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Abstract

An explicit parameterization in terms of elliptic integrals (functions) for the Mylar
balloon is found which then is used to calculate various geometric quantities as well
as to study all kinds of geodesics on this surface.

1 Introduction

Elliptic integrals and functions are subjects which nowadays often are relegated to the
hinterlands of the college mathematics curriculum. We can only guess at the reason
for this, but one possible explanation is the advent of efficient computational means for
integrals. While standard integration techniques allow us to obtain closed form expressions
(in terms of trigonometric functions, exponentials and logarithms) for any integral of the
form

∫

R(x,
√

P (x))dx

where R(x,
√

P (x)) is a rational function and P (x) is a linear or quadratic polynomial,
we are forced to expand our dictionary of “elementary” functions if we wish to handle
polynomials of higher degree. In particular, when P (x) is cubic or quartic, then the
required functions are called elliptic functions. For a brief history of the development
of elliptic functions, see [1]. For a straightforward exposition of their properties and
applications, see [2] and [3]. An alternative approach based on the so called symmetric
elliptic integrals along respective computational issues and algorithms are discussed in [4].
Finally, for a neat recent approach in terms of dynamical systems, see [5].

The main point of this article is that elliptic functions provide an effective (albeit under-
used) tool for describing geometric objects. Here, due to the shortage of space we shall focus
mainly on a single illustrative example — the so called Mylar balloon — where elliptic
integrals and functions are essential tools for obtaining interesting geometric information
beyond simple numerical calculation and depiction.
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2 Elliptic Functions and Elliptic Integrals

The easiest way to understand the elliptic functions is to consider them as analogies of
the ordinary trigonometric functions. From freshman calculus, we know that

arcsin(x) =

∫ x

0

du√
1 − u2

.

Of course, if x = sin(t) (−π/2 ≤ t ≤ π/2), then we have

t = arcsin(sin(t)) =

∫ sin(t)

0

du√
1 − u2

.

In this way, we may view sin(t) as an inverse function for the integral. Now, fixing some
k with 0 ≤ k ≤ 1 (called the modulus), we make the

Definition 1. The Jacobi sine function sn(u, k) is the inverse function of the following
integral. Namely,

u =

∫ sn(u,k)

0

dt√
1 − t2

√
1 − k2t2

. (2.1)

More generally, we write

F (z, k) =

∫ z

0

dt√
1 − t2

√
1 − k2t2

(2.2)

and call F (z, k) an elliptic integral of the first kind.

An elliptic integral of the second kind is defined by

E(z, k) =

∫ z

0

√
1 − k2t2√
1 − t2

dt.

When z = 1 in F (z, k) and E(z, k), then these integrals are respectively denoted by K(k)
and E(k) and called the complete elliptic integrals of the first and second kind.

Finally, the elliptic integral of the third kind with a parameter n is defined by

Π(z, n, k) =

∫ z

0

dt

(1 − nt2)
√

1 − t2
√

1 − k2t2
. (2.3)

The Jacobi cosine function cn(u, k) may be defined in terms of sn(u, k);

sn2(u, k) + cn2(u, k) = 1.

A third Jacobi elliptic function dn(u, k) is defined by the equation

dn2(u, k) + k2 sn2(u, k) = 1.
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3 Some Differential Geometry

We are interested in explicitly describing geometric objects by parameterization in terms
of elliptic functions. Of course, one reason we want to do this is that we have an array of
classical tools with which to study such a parameterized surface. These tools are the heart
and soul of differential geometry and we now recall some of its basics. Modern expositions
of the subject can be found in, for instance, [6], [7], [8], [9] and [10]. A parameterized
surface S is determined almost uniquely by its first and second fundamental forms

I = E du2 + 2F dudv + Gdv2 and II = Ldu2 + 2M dudv + N dv2 (3.1)

where the coefficients are given by

E = E[u, v] = xu · xu, F = F [u, v] = xu · xv, G = G[u, v] = xv · xv,

(3.2)

L = L[u, v] = xuu · n, M = M [u, v] = xuv · n, N = N [u, v] = xvv · n.

