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Abstract

We show that every transitive Lie algebroid over a connected symplectic manifold
comes from an intrinsic Lie algebroid of a symplectic leaf of a certain Poisson structure.
The reconstruction of the corresponding Poisson structures from the Lie algebroid is
given in terms of coupling tensors.

1 Introduction

The correspondence between Poisson structures and Lie algebroids plays an important role
in various problems in Poisson geometry (see, for example, [1, 2, 3, 4]). As is well known
[5], the cotangent bundle of an arbitrary Poisson manifold carries a natural Lie algebroid
structure compatible with the symplectic foliation. Let (M,Ψ) be a Poisson manifold with
Poisson tensor Ψ. Then the Poisson bracket on M admits the natural extension to the
bracket for 1-forms on M :

{α, β}T ∗M = Ψ#(α)⌋dβ − Ψ#(β)⌋dα − d〈α,Ψ#(β)〉,

here Ψ# : T ∗M → TM is the vector bundle morphism associated with Ψ. This structure
makes the cotangent bundle T ∗M into a Lie algebroid

(

T ∗M,Ψ#, { , }T ∗M ,
)

called the Lie
algebroid of the Poisson manifold (M,Ψ). Given a symplectic leaf (B,ω) of M one can
restrict the bracket { , }T ∗M to a Lie bracket on smooth sections of the restricted cotangent

bundle T ∗
BM [3, 6, 7]. The result is a transitive Lie algebroid (T ∗

BM,Ψ#
B , { , }T ∗

B
M ) over

B called the Lie algebroid of the symplectic leaf B.
So, every symplectic leaf of a Poisson manifold carries an intrinsic transitive Lie alge-

broid structure which controls the infinitesimal Poisson geometry around the leaf. One
can ask the natural question: is there also a connection in the reverse direction between
transitive Lie algebroids over a symplectic base and Poisson structures? In this paper we
give an affirmative answer to this question. The reconstruction of the Poisson structure
from a transitive Lie algebroid is based on the contravariant version [8] of the minimal
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coupling procedure due to Sternberg [9, 10]. The corresponding Poisson structure is called
a coupling tensor [8] and represents the result of coupling the symplectic base structure
and the fiberwise Lie-Poisson structure on a certain vector bundle via a connection of the
transitive Lie algebroid [6, 7]. Remark that connection-dependent Poisson structures of
such a type were studied in [11, 12] in the context of a Hamiltonian formulation of Wong’s
equation. As an application, we discuss the passage between transitive Lie algebroids and
coupling tensors from the viewpoint of Hamiltonian formalism.

2 Reconstruction of Poisson Structures

Recall that a Lie algebroid over a manifold B is a triple (A, ρ, { , }A) consisting of a vector
bundle A → B together with a bundle map ρ : A → TB, called the anchor, and a Lie
algebra structure { , }A on the space of smooth sections Γ(A) such that: ρ is a Lie algebra
homomorphism and the Leibniz identity holds, {a1, fa2}A = f{a1, a2}A + (Lρ(a1)f)a2 for
any a1, a2 ∈ Γ(A), f ∈ C∞(B). An isomorphism between two Lie algebroids is defined as
vector bundle morphism compatible with the anchors and the Lie brackets in a natural
way. The kernel gB := ker ρ ⊂ A of the anchor is called the isotropy of a Lie algebroid.
If ρ is a fiberwise surjection, then the the Lie algebroid is said to be transitive [6, 7]. In
this case, the isotropy gB is a Lie algebra bundle. For every ξ ∈ B the fiber gξ carries a
Lie bracket [, ]fib

ξ induced from { , }A , which varies smoothly with ξ. Then the dual g
∗
ξ of

gξ is equipped with the Lie-Poisson bracket which makes g
∗
B into a bundle of Lie-Poisson

manifolds ( for more detail, see [1, 2]).

For example, in the case of the Lie algebroid (T ∗
BM,Ψ#

B , { , }T ∗
B

M ) of a symplectic
leaf (B,ω) of a Poisson manifold (M,Ψ) , the isotropy coincides with the annihilator

TB0 = ker Ψ#
B of TB in TBM . The dual of the isotropy is identified with the normal

bundle E = TBM/TB to B. The fiberwise Lie-Poisson structure of E is just the linearized
transverse Poisson structure of Ψ at B [13].

Now we formulate our main result.

Theorem 1. Every transitive Lie algebroid (A, ρ, { , }A) over a connected symplectic man-
ifold (B,ω) admits a Poisson realization in the following sense. In a neighborhood of the
zero section B of the dual g

∗
B of the isotropy there exists a Poisson tensor Π such that: (i)

(B,ω) is a symplectic leaf of Π, and (ii) the Lie algebroid of the leaf (B,ω) is isomorphic
to (A, ρ, { , }A).

