On Poisson Realizations of Transitive Lie Algebroids

Yuri VOROBIEV[†]

Departamento de Matemáticas, Universidad de Sonora Hermosillo, México, 83000 E-mail:yurimv@quaymas.uson.mx

This article is part of the Proceedings titled "Geometrical Mathods in Physics: Bialowieza XXI and XXII"

Abstract

We show that every transitive Lie algebroid over a connected symplectic manifold comes from an intrinsic Lie algebroid of a symplectic leaf of a certain Poisson structure. The reconstruction of the corresponding Poisson structures from the Lie algebroid is given in terms of coupling tensors.

1 Introduction

The correspondence between Poisson structures and Lie algebroids plays an important role in various problems in Poisson geometry (see, for example, [1, 2, 3, 4]). As is well known [5], the cotangent bundle of an arbitrary Poisson manifold carries a natural Lie algebroid structure compatible with the symplectic foliation. Let (M, Ψ) be a Poisson manifold with Poisson tensor Ψ . Then the Poisson bracket on M admits the natural extension to the bracket for 1-forms on M:

$$\{\alpha, \beta\}_{T^*M} = \Psi^{\#}(\alpha) | d\beta - \Psi^{\#}(\beta) | d\alpha - d\langle \alpha, \Psi^{\#}(\beta) \rangle,$$

here $\Psi^{\#}: T^*M \to TM$ is the vector bundle morphism associated with Ψ . This structure makes the cotangent bundle T^*M into a Lie algebroid $(T^*M, \Psi^{\#}, \{\,,\,\}_{T^*M},)$ called the Lie algebroid of the Poisson manifold (M, Ψ) . Given a symplectic leaf (B, ω) of M one can restrict the bracket $\{\,,\,\}_{T^*M}$ to a Lie bracket on smooth sections of the restricted cotangent bundle T_B^*M [3, 6, 7]. The result is a transitive Lie algebroid $(T_B^*M, \Psi_B^{\#}, \{\,,\,\}_{T_B^*M})$ over B called the Lie algebroid of the symplectic leaf B.

So, every symplectic leaf of a Poisson manifold carries an intrinsic transitive Lie algebroid structure which controls the infinitesimal Poisson geometry around the leaf. One can ask the natural question: is there also a connection in the reverse direction between transitive Lie algebroids over a symplectic base and Poisson structures? In this paper we give an affirmative answer to this question. The reconstruction of the Poisson structure from a transitive Lie algebroid is based on the contravariant version [8] of the minimal

Copyright © 2004 by Yu. Vorobiev

opyrigiti & 2004 by 14. Voloble

[†]Research partially supported by the CONACYT under grant number 35212-E

44 Yuri Vorobiev

coupling procedure due to Sternberg [9, 10]. The corresponding Poisson structure is called a *coupling tensor* [8] and represents the result of coupling the symplectic base structure and the fiberwise Lie-Poisson structure on a certain vector bundle via a *connection* of the transitive Lie algebroid [6, 7]. Remark that connection-dependent Poisson structures of such a type were studied in [11, 12] in the context of a Hamiltonian formulation of Wong's equation. As an application, we discuss the passage between transitive Lie algebroids and coupling tensors from the viewpoint of Hamiltonian formalism.

2 Reconstruction of Poisson Structures

Recall that a $Lie\ algebroid$ over a manifold B is a triple $(A,\rho,\{\,,\,\}_A)$ consisting of a vector bundle $A\to B$ together with a bundle map $\rho:A\to TB$, called the anchor, and a Lie algebra structure $\{\,,\,\}_A$ on the space of smooth sections $\Gamma(A)$ such that: ρ is a Lie algebra homomorphism and the Leibniz identity holds, $\{a_1,fa_2\}_A=f\{a_1,a_2\}_A+(L_{\rho(a_1)}f)a_2$ for any $a_1,a_2\in\Gamma(A),\ f\in C^\infty(B)$. An isomorphism between two Lie algebroids is defined as vector bundle morphism compatible with the anchors and the Lie brackets in a natural way. The kernel $\mathfrak{g}_B:=\ker\rho\subset A$ of the anchor is called the isotropy of a Lie algebroid. If ρ is a fiberwise surjection, then the Lie algebroid is said to be transitive [6,7]. In this case, the isotropy \mathfrak{g}_B is a $Lie\ algebra\ bundle$. For every $\xi\in B$ the fiber \mathfrak{g}_ξ carries a Lie bracket $[,]_\xi^{\text{fib}}$ induced from $\{\,,\,\}_A$, which varies smoothly with ξ . Then the dual \mathfrak{g}_ξ^* of \mathfrak{g}_ξ is equipped with the Lie-Poisson bracket which makes \mathfrak{g}_B^* into a bundle of Lie-Poisson manifolds (for more detail, see [1,2]).