Here n is the unit normal vector to S

n = n[u, v] =
xu × xv

|xu × xv|
. (3.3)

Intuitively, the metric coefficients E, F and G describe the stretching necessary to map a
piece of the plane up to the surface under the parameterization, while the coefficients L,
M and N of II have more to do with acceleration and, hence, curvature. Indeed, there
are classical formulas which describe two types of curvatures at every point of the surface.
These are the Gaussian and the mean (meaning “average”) curvatures, denoted by K and
H respectively. The formulas are

K =
LN − M2

EG − F 2
and H =

EN + GL − 2FM

2(EG − F 2)
.

For a unit tangent vector t (at a point p), the normal curvature in the t-direction, k(t),
is given by slicing the surface with the plane determined by t and the unit normal n and
taking the curvature (at p) of the intersection curve. (In some sense, this is the most
fundamental type of curvature associated to a surface.) This process defines a continuous
function k:S1 → R (where we identify unit vectors in R

2 with the circle S1). Because S1

is compact, there exist a max k1 and a min k2 for k. These are called principal curvatures
and it is known that K = k1k2 and H = (k1 + k2)/2 (see [9]). From these equations, it is
easy to derive the relations

k1 = H +
√

H2 − K and k2 = H −
√

H2 − K. (3.4)

We will deal only with a surface of revolution which has a parameterization of the general
form (up to permutation of coordinates)

x(u, v) = (h(u) cos(v), h(u) sin(v), g(u)). (3.5)

It is easy to compute that, for such a surface, we always have F = 0 = M , so the formulas
for Gauss and mean curvatures reduce accordingly. The principal curvatures for a surface
of revolution are given by

kµ =
g′′h′ − g′h′′

(g′2 + h′2)3/2
and kπ =

g′

h
√

g′2 + h′2
. (3.6)
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The subscripts µ and π stand for the tangent directions along the meridian
(h(u), g(u)) and parallel circle respectively.

But we are interested in understanding finer details of a surface. Namely, we shall
be interested in understanding something about the geodesics on a surface. Intuitively,
geodesics are the straight lines of a surface; the shortest distances between points. Any
curve α(t) which lies on a surface S parameterized by x(u, v) may be written as α(t) =
x(u(t), v(t)), with u(t) and v(t) determining the curve.

Definition 2. Geodesics are completely determined as solutions of a set of second order
differential equations (once initial conditions are specified) called the geodesic equations:

u′′ +
Eu

2E
u′2 +

Ev

E
u′v′ − Gu

2E
v′

2
= 0 (3.7)

v′′ − Ev

2G
u′2 +

Gu

G
u′v′ +

Gv

2G
v′

2
= 0. (3.8)

Here we have taken F = 0 since this will be true for the surface we consider. There
is also a special feature about geodesics on a surface of revolution which will allow us to
predict geodesic behavior and then verify it pictorially. This feature is called the Clairaut
relation.

Definition 3. Suppose a parameterization x(u, v) has metric coefficients E and G which
only depend on the parameter u and F = 0. Then x(u, v) is said to be u-Clairaut.

Proposition 1. For a u-Clairaut parameterization, geodesics are characterized by the
integral relation

v = ±
∫

c
√

E√
G
√

G − c2
du. (3.9)

Proposition 2. Let φ be the angle between the tangent vector of a geodesic and xu, the
tangent vector of the u-parameter curve given by fixing a v-value in the parameterization
x(u, v). Then the Clairaut relation holds:

√
G sin(φ) = c, where c is a constant. (3.10)

We will see that the Clairaut relation restricts geodesics in fundamental ways.

4 The Mylar Balloon

The Mylar1 balloon is constructed by taking two circular disks of Mylar, sewing them along
their boundaries and then inflating with either air or helium. Somewhat surprisingly, these
balloons are not spherical as one näıvely might expect from the well-known fact that the
sphere possesses the maximal volume for a given surface area. This experimental fact
suggests the following mathematical problem: given a circular Mylar balloon of deflated
radius a, what will be the shape of the balloon when it is fully inflated? This question

1According to Webster’s New World Dictionary, Mylar is a trademark for a polyester made of the

extremely thin sheets of great tensile strength.



New Geometrical Applications of the Elliptic Integrals: The Mylar Balloon 59

-2 -1 1 2
X

-1

-0.5

0.5

1

Z

Figure 1. The profile of the mylar balloon

in XOZ plane.