To prove this theorem we give an explicit description of the Poisson structure Π in
terms of the algebroid A. As we will see the main features of Π are completely different
from the properties of the dual Lie-Poisson structure on A∗ [14] uniquely determined by
the homogeneity condition: the bracket of fiberwise linear functions on A∗ is fiberwise
linear.

Suppose we are given a transitive Lie algebroid (A, ρ, { , }A) over a connected symplectic

manifold (B,ω). Then there is an exact sequence of vector bundles gB → A
ρ
→ TB. Fix

a vector bundle morphism γ : TB → A such that ρ ◦ γ = id. Such a mapping is called
a connection of the transitive Lie algebroid [6, 7]. The curvature of γ is the gB-valued
valued 2-form R ∈ Ω2(B, gB) determined by R(u1, u2) := {γ(u1), γ(u2)}A − γ([u1, u2]) for
u1, u2 ∈ X (B). One can associate to γ a linear connection ∇ on the isotropy gB , called
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an adjoint connection, and defined as follows ∇uη = {γ(u), η}A for u ∈ X (B), η ∈ Γ(gB).
From the Lie algebroid axioms we get the following information [7]. The adjoint connection
∇ preserves the fiberwise Lie structure on gB ,

∇([η1, η2]
fib) = [∇η1, η2]

fib + [η1,∇η2]
fib. (2.1)

and the curvature form Curv∇ : TB ⊕TB → End(gB) of ∇ is related with the 2-form R
by the adjoint operator,

Curv∇ = ad ◦R, (2.2)

where ad ◦ η := [η, ·]fib for η ∈ Γ(gB). Moreover, the modified Bianchi identity holds

∇R = 0. (2.3)

Using the symplectic structure ω on B and R, let us introduce the following 2-form on
the total space g

∗
B : F := π∗ω − ℓ ◦ π∗R. Here π : g

∗
B → B is the projection and

ℓ : Γ(gB) → C∞
lin(g

∗
B) is the natural identification of Γ(gB) with the space C∞

lin(g
∗
B) of the

smooth fiberwise linear functions on g
∗
B , ℓ(η)(x) =< x, η(ξ) > (x ∈ g

∗
B , ξ = π(x)).

Fix a basis {ησ} of local sections of gB. Let x = (xσ) be the associated coordinates
on the fiber of g

∗
B and ξ = (ξi) are local coordinates on B. In coordinates, we have

F = 1
2Fij(ξ, x)dξi ∧ dξj , where Fij(ξ, x) = ωij(ξ) − xσRσ,ij(ξ). It is clear that the 2-form

F is nondegenerate in a neighborhood Nγ of B in g
∗
B. Let us define (local) vector fields on

the total space g
∗
B by hori := ∂

∂ξi − θσ
iν(ξ)x

ν ∂
∂xσ , where ∇ ∂

∂ξi
ην = −θσ

iν(ξ)ησ . The vector

fields hori form the horizontal distribution on g
∗
B of the dual connection ∇∗. Next, the

fiberwise Lie-Poisson structure on g
∗
B induces the Poisson tensor Λ = 1

2λαβ
ν (ξ)xν ∂

∂xα ∧ ∂
∂xβ

on the total space, where λαβ
ν (ξ) are the structure constants of gξ with respect to the basis

{ησ(ξ)}. Finally, we define the following bivector field

Πγ := −
1

2
F ij hori ∧ horj +Λ, (2.4)

where F isFsj = δi
j . Although Πγ is defined in terms of coordinates and a basis, one can

show that it is independent of these choices. Thus, Πγ is a well-defined bivector field on
Nγ depending on the connection γ.

Proposition 1. Bivector field Πγ (2.4) is a Poisson tensor satisfying the properties (i),(ii)
in Theorem 1.

The Jacoby identity for Πγ follows from the invariance property (2.1), the curvature
identity (2.2) and the modified Bianchi identity (2.3), [8]. By construction (B,ω) is a
symplectic leaf of Πγ . Taking into account splitting A = γ(TB) ⊕ gB, we identify A with
T ∗

Bg
∗
B = TB⊕ gB . Then, looking at the infinitesimal part of Πγ at B, we see that the

property (ii) in Theorem 1 holds.
The Poisson tensor Πγ is called the coupling tensor [8] associated with a pair (A, γ).

Observe that Πγ is the sum of two bivector fields ΠH
γ and ΠV

γ called the horizontal and

vertical parts, respectively. The vertical part ΠV
γ = Λ is a Poisson tensor completely

determined by the fiberwise Lie-Poisson structure of g
∗
B . The horizontal part ΠH

γ satisfies
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the Jacobi identity if and only if the curvature Rγ vanishes, or equivalently, the subspace
π∗C∞(B) is closed with respect to the Poisson bracket. In this case, ΠH

γ is just the
horizontal lift of the Poisson tensor on (B,ω).

For a given A the Poisson tensor Πγ depends on the choice of γ. Suppose we are given
other connection γ̃ of A and let Πγ̃ be the corresponding coupling tensor. We say that Πγ

and Πγ̃ are neighborhood equivalent if there exists a diffeomorphism f : U → Ũ between
two neighborhoods U ⊂ Nγ and Ũ ⊂ Nγ̃ of B in g

∗
B such that f∗Πγ̃ = Πγ .