For example, in the case of the Lie algebroid $(T_B^*M, \Psi_B^\#, \{\,,\,\}_{T_B^*M})$ of a symplectic leaf (B, ω) of a Poisson manifold (M, Ψ) , the isotropy coincides with the annihilator $TB^0 = \ker \Psi_B^\#$ of TB in T_BM . The dual of the isotropy is identified with the normal bundle $E = T_BM/TB$ to B. The fiberwise Lie-Poisson structure of E is just the linearized transverse Poisson structure of Ψ at B [13].

Now we formulate our main result.

Theorem 1. Every transitive Lie algebroid $(A, \rho, \{ , \}_A)$ over a connected symplectic manifold (B, ω) admits a Poisson realization in the following sense. In a neighborhood of the zero section B of the dual \mathfrak{g}_B^* of the isotropy there exists a Poisson tensor Π such that: (i) (B, ω) is a symplectic leaf of Π , and (ii) the Lie algebroid of the leaf (B, ω) is isomorphic to $(A, \rho, \{ , \}_A)$.

To prove this theorem we give an explicit description of the Poisson structure Π in terms of the algebroid A. As we will see the main features of Π are completely different from the properties of the dual Lie-Poisson structure on A^* [14] uniquely determined by the homogeneity condition: the bracket of fiberwise linear functions on A^* is fiberwise linear.

Suppose we are given a transitive Lie algebroid $(A, \rho, \{, \}_A)$ over a connected symplectic manifold (B, ω) . Then there is an exact sequence of vector bundles $\mathfrak{g}_B \to A \xrightarrow{\rho} TB$. Fix a vector bundle morphism $\gamma: TB \to A$ such that $\rho \circ \gamma = \mathrm{id}$. Such a mapping is called a connection of the transitive Lie algebroid [6, 7]. The curvature of γ is the \mathfrak{g}_B -valued valued 2-form $\mathcal{R} \in \Omega^2(B, \mathfrak{g}_B)$ determined by $\mathcal{R}(u_1, u_2) := \{\gamma(u_1), \gamma(u_2)\}_A - \gamma([u_1, u_2])$ for $u_1, u_2 \in \mathcal{X}(B)$. One can associate to γ a linear connection ∇ on the isotropy \mathfrak{g}_B , called

an adjoint connection, and defined as follows $\nabla_u \eta = \{\gamma(u), \eta\}_A$ for $u \in \mathcal{X}(B), \eta \in \Gamma(\mathfrak{g}_B)$. From the Lie algebroid axioms we get the following information [7]. The adjoint connection ∇ preserves the fiberwise Lie structure on \mathfrak{g}_B ,

$$\nabla([\eta_1, \eta_2]^{\text{fib}}) = [\nabla \eta_1, \eta_2]^{\text{fib}} + [\eta_1, \nabla \eta_2]^{\text{fib}}.$$
(2.1)

and the curvature form $\operatorname{Curv}^{\nabla}: TB \oplus TB \to \operatorname{End}(\mathfrak{g}_B)$ of ∇ is related with the 2-form \mathcal{R} by the adjoint operator,

$$Curv^{\nabla} = ad \circ \mathcal{R}, \tag{2.2}$$

where ad $\circ \eta := [\eta, \cdot]^{\text{fib}}$ for $\eta \in \Gamma(\mathfrak{g}_B)$. Moreover, the modified Bianchi identity holds

$$\nabla \mathcal{R} = 0. \tag{2.3}$$

Using the symplectic structure ω on B and \mathcal{R} , let us introduce the following 2-form on the total space \mathfrak{g}_B^* : $\mathcal{F} := \pi^*\omega - \ell \circ \pi^*\mathcal{R}$. Here $\pi : \mathfrak{g}_B^* \to B$ is the projection and $\ell : \Gamma(\mathfrak{g}_B) \to C_{\text{lin}}^{\infty}(\mathfrak{g}_B^*)$ is the natural identification of $\Gamma(\mathfrak{g}_B)$ with the space $C_{\text{lin}}^{\infty}(\mathfrak{g}_B^*)$ of the smooth fiberwise linear functions on \mathfrak{g}_B^* , $\ell(\eta)(x) = \langle x, \eta(\xi) \rangle$ ($x \in \mathfrak{g}_B^*, \xi = \pi(x)$).