Figure 2. An open part of the mylar balloon

surface drawn using the parameterization (4.2).

was first raised by Paulsen [11] who succeeded in determining the radius, thickness and
volume of the inflated balloon. Paulsen’s answers were in terms of the gamma function.
Elsewhere [12], we have shown that elliptic functions are equally as effective in answering
these questions. Moreover, we achieve a deeper understanding of the geometry of the
Mylar balloon because our approach gives also:

• calculations of the Gaussian and the mean curvatures of the balloon

• a (surprising!) formula for the surface area of the balloon and

• characterization of the balloon in terms of the principal curvatures.

Furthermore, combining our results with Paulsen’s, we have found some interesting rela-
tionships between the gamma function and elliptic integrals. However, until the description
in terms of elliptic functions, more refined geometric qualities of the Mylar balloon were
out of reach. Now we have the opportunity to apply the tools of differential geometry to
truly understand a beautiful example of a physical principle constraining the shape.

So, let us start with the mathematical model of the balloon. When the Mylar disk is
inflated, the radius deforms to a curve z = z(x) which we take to be in the first quadrant
of the xz-plane. Of course, the curve proceeds from its highest point on the z-axis to a
point of intersection with the x-axis. This is the right hand side of the curve which, when
revolved about the z-axis, produces the top half of the balloon. The bottom half is just a
reflection of the upper through the xy-plane. Let r be the radius of the inflated balloon.
Because of its physical properties, the Mylar does not stretch significantly so that the
arclength of the curve z(x) from x = 0 to x = r is equal to the initial radius a. That is,
we have

∫ r

0

√

1 + z′(x)2 dx = a. (4.1)

The basic shape of the balloon was determined by this constraint and the requirement
that the enclosed volume is maximal [12]. There, we have proved

Theorem 1. The surface of revolution S which models the Mylar balloon is parameterized
by x = x[u, v] = (x(u, v), y(u, v), z(u, v)) where, for u ∈ [−K(1/

√
2),K(1/

√
2)] and
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v ∈ [0 , 2π],

x(u, v) = r cn

(

u,
1√
2

)

cos v, y(u, v) = r cn

(

u,
1√
2

)

sin v,

(4.2)

z(u, v) = r
√

2

[

E

(

sn

(

u,
1√
2

)

,
1√
2

)

− 1

2
F

(

sn

(

u,
1√
2

)

,
1√
2

)]

.

One can put this parameterization into a computer algebra system like Maple or Math-
ematica and plot. We then see the familiar profile and shape of a Mylar balloon in Fig. 1
and Fig. 2.

Having the explicit parameterizations of the profile curve (v ≡ 0 in (4.2)) and the
surface of the mylar balloon we now turn to the study of their geometries. Of principal
importance is the relation between the respective radii of the deflated and inflated balloons.
By (4.2) we have (where we shorten sn(u, 1/

√
2) to sn(u), K(1/

√
2) = K etc.),

∫ K

0

√

x′(u)2 + z′(u)2 du =

∫ K

0
r

√

sn2(u)dn2(u) +
1

2
cn4(u) du

=

∫ K

0
r

√

sn2(u)(1 − 1

2
sn2(u)) +

1

2
(1 − sn2(u))2 du

= r

∫ K

0

√

sn2(u) − 1

2
sn4(u) +

1

2
− sn2(u) +

1

2
sn4(u) du

=
r√
2

∫ K

0
du =

r√
2

K(1/
√

2) = a.

With 4-digit-accuracy, the numerical relations between a and r are:

a ≈ 1.3110 r and r ≈ 0.7627 a. (4.3)

Regarding the thickness τ of the balloon, we have to take 2 z(π/2) as given by (4.2) in
order to obtain

τ = 2z(π/2) = 2
√

2[E(1/
√

2) − 1

2
K(1/

√
2)] r. (4.4)

The numerical calculations are as follows: τ ≈ 1.1981 r ≈ 0.9139 a. In order to answer the
volume question, we notice first that the relevant integral can be put into the form

V = π
√

2 r3

∫ K

0
cn4

(

u,
1√
2

)

du (4.5)

and therefore to obtain

V =
π
√

2

3
K(1/

√
2) r3. (4.6)

Numerical analysis in this case gives V ≈ 2.7458 r3 ≈ 1.2185 a3 . Besides, truly geometrical
relations such as the following

V =
4

3
a2τ =

2π

3
ar2 (4.7)
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and

π r2 = 2 a τ. (4.8)

may be derived. Of no less importance is the observation that the thickness to diameter
ratio of the inflated balloon is scale invariant (i.e. independent of the actual size of the
balloon). We can calculate τ/d ≈ 0.599, where d = 2 r.

