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Abstract

We show that every transitive Lie algebroid over a connected symplectic manifold
comes from an intrinsic Lie algebroid of a symplectic leaf of a certain Poisson structure.
The reconstruction of the corresponding Poisson structures from the Lie algebroid is
given in terms of coupling tensors.

1 Introduction

The correspondence between Poisson structures and Lie algebroids plays an important role
in various problems in Poisson geometry (see, for example, [1, 2, 3, 4]). As is well known
[5], the cotangent bundle of an arbitrary Poisson manifold carries a natural Lie algebroid
structure compatible with the symplectic foliation. Let (M, ¥) be a Poisson manifold with
Poisson tensor W. Then the Poisson bracket on M admits the natural extension to the
bracket for 1-forms on M:

{a, By = U# () |dB — U#(8)|da — d{a, U#()),

here U# : T*M — TM is the vector bundle morphism associated with ¥. This structure
makes the cotangent bundle T* M into a Lie algebroid (T MU { Yo, ) called the Lie
algebroid of the Poisson manifold (M, ¥). Given a symplectic leaf (B,w) of M one can
restrict the bracket {, }7«as to a Lie bracket on smooth sections of the restricted cotangent
bundle TEM [3, 6, 7]. The result is a transitive Lie algebroid (T5M, \Ifﬁ, { trga) over
B called the Lie algebroid of the symplectic leaf B.

So, every symplectic leaf of a Poisson manifold carries an intrinsic transitive Lie alge-
broid structure which controls the infinitesimal Poisson geometry around the leaf. One
can ask the natural question: is there also a connection in the reverse direction between
transitive Lie algebroids over a symplectic base and Poisson structures? In this paper we
give an affirmative answer to this question. The reconstruction of the Poisson structure
from a transitive Lie algebroid is based on the contravariant version [8] of the minimal
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coupling procedure due to Sternberg [9, 10]. The corresponding Poisson structure is called
a coupling tensor [8] and represents the result of coupling the symplectic base structure
and the fiberwise Lie-Poisson structure on a certain vector bundle via a connection of the
transitive Lie algebroid [6, 7]. Remark that connection-dependent Poisson structures of
such a type were studied in [11, 12] in the context of a Hamiltonian formulation of Wong’s
equation. As an application, we discuss the passage between transitive Lie algebroids and
coupling tensors from the viewpoint of Hamiltonian formalism.

2 Reconstruction of Poisson Structures

Recall that a Lie algebroid over a manifold B is a triple (A, p,{, }4) consisting of a vector
bundle A — B together with a bundle map p : A — TB, called the anchor, and a Lie
algebra structure {, } 4 on the space of smooth sections I'(A) such that: p is a Lie algebra
homomorphism and the Leibniz identity holds, {ai, fas}a = f{a1,a2}4 + (Lp(al)f)ag for
any ai,ag € I'(A), f € C°°(B). An isomorphism between two Lie algebroids is defined as
vector bundle morphism compatible with the anchors and the Lie brackets in a natural
way. The kernel gp := ker p C A of the anchor is called the isotropy of a Lie algebroid.
If p is a fiberwise surjection, then the the Lie algebroid is said to be transitive [6, 7]. In
this case, the isotropy gp is a Lie algebra bundle. For every { € B the fiber g¢ carries a
Lie bracket [, ]?b induced from {, }4 , which varies smoothly with {. Then the dual g of
g¢ is equipped with the Lie-Poisson bracket which makes g} into a bundle of Lie-Poisson
manifolds ( for more detail, see [1, 2]).

For example, in the case of the Lie algebroid (T5M, \Dg, {, }rzm) of a symplectic
leaf (B,w) of a Poisson manifold (M, W¥) , the isotropy coincides with the annihilator
TB° = ker \Ifg of TB in TgM. The dual of the isotropy is identified with the normal
bundle E = TpM /T B to B. The fiberwise Lie-Poisson structure of E is just the linearized
transverse Poisson structure of ¥ at B [13].

Now we formulate our main result.