Fix a basis $\{\eta_{\sigma}\}$ of local sections of \mathfrak{g}_{B} . Let $x=(x^{\sigma})$ be the associated coordinates on the fiber of \mathfrak{g}_{B}^{*} and $\xi=(\xi^{i})$ are local coordinates on B. In coordinates, we have $\mathcal{F}=\frac{1}{2}\mathcal{F}_{ij}(\xi,x)d\xi^{i}\wedge d\xi^{j}$, where $\mathcal{F}_{ij}(\xi,x)=\omega_{ij}(\xi)-x^{\sigma}\mathcal{R}_{\sigma,ij}(\xi)$. It is clear that the 2-form \mathcal{F} is nondegenerate in a neighborhood N_{γ} of B in \mathfrak{g}_{B}^{*} . Let us define (local) vector fields on the total space \mathfrak{g}_{B}^{*} by hor_i := $\frac{\partial}{\partial \xi^{i}}-\theta_{i\nu}^{\sigma}(\xi)x^{\nu}\frac{\partial}{\partial x^{\sigma}}$, where $\nabla_{\frac{\partial}{\partial \xi^{i}}}\eta_{\nu}=-\theta_{i\nu}^{\sigma}(\xi)\eta_{\sigma}$. The vector fields hor_i form the horizontal distribution on \mathfrak{g}_{B}^{*} of the dual connection ∇^{*} . Next, the fiberwise Lie-Poisson structure on \mathfrak{g}_{B}^{*} induces the Poisson tensor $\Lambda=\frac{1}{2}\lambda_{\nu}^{\alpha\beta}(\xi)x^{\nu}\frac{\partial}{\partial x^{\alpha}}\wedge\frac{\partial}{\partial x^{\beta}}$ on the total space, where $\lambda_{\nu}^{\alpha\beta}(\xi)$ are the structure constants of \mathfrak{g}_{ξ} with respect to the basis $\{\eta_{\sigma}(\xi)\}$. Finally, we define the following bivector field

$$\Pi_{\gamma} := -\frac{1}{2} \mathcal{F}^{ij} \operatorname{hor}_{i} \wedge \operatorname{hor}_{j} + \Lambda, \tag{2.4}$$

where $\mathcal{F}^{is}\mathcal{F}_{sj} = \delta^i_j$. Although Π_{γ} is defined in terms of coordinates and a basis, one can show that it is independent of these choices. Thus, Π_{γ} is a well-defined bivector field on N_{γ} depending on the connection γ .

Proposition 1. Bivector field Π_{γ} (2.4) is a Poisson tensor satisfying the properties (i),(ii) in Theorem 1.

The Jacoby identity for Π_{γ} follows from the invariance property (2.1), the curvature identity (2.2) and the modified Bianchi identity (2.3), [8]. By construction (B,ω) is a symplectic leaf of Π_{γ} . Taking into account splitting $A = \gamma(TB) \oplus \mathfrak{g}_B$, we identify A with $T_B^*\mathfrak{g}_B^* = TB \oplus \mathfrak{g}_B$. Then, looking at the infinitesimal part of Π_{γ} at B, we see that the property (ii) in Theorem 1 holds.

The Poisson tensor Π_{γ} is called the *coupling tensor* [8] associated with a pair (A, γ) . Observe that Π_{γ} is the sum of two bivector fields Π_{γ}^{H} and Π_{γ}^{V} called the horizontal and vertical parts, respectively. The vertical part $\Pi_{\gamma}^{V} = \Lambda$ is a Poisson tensor completely determined by the fiberwise Lie-Poisson structure of \mathfrak{g}_{B}^{*} . The horizontal part Π_{γ}^{H} satisfies

46 Yuri Vorobiev

the Jacobi identity if and only if the curvature \mathcal{R}^{γ} vanishes, or equivalently, the subspace $\pi^*C^{\infty}(B)$ is closed with respect to the Poisson bracket. In this case, Π^H_{γ} is just the horizontal lift of the Poisson tensor on (B,ω) .

For a given A the Poisson tensor Π_{γ} depends on the choice of γ . Suppose we are given other connection $\tilde{\gamma}$ of A and let $\Pi_{\tilde{\gamma}}$ be the corresponding coupling tensor. We say that Π_{γ} and $\Pi_{\tilde{\gamma}}$ are neighborhood equivalent if there exists a diffeomorphism $\mathbf{f}: U \to \tilde{U}$ between two neighborhoods $U \subset N_{\gamma}$ and $\tilde{U} \subset N_{\tilde{\gamma}}$ of B in \mathfrak{g}_B^* such that $\mathbf{f}^*\Pi_{\tilde{\gamma}} = \Pi_{\gamma}$.

Proposition 2. Π_{γ} is independent of the choice of a connection γ up to neighborhood equivalence.