Of course, the point of this article is to show how elliptic functions provide more
information about an object than numerical calculations alone. We have seen this a bit
already from an analytic point of view, but now we will see it in full force geometrically.

Namely, we shall derive the differential geometric characteristics of the balloon (4.2)
in terms of elliptic functions and then apply these results to study the curvatures and
geodesics of the balloon. From the relation dn2(u, k) + k2sn2(u, k) = 1, and the choice
k = 1/

√
2, we calculate the following for the surface (4.2):

E =
r2

2
, F = 0, G = r2 cn2

(

u, 1√
2

)

L = r cn
(

u, 1√
2

)

, M = 0, N = r cn3
(

u, 1√
2

)

.

(4.9)

Our first application of these calculations gives us something which is quite surprising. The
formula for the volume of the Mylar balloon involves either the complete elliptic integral
of the first kind [12] or the gamma function [11], so we might expect that a formula for
surface area would be equally as complicated. Nevertheless, we have

Theorem 2. The surface area of the Mylar balloon S of inflated radius r is given by
A(S) = π2r2.

Proof. The surface area element dA(S) is given by

dA(S) =
√

E G − F 2 dudv =
√

E G dudv =
r2cn

(

u, 1√
2

)

√
2

dudv.

Now it is quite easy to find the total surface area A(S) of the Mylar balloon S by computing
the following integral (where we denote again K(1/

√
2) by K):

A(S) =

∫

S

dA(S) =
r2

√
2

2π
∫

0

K
∫

−K

cn

(

u,
1√
2

)

dudv = 4π
r2

√
2

K
∫

0

cn
(

u, 1√
2

)

dn
(

u, 1√
2

)

dn
(

u, 1√
2

) du

= 4π
r2

√
2

∫ 1

0

dw
√

1 − 1
2 w2

for w = sn(u, 1/
√

2)

= 4π
r2

√
2

√
2 arcsin

(

w√
2

)
∣

∣

∣

∣

1

0

= 4π
r2

√
2

π
√

2

4
= π2r2.

�
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Now let’s focus on qualities of the balloon central to its shape. We can easily obtain the
curvatures for the balloon from the coefficients of the first and second fundamental forms
(4.9). The Gauss curvature K and the mean curvature H are computed to be:

K = κ1. κ2 =
L

E
.
N

G
=

r cn
(

u, 1√
2

)

r cn3
(

u, 1√
2

)

r2/2 · r2cn2
(

u, 1√
2

) =
2cn2

(

u, 1√
2

)

r2

H =
κ1 + κ2

2
=

1

2
(
L

E
+

N

G
) (4.10)

=
r2/2 · r cn3

(

u, 1√
2

)

+ r2cn2
(

u, 1√
2

)

r cn
(

u, 1√
2

)

2
(

r2/2 · r2cn2
(

u, 1√
2

)) =
3cn

(

u, 1√
2

)

2r
.

These formulas actually allow us to verify our intuition about one particular aspect of the
balloon’s geometry. When we look at the balloon, we “see” the North and South poles as
being “flat”, but it is difficult to make this precise. However, we can prove the following
geometric result which tells us that the poles are very flat indeed.

Theorem 3. The North and South pole of the Mylar balloon are planar points (i.e. points
whose normal curvatures are zero in all tangent directions).

