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Abstract

In previous articles it has been argued that a differential calculus over a noncom-
mutative algebra uniquely determines a gravitational field in the commutative limit
and that there is a unique metric which remains as a commutative ‘shadow’. Some
examples were given of metrics which resulted from a given algebra and given differ-
ential calculus. Here we aboard the inverse problem, that of constructing the algebra
and the differential calculus from the commutative metric. As an example a noncom-
mutative version of the Kasner metric is proposed which is periodic. This modified
metric has a cosmological constant which can be seen to be directly related to the
noncommutative structure.

1 Motivation

A definition has been given [1] of a torsion-free metric-compatible linear connection on a
differential calculus Ω∗(A) over an algebra A which has certain rigidity properties provided
that the center Z(A) of A is trivial. It was argued from simple examples that a differential
calculus over a noncommutative algebra uniquely determines a gravitational field in the
commutative limit. Some examples have been given [2, 3, 4] of metrics which resulted
from a given algebra and given differential calculus. Here we aboard the inverse problem,
that of constructing the algebra and the differential calculus from the commutative metric.
As an example we construct noncommutative versions of the Kasner metric and we show
that it is possible to choose an algebra such that the metric is nonsingular before taking
the commutative limit. The ‘II’ on the title alludes to a preliminary version given at the
Torino Euroconference [5] on noncommutative geometry [6].

The physical idea we have in mind is that the description of space-time using a set
of commuting coordinates is only valid at length scales greater than some fundamental
length. At smaller scales it is impossible to localize a point and a new geometry must be
used. We can use a solid-state analogy and think of the ordinary Minkowski coordinates
as macroscopic order parameters obtained by ‘course-graining’ over regions whose size is
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determined by a fundamental area scale k̄, which is presumably, but not necessarily, of
the order of the Planck area G~. They break down and must be replaced by elements
of a noncommutative algebra when one considers phenomena on smaller scales. A simple
visualization is afforded by the orientation order parameter of nematic liquid crystals. The
commutative free energy is singular in the core region of a disclination. There is of course
no physical singularity; the core region can simply not be studied using the commutative
order parameter.

As a concrete example we have chosen, for historical reasons, the Kasner metric; we
show that its singularity can be resolved into an essentially noncommutative structure.
We do not however claim that an arbitrary singularity in a metric on an arbitrary smooth
manifold can be resolved using a noncommutative structure. From the point of view we are
adopting a commutative geometry is a rather singular limit. The close relation between
the differential calculus and the metric can at most be satisfied when the center is trivial.
This manifests itself in the fact that on an ordinary manifold one can put any metric with
any singularity. We argue only that those metrics which are ‘physical’ in some sense, for
example are Ricci flat, can have resolvable singularities.

There is a similarity of the method we use to resolve the singularity with the method
known in algebraic geometry as ‘blowing up’ a singularity [7] as well as with the method
used by ’t Hooft and Polyakov to resolve the monopole singularity. The regular solu-
tion found in this case can in fact be considered as the Dirac monopole solution on a
noncommutative geometry which contains the 2 × 2 matrix algebra as extra factor.

In previous articles the algebra and the differential calculus were given and the linear
connection and metric were constructed. It was argued [8, 9] that given the algebra A the
structure of Ω∗(A) is intimately connected with the gravitational field which remains on V
as shadow in the commutative limit k̄ → 0. Within the general framework which we here
consider, the principal difference between the commutative and noncommutative cases lies
in the spectrum of the operators which we use to generate the noncommutative algebra
which replaces the algebra of functions. This in turn depends not only on the structure of
this algebra as abstract algebra but on the representation of it which we choose to consider.
Here we attempt the inverse problem, that of constructing the algebra and the differential
calculus from the commutative linear connection. We cannot claim that the procedure
is in any way unique. For a discussion of the relation of noncommutative geometry to
the problem of space-time singularities from rather different points of view from the one
we adopt we refer, for example, to Heller & Sasin [10], to Hawkins [11] or to Lizzi et al.
[12]. We refer elsewhere for a description of the same ‘quantization’ applied to the PP
wave [13] and for a possible cosmological application [14].

In the next section we introduce the general formalism of noncommutative geometry
which we use and we make some general remarks concerning the problem of ‘quantization’
of space-time. In Section 3 we recall the commutative Kasner metric. In Section 4 we
make some remarks concerning perturbative approximations to noncommutative geometry
and present the Kasner solution as a perturbative solution in k̄. In Section 5 we lift our
view to the differential calculus and in the last section we discuss the field equations.

Greek indices take values from 0 to 3; the first half of the alphabet is used to index
(moving) frames and the second half to index generators. Latin indices a, b, etc. take
values from 1 to 3 and the indices i, j, etc. values from 0 to n − 1.
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2 The general formalism

The notation is the same as that of a previous article [5] on the symplectic structure of
space-time and is based on a noncommutative generalization [15, 8, 16] of the Cartan
moving-frame formalism . Let A = C(V ) be the algebra of smooth real-valued functions
on a space-time V which for simplicity we shall suppose parallelizable and with a metric
and linear connection defined in terms of a globally defined moving frame θα. Let Ω∗(A)
be the algebra of de Rham differential forms. The space Ω1(A) of 1-forms is free of rank 4
as a A-module. According to the general idea outlined above a singularity in the metric is
due to the use of commuting coordinates beyond their natural domain of definition into a
region where they are physically inappropriate. From this point of view the space-time V
should be more properly described ‘near the singularity’ by a noncommutative ∗-algebra
A over the complex numbers with four hermitian generators xλ. The observables will be
some subset of the hermitian elements of A. We shall not discuss this problem here; we
shall implicitly suppose that all hermitian elements of A are observables, including the
‘coordinates’. We shall not however have occasion to use explicitly this fact.

We introduce 6 additional elements Jµν of A by the relations

[xµ, xν ] = ik̄Jµν . (2.1)

The details of the structure of A will be contained for example in the commutation relations
[xλ, Jµν ]. One can define recursively an infinite sequence of elements by setting for p ≥ 1

[xλ, Jµ1···µp ] = ik̄Jλµ1···µp . (2.2)

We shall assume that for the description of a generic (strong) gravitational field the ap-
propriate algebra A has a trivial center Z(A):

Z(A) = C. (2.3)

The only argument we have in favor of this assumption is the fact that it would be difficult
to interpret the meaning of the center. The xµ will be referred to as ‘position generators’.
We shall suppose also that there is a set of n(= 4) antihermitian ‘momentum generators’
λα and a ‘Fourier transform’

F : xµ −→ λα = Fα(xµ)

which takes the position generators to the momentum generators.
Let ρ be a representation of A as an algebra of linear operators on some Hilbert space.

For every kµ ∈ R
4 one can construct a unitary element u(k) = eikµxµ

of A and one can
consider the weakly closed algebra Aρ generated by the image of the u(k) under ρ. The
momentum operators λα are also unbounded but using them one can construct also a
set of ‘translation’ operators û(ξ) = eξαλα whose image under ρ belongs also to Aρ. In
general ûu 6= uû; if the metric which we introduce is the flat metric then we shall see
that [λα, xµ] = δµ

α and in this case we can write the commutation relations ûu = quû with
q = eikµξµ

; the ‘Fourier transform’ is the simple linear transformation

λα =
1

ik̄
θ−1
αµxµ
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for some symplectic structure θαµ. If the structure is degenerate then it is no longer evident
that the algebra can be generated by either the position generators or the momentum
generators