So, one can speak on an intrinsic coupling tensor of the transitive Lie algebroid A. The proof of this Proposition is based on a contravariant version [8] of the Moser homotopy method. The key observation here is that there exists a smooth homotopy between any two connections of A which induces a homotopy between corresponding coupling tensors.

3 Linear Hamiltonian Vector Fields

One can associate a Poisson algebra to a given a transitive Lie algebroid A over a connected symplectic manifold (B,ω) in the following way. Let $C_{\mathrm{aff}}^{\infty}(\mathfrak{g}_{B}^{*})$ be the space of smooth fiberwise affine functions on \mathfrak{g}_{B}^{*} . Then

$$C_{\text{aff}}^{\infty}(\mathfrak{g}_B^*) \approx C^{\infty}(B) \oplus C_{\text{lin}}^{\infty}(\mathfrak{g}_B^*)$$
 (3.1)

and every fiberwise affine function ϕ is represented as $\phi = \pi^* f + \ell(\eta) \approx f \oplus \eta$, where $f \in C^{\infty}(B)$ and $\eta \in \Gamma(\mathfrak{g}_B)$. Fix a connection γ of A and consider the corresponding data (∇, \mathcal{R}) . Then one can define a Lie bracket on $C_{\text{aff}}^{\infty}(\mathfrak{g}_B^*)$ by

$$\{\phi_1, \phi_2\}_{\text{aff}} := \{f_1, f_2\}_B \oplus \left(\nabla_{v_{f_1}} \eta_2 - \nabla_{v_{f_2}} \eta_1 + [\eta_1, \eta_2]^{\text{fib}} + \mathcal{R}(v_{f_1}, v_{f_2})\right), \tag{3.2}$$

for $\phi_1 = f_1 \oplus \eta_1$ and $\phi_2 = f_2 \oplus \eta_2$. Here $\{,\}_B$ is the Poisson bracket and v_f is the Hamiltonian vector field of f on (B,ω) . Define also the linearized pointwise product \circ for affine functions by $\phi_1 \circ \phi_2 := (f_1 \cdot f_2) \oplus (f_1 \cdot \eta_2 + f_2 \cdot \eta_1)$. This makes $C_{\text{aff}}^{\infty}(\mathfrak{g}_B^*)$ into a commutative associative algebra with unit $(1 \oplus 0)$. One can show that the bracket $\{,\}_{\text{aff}}$ and the linearized pointwise product are compatible by the Leibniz identity and hence the triple $(C_{\text{aff}}^{\infty}(\mathfrak{g}_B^*), \circ, \{,\}_{\text{aff}})$ defines a Poisson algebra associated with (A, γ) . This algebra is independent of the choice of γ up to an isomorphism.

A vector field $\mathcal V$ on the total space $\mathfrak g_B^*$ is called *linear* if the Lie derivative $L_{\mathcal V}: C^\infty(\mathfrak g_B^*) \to C^\infty(\mathfrak g_B^*)$ along $\mathcal V$ sends $C^\infty_{\mathrm{lin}}(\mathfrak g_B^*)$ into $C^\infty_{\mathrm{lin}}(\mathfrak g_B^*)$. This implies that $\mathcal V$ descends to a vector field v on B, $d\pi \circ \mathcal V = v \circ \pi$. The Lie algebra of linear vector fields is denoted by $\mathcal X_{\mathrm{lin}}(\mathfrak g_B^*)$. By the analogy with Poisson manifolds, we say that a linear vector field $\mathcal V$ is Hamiltonian relative to bracket (3.2) if there exists a fiberwise affine function $\phi = f \oplus \eta$ such that

$$L_{\mathcal{V}} = \operatorname{ad}_{\phi} \text{ on } C_{\operatorname{aff}}^{\infty}(\mathfrak{g}_{R}^{*}),$$
 (3.3)

where $\mathrm{ad}_{\phi} := \{\phi, \cdot\}_{\mathrm{aff}}$ is the adjoint operator of ϕ . The Hamiltonian vector field of ϕ is denoted by $\mathcal{V} = \mathcal{V}_{\phi}$. Clearly, \mathcal{V}_{ϕ} descends to v_f . In the contrast to the usual situation, one