Proposition 2. Πγ is independent of the choice of a connection γ up to neighborhood
equivalence.

So, one can speak on an intrinsic coupling tensor of the transitive Lie algebroid A. The
proof of this Proposition is based on a contravariant version [8] of the Moser homotopy
method. The key observation here is that there exists a smooth homotopy between any
two connections of A which induces a homotopy between corresponding coupling tensors.

3 Linear Hamiltonian Vector Fields

One can associate a Poisson algebra to a given a transitive Lie algebroid A over a connected
symplectic manifold (B,ω) in the following way. Let C∞

aff(g∗B) be the space of smooth
fiberwise affine functions on g

∗
B . Then

C∞
aff(g∗B) ≈ C∞(B) ⊕ C∞

lin(g
∗
B) (3.1)

and every fiberwise affine function φ is represented as φ = π∗f + ℓ(η) ≈ f ⊕ η, where
f ∈ C∞(B) and η ∈ Γ(gB). Fix a connection γ of A and consider the corresponding data
(∇,R). Then one can define a Lie bracket on C∞

aff(g∗B) by

{φ1, φ2}aff := {f1, f2}B ⊕
(

∇vf1
η2 −∇vf2

η1 + [η1, η2]
fib + R(vf1

, vf2
)
)

, (3.2)

for φ1 = f1 ⊕ η1 and φ2 = f2 ⊕ η2. Here {, }B is the Poisson bracket and vf is the
Hamiltonian vector field of f on (B,ω). Define also the linearized pointwise product ◦ for
affine functions by φ1 ◦ φ2 := (f1 · f2) ⊕ (f1 · η2 + f2 · η1). This makes C∞

aff(g∗B) into a
commutative associative algebra with unit (1 ⊕ 0). One can show that the bracket {, }aff

and the linearized pointwise product are compatible by the Leibniz identity and hence the
triple (C∞

aff(g∗B), ◦, {, }aff ) defines a Poisson algebra associated with (A, γ). This algebra
is independent of the choice of γ up to an isomorphism.

A vector field V on the total space g
∗
B is called linear if the Lie derivative LV :

C∞(g∗B) → C∞(g∗B) along V sends C∞
lin(g

∗
B) into C∞

lin(g
∗
B). This implies that V descends

to a vector field v on B, dπ ◦ V = v ◦ π. The Lie algebra of linear vector fields is denoted
by Xlin(g

∗
B). By the analogy with Poisson manifolds, we say that a linear vector field V is

Hamiltonian relative to bracket (3.2) if there exists a fiberwise affine function φ = f ⊕ η
such that

LV = adφ on C∞
aff(g∗B), (3.3)

where adφ := {φ, ·}aff is the adjoint operator of φ. The Hamiltonian vector field of φ is
denoted by V = V φ. Clearly, V φ descends to vf . In the contrast to the usual situation, one
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can not say that every φ admits a linear Hamiltonian vector field. Indeed, condition (3.3)
says that adφ as a derivation of the associative algebra (C∞

aff(g∗B), ◦) admits an extension
to a derivation of C∞(g∗B). But it is not true for an arbitrary φ. To see that, for every
φ = f⊕η we define the torsion of adφ as a R-linear operator Tφ : C∞(B) → C∞

lin(g
∗
B) letting

Tφ(g) := R(vf , vg) −∇vg
η ∀ g ∈ C∞(B). The space of all torsion free functions is denoted

by Aγ := {φ ∈ C∞
aff(g∗B) | Tφ = 0}. In fact, Aγ is a Lie subalgebra in (C∞

aff(g∗B), {, }aff ).
Since C∞

lin(g
∗
B) is an ideal in the Poisson algebra, splitting (3.1) is invariant with respect

to adφ only if its torsion vanishes. Finally, we observe that φ ∈ C∞
lin(g

∗
B) admits a linear

Hamiltonian vector field in the sense of (3.3) if and only if φ ∈ Aγ . Moreover, the
correspondence

Aγ ∋ φ 7→ Vφ ∈ Xlin(g
∗
B) (3.4)

is a Lie algebra homorphism.

Proposition 3. Let Πγ be the coupling tensor associated with (A, γ). Then the Lie algebra
of all linear vector fields on g

∗
B which are Hamiltonian relative to the Poisson structure

Πγ , coincides with the image of Aγ under homorphism (3.4).

So, the complement C∞
aff(g∗B) \ Aγ consists of all affine functions φ whose Hamiltonian

vector fields Π
#

γ dφ are not linear. One can show that C∞
aff(g∗B) \ Aγ is nonempty. This

observation is related with the phenomenon: the linearization of Hamiltonian systems at
a given symplectic leaf of a Poisson manifold may destroy the Hamiltonian property.
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