Theorem 1. Every transitive Lie algebroid (A, p,{, }4) over a connected symplectic man-
ifold (B,w) admits a Poisson realization in the following sense. In a neighborhood of the
zero section B of the dual g}; of the isotropy there exists a Poisson tensor II such that: (i)
(B,w) is a symplectic leaf of 11, and (ii) the Lie algebroid of the leaf (B,w) is isomorphic
to (A,p.{, }a)-

To prove this theorem we give an explicit description of the Poisson structure II in
terms of the algebroid A. As we will see the main features of II are completely different
from the properties of the dual Lie-Poisson structure on A* [14] uniquely determined by
the homogeneity condition: the bracket of fiberwise linear functions on A* is fiberwise
linear.

Suppose we are given a transitive Lie algebroid (A4, p,{, }4) over a connected symplectic
manifold (B,w). Then there is an exact sequence of vector bundles gg — A £ TB. Fix
a vector bundle morphism v : TB — A such that p o~ = id. Such a mapping is called
a connection of the transitive Lie algebroid [6, 7]. The curvature of « is the gp-valued
valued 2-form R € Q%(B, gp) determined by R(u1,uz) := {v(u1),v(u2)} a —v([u1,uz]) for
ui,up € X(B). One can associate to v a linear connection V on the isotropy gp , called
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an adjoint connection, and defined as follows V,n = {y(u),n}a for u € X(B),n € I'(gn).
From the Lie algebroid axioms we get the following information [7]. The adjoint connection
V preserves the fiberwise Lie structure on gp ,

V([m, 1)) = [V, o)™ + [n1, Vo). (2.1)

and the curvature form Curv' : TB@®TB — End(gg) of V is related with the 2-form R
by the adjoint operator,

CurvY = ad oR, (2.2)
where ad o 7 := [, -] for n € T'(gg). Moreover, the modified Bianchi identity holds
VR =0. (2.3)

Using the symplectic structure w on B and R, let us introduce the following 2-form on
the total space g5: F = nm*w — o m*R. Here m : g5 — B is the projection and
¢:T(gp) — C2(g}) is the natural identification of I'(gp) with the space C°(g};) of the
smooth fiberwise linear functions on g}, £(n)(x) =< z,n(&) > (z € g5, & = w(x)).

Fix a basis {n,} of local sections of gp. Let x = (27) be the associated coordinates
on the fiber of g and & = (¢") are local coordinates on B. In coordinates, we have
F = 3Fi;(& 2)dE A d¢l, where Fij(€, 1) = wij(€) — 29Roi5(€). 1t is clear that the 2-form
F is nondegenerate in a neighborhood N, of B in gj. Let us define (local) vector fields on
the total space g}; by hor; := a%i - 9%(5)1‘”%, where Va%ny = —07,(&)ns. The vector
fields hor; form the horizontal distribution on gy of the dual connection V*. Next, the
fiberwise Lie-Poisson structure on g} induces the Poisson tensor A = %)\?fﬁ &) x”% A a%
on the total space, where )\36 (&) are the structure constants of g¢ with respect to the basis
{ns(&)}. Finally, we define the following bivector field

1 .
IL, := —573” hor; A horj +A, (2.4)

where F** Fy; = 5; Although IL, is defined in terms of coordinates and a basis, one can
show that it is independent of these choices. Thus, IL, is a well-defined bivector field on
N, depending on the connection 7.

Proposition 1. Bivector field 11, (2.4) is a Poisson tensor satisfying the properties (i), (i)
in Theorem 1.

The Jacoby identity for I, follows from the invariance property (2.1), the curvature
identity (2.2) and the modified Bianchi identity (2.3), [8]. By construction (B,w) is a
symplectic leaf of II,. Taking into account splitting A = v(T'B) @ gp, we identify A with
Thep = T'B® gp. Then, looking at the infinitesimal part of 1L, at B, we see that the
property (ii) in Theorem 1 holds.

The Poisson tensor II, is called the coupling tensor [8] associated with a pair (A, 7).
Observe that IL, is the sum of two bivector fields Hf and HX called the horizontal and
vertical parts, respectively. The vertical part H‘w/ = A is a Poisson tensor completely
determined by the fiberwise Lie-Poisson structure of g. The horizontal part Hg satisfies
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the Jacobi identity if and only if the curvature R vanishes, or equivalently, the subspace
m*C*®(B) is closed with respect to the Poisson bracket. In this case, H? is just the
horizontal lift of the Poisson tensor on (B,w).