can not say that every ϕ admits a linear Hamiltonian vector field. Indeed, condition (3.3) says that ad_{ϕ} as a derivation of the associative algebra $(C_{\mathrm{aff}}^{\infty}(\mathfrak{g}_{B}^{*}), \circ)$ admits an extension to a derivation of $C^{\infty}(\mathfrak{g}_{B}^{*})$. But it is not true for an arbitrary ϕ . To see that, for every $\phi = f \oplus \eta$ we define the torsion of ad_{ϕ} as a \mathbb{R} -linear operator $\mathcal{T}_{\phi}: C^{\infty}(B) \to C_{\mathrm{lin}}^{\infty}(\mathfrak{g}_{B}^{*})$ letting $\mathcal{T}_{\phi}(g) := \mathcal{R}(v_f, v_g) - \nabla_{v_g} \eta \ \forall g \in C^{\infty}(B)$. The space of all torsion free functions is denoted by $\mathcal{A}_{\gamma} := \{\phi \in C_{\mathrm{aff}}^{\infty}(\mathfrak{g}_{B}^{*}) \mid \mathcal{T}_{\phi} = 0\}$. In fact, \mathcal{A}_{γ} is a Lie subalgebra in $(C_{\mathrm{aff}}^{\infty}(\mathfrak{g}_{B}^{*}), \{,\}_{\mathrm{aff}})$. Since $C_{\mathrm{lin}}^{\infty}(\mathfrak{g}_{B}^{*})$ is an ideal in the Poisson algebra, splitting (3.1) is invariant with respect to ad_{ϕ} only if its torsion vanishes. Finally, we observe that $\phi \in C_{\mathrm{lin}}^{\infty}(\mathfrak{g}_{B}^{*})$ admits a linear Hamiltonian vector field in the sense of (3.3) if and only if $\phi \in \mathcal{A}_{\gamma}$. Moreover, the correspondence

$$\mathcal{A}_{\gamma} \ni \phi \mapsto \mathcal{V}_{\phi} \in \mathcal{X}_{\text{lin}}(\mathfrak{g}_{B}^{*}) \tag{3.4}$$

is a Lie algebra homorphism.

Proposition 3. Let Π_{γ} be the coupling tensor associated with (A, γ) . Then the Lie algebra of all linear vector fields on \mathfrak{g}_B^* which are Hamiltonian relative to the Poisson structure Π_{γ} , coincides with the image of A_{γ} under homorphism (3.4).

So, the complement $C_{\text{aff}}^{\infty}(\mathfrak{g}_{B}^{*}) \setminus \mathcal{A}_{\gamma}$ consists of all affine functions ϕ whose Hamiltonian vector fields $\Pi_{\gamma}^{\#} d\phi$ are not linear. One can show that $C_{\text{aff}}^{\infty}(\mathfrak{g}_{B}^{*}) \setminus \mathcal{A}_{\gamma}$ is nonempty. This observation is related with the phenomenon: the linearization of Hamiltonian systems at a given symplectic leaf of a Poisson manifold may destroy the Hamiltonian property.

References

- [1] Cannas da Silva A and Weinstein A, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, AMS, Providence, 1999.
- [2] Fernandes R L, Lie algebroids, holonomy and characteristic class, *Adv.in Math.* **170** (2002), 119–179.
- [3] Itskov V M, Karasev M V and Vorobjev Yu M, Infinitesimal Poisson geometry, Amer. Math. Soc. Transl. (2) 187 (1998), 327–360.
- [4] Vaisman I, Lectures on the Geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser, Berlin,1994.
- [5] Weinstein A, Symplectic groupoids and Poisson manifolds, *Bull. Amer.Math.Soc.***16** (1987),101-104.
- [6] Kubarski J, The Chern-Weil homorphism of regular Lie algebroids, Publ.Dep.Math. Nouvelle Ser.,Univ. Claude-Bernaard Lyon 1,1991,1-69.
- [7] Mackenzie K C H, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Ser., 124, Cambridge Univ. Press, Cambridge, 1987.
- [8] Vorobiev Yu M, Coupling tensors and Poisson geometry near a single symplectic leaf, Lie Algebroids, Banach Center Publ. **54** (2001) 249-274.
- [9] Guillemin V, Lerman E and Sternberg S, Symplectic Fibrations and Multiplicity Diagrams, Cambridge Univ. Press, Cambridge, 1996.

48 Yuri Vorobiev

[10] Sternberg S, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Young–Mills field, *Proc. Nat. Acad. Sci. U.S.A.* **74** (1977), 5253–5254.

- [11] Montgomery R, Canonical formalism of a classical particle in a Yang–Mills field and Wong's equations, *Let. Math. Phys.* 8 (1984), 59–67.
- [12] Motgomery R, Marsden J E and Ratiu T, Gauged Lie-Poisson structures, Cont. Math. AMS,
 28 (Boulder Proceedings on Fluids and Plasmas) (1984), 101-114.
- [13] Weinstein A, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.
- [14] Courant T J, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631–661.