classical bounded solutions
should manifest itself by the existence of a discrete energy spectrum. We mean here the
traditional Schrödinger quantization. The metric tensor underlying the kinetic energy
term gives rise to the Riemannian volume element and to the corresponding Hilbert space
L2 of square-integrable functions. The kinetic energy operator is given by −(~2/2)∇,
where ∇ denotes the corresponding Laplace-Beltrami operator. For any of the above
classical models the Riemann volume is identical with the Haar measure h. Let us remind
that it is given by dh(Φ) = (det Φ)−ndΦ11 . . . dΦnn on GL(n,R), or when considered on
GAf(n,R), by dhGAf(x, Φ) = (det Φ)−n−1dx1 . . . dxndΦ11 . . . dΦnn. If we use the two-polar
decomposition, h may be expressed as dh(Φ) =

∏

i6=j |sh(qi − qj)|dµ(L)dµ(R)dq1 . . . dqn,
where µ is the Haar measure on SO(n,R).

According to the Peter-Weyl theorem, wave functions on GL+(n,R) may be expanded

as follows: Ψ(Φ) =
∑

α,β

∑N(α)
m,n=1

∑N(β)
k,l=1 Dα

mn(L)Ψαβ
mnkl(q)Dβ

kl(R
−1), where the Greek in-

dices label the set of irreducible unitary representations of SO(n,R), N(α) are represen-
tation dimensions, and Dα

mn are matrix elements of representations. Here q denotes the
system of all qi’s, not their “center”. The stationary Schrödinger equation for Ψ reduces
to the family of Schrödinger equations ĤαβΨαβ = EαβΨαβ for matrix-valued wave am-
plitudes Ψαβ depending only on the variables qi. For any pair (α, β) Ĥαβ is a matrix of
second-order differential operators in q-variables, e.g., if J = 0, B = 0, we have:

ĤαβΨαβ = −
~

2A
∇[q]Ψαβ +

1

32A

∑

i,j

(
←−
S β

ij −
−→
S α

ij)
2Ψαβ

sh2[(qi − qj)/2]
−

1

32A

∑

i,j

(
←−
S β

ij +
−→
S α

ij)
2Ψαβ

ch2[(qi − qj)/2]
,

where ∇[q] = (1/P )
∑n

i=1(∂/∂qi)P (∂/∂qi), P =
∏

i6=j |sh(qi − qj)|,
−→
S α

ijΨ
αβ = Sα

ijΨ
αβ,

←−
S β

ijΨ
αβ = ΨαβSβ

ij, Sα
ab = (~/i)Xα

ab. The matrices Xα
ab are basic exp-generators of the α-th

irreducible representation of SO(n,R). There exist pairs (α, β) for which the spectrum
of Ĥαβ has a discrete part (bounded states without potentials in non-compact manifolds
SL(n,R)). For n = 2 this may be explicitly shown on simple examples.
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