Proof. The North pole of the balloon corresponds to u = K(1/
√

2) and we know that
cn(K(1/

√
2), 1/

√
2) = 0. Therefore, we see from the formulas for K and H above that

both Gauss curvature K and mean curvature H are zero. Hence, we have κ1 = 0 and
κ2 = 0. Since these are the maximal and minimal normal curvatures, we see that all
normal curvatures are zero. The same is true for the South pole by symmetry. �

The Gaussian and the mean curvatures satisfy K = (8/9)H2. From (4.10), we also see
that, for every u, the principal curvatures satisfy

κµ = κ1 =
2cn(u, 1/

√
2)

r
= 2κ2 = 2κπ. (4.11)

Either of these relationships identify the Mylar balloon as a very special type of Wein-
garten surface (i.e. a surface whose principal curvatures satisfy a functional relation).
Surprisingly, this relation between principal curvatures actually characterizes the balloon
uniquely and leads to the following theorem (for the details of the proof see [12])

Theorem 4. The only surface of revolution M for which κµ = 2κπ is the Mylar balloon.

Relying on this theorem we can state that the surface

x(u, v) =
r

√

cosh(2u)
cos(v), y(u, v) =

r
√

cosh(2u)
sin(v),

(4.12)

z(u, v) =
√

2 r

[

E

(√
2 sinh(u)

√

cosh(2u)
,

1√
2

)

− 1

2
F

(√
2 sinh(u)

√

cosh(2u)
,

1√
2

)]

where u ∈ (−∞,∞), v ∈ [0, 2π] and for which

I =
r2

cosh(2u)
(du2 + dv2) and II =

r

cosh(2u)
3

2

(2 du2 + dv2) (4.13)

is just the Mylar balloon and that (4.12) provides its conformal representation.
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Figure 3. The “equator” is a geodesic Figure 4. A u-parameter curve is a

geodesic

5 Geodesics on the Mylar Balloon

Now let’s understand a deeper quality of a surface – its geodesics. Again, we emphasize
that this would simply be impossible without knowing the explicit parameterizations (4.2)
or (4.12) – and that this would be impossible without using the elliptic functions. The
balloon has metric coefficients E = r2/2, F = 0 and G = r2 cn2(u, 1/

√
2) only depending

on the parameter u, so the parameterization x(u, v) is u-Clairaut. In particular, the
Clairaut relation holds:

√
G sin(φ) = c along any geodesic, where c is constant and φ

is the angle between the geodesic’s tangent vector and xu. For the mylar balloon, the
Clairaut relation is r cn(u, 1/

√
2) sin(φ) = c. Notice that this means that

r2 cn2(u, 1/
√

2) ≥ c2. (5.1)

Therefore, a geodesic must always obey (5.1). This restricts geodesics in a meaningful
way. Let’s look at some examples of geodesics on the mylar balloon. Now, in the Clairaut
relation (with r = 1)

√
G sin(φ) = cn(u, 1/

√
2) sin(φ) = c,

let’s take φ = π/2. That is, we initially move in the xv-direction. If we also take u = 0
(i.e. the equator of the balloon), then c = 1. But cn(u, 1/

√
2) ≤ 1 and sin(φ) ≤ 1, so the

only way the Clairaut relation can hold is if u = 0 and φ = π/2 for all time along the
geodesic. We predict that the geodesic stays on the equator. The plot Fig. 3 verifies this.

What if we start in the xu-direction? Then φ = 0, so c = 0 also. Then we see that
φ = 0 always along the geodesic. This means that u-parameter curves are geodesics (a
well-known classical fact). A closed geodesic starting in the xu-direction is calculated and
depicted in Fig. 4. If we keep φ = π/2, but we take say u = 0. 4, then we know from the
Clairaut relation and the fact that the elliptic cosine decreases from 0 to K that, along
the geodesic, u ≤ 0. 4. But this confines the geodesic to a predictable strip on the balloon
(see Fig. 5).

All these considerations can be put in more analytical form. Making use of the confor-
mal parameterization (4.12) which leads to the metric (4.13) and performing the integra-
tion in (3.9) one gets

v(u) = ± c√
r2 − c2

Π

(

sinh (u)√
cosh 2u

, 2,
r
√

2√
r2 − c2

)

(5.2)
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Figure 5. Geodesic confined by the

Clairaut relation

Figure 6. Periodic geodesic

and therefore an explicit parameterization of all geodesics! In particular one can easily
derive the condition for drawing the periodic geodesics as the one shown in Fig. 6.

We have seen that the understanding of elliptic functions provides interesting insights
into the geometry of variational problems such as that of the mylar balloon. Another
problem which is amenable to such an “elliptical” analysis is that of surfaces of constant
curvature and we hope to say more about this elsewhere.
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