For a given A the Poisson tensor IL, depends on the choice of 7. Suppose we are given
other connection v of A and let II5 be the corresponding coupling tensor. We say that IL,
and II5 are neighborhood equivalent if there exists a diffeomorphism f : U — U between
two neighborhoods U C N, and Uc N5 of B in g} such that f*II; = IL,.

Proposition 2. I, is independent of the choice of a connection v up to neighborhood
equivalence.

So, one can speak on an intrinsic coupling tensor of the transitive Lie algebroid A. The
proof of this Proposition is based on a contravariant version [8] of the Moser homotopy
method. The key observation here is that there exists a smooth homotopy between any
two connections of A which induces a homotopy between corresponding coupling tensors.

3 Linear Hamiltonian Vector Fields

One can associate a Poisson algebra to a given a transitive Lie algebroid A over a connected
symplectic manifold (B,w) in the following way. Let C5g(g5) be the space of smooth
fiberwise affine functions on gp. Then

ait(05) =~ C%(B) ® G (95) 3.1)

and every fiberwise affine function ¢ is represented as ¢ = 7*f + ¢(n) ~ f @& n, where
feC>®(B)and n € I'(gp). Fix a connection v of A and consider the corresponding data
(V,R). Then one can define a Lie bracket on CSg(g};) by

{01, 02}ast == {f1, fo}B® (Vvh?h — Vy,,m + (91, m2) P + R(Ufl,vf2)> , (3.2)

for o1 = fi ® m and ¢ = fo @ 2. Here {,}p is the Poisson bracket and vy is the
Hamiltonian vector field of f on (B,w). Define also the linearized pointwise product o for
affine functions by ¢1 o g9 := (f1 - f2) ® (fi - m2 + f2 - m1). This makes C5(g3) into a
commutative associative algebra with unit (1 & 0). One can show that the bracket {, }.g
and the linearized pointwise product are compatible by the Leibniz identity and hence the
triple (C23(9%),0,{, }as) defines a Poisson algebra associated with (A,~). This algebra
is independent of the choice of 7 up to an isomorphism.

A vector field V on the total space g} is called linear if the Lie derivative Ly :
C>(gy) — C™(gy) along V sends C°(g7) into C2(gy;). This implies that V' descends
to a vector field v on B, dmr o) = vomx. The Lie algebra of linear vector fields is denoted
by Xin(g}). By the analogy with Poisson manifolds, we say that a linear vector field V is
Hamiltonian relative to bracket (3.2) if there exists a fiberwise affine function ¢ = f &7
such that

Ly = ady on C5(a}), (3.3)

where ady := {¢,-}ag is the adjoint operator of ¢. The Hamiltonian vector field of ¢ is
denoted by V =V 4. Clearly, V 4 descends to vy. In the contrast to the usual situation, one
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can not say that every ¢ admits a linear Hamiltonian vector field. Indeed, condition (3.3)
says that adg as a derivation of the associative algebra (CSg(g}),0) admits an extension
to a derivation of C*°(g};). But it is not true for an arbitrary ¢. To see that, for every
¢ = f@®n we define the torsion of ad, as a R-linear operator 7y : C*°(B) — C*(gj) letting
T4(9) == R(vy,vg) =V, 1 ¥V g € C*(B). The space of all torsion free functions is denoted
by Ay :={¢ € C3(g5) | 7 = 0}. In fact, A, is a Lie subalgebra in (C3%(g}), {; taff)-
Since Cf2(gy;) is an ideal in the Poisson algebra, splitting (3.1) is invariant with respect
to adg only if its torsion vanishes. Finally, we observe that ¢ € Ci*(g};) admits a linear
Hamiltonian vector field in the sense of (3.3) if and only if ¢ € A,. Moreover, the
correspondence

Aﬂ/ ¢ Vd) € /Ylin(g*B) (3'4)
is a Lie algebra homorphism.

Proposition 3. Let IL, be the coupling tensor associated with (A,~). Then the Lie algebra
of all linear vector fields on g which are Hamiltonian relative to the Poisson structure
IL,, coincides with the image of A, under homorphism (3.4).

So, the complement Cg(g}) \ A, consists of all affine functions ¢ whose Hamiltonian

vector fields Hj d¢ are not linear. One can show that C23(g3;) \ Ay is nonempty. This
observation is related with the phenomenon: the linearization of Hamiltonian systems at
a given symplectic leaf of a Poisson manifold may destroy the Hamiltonian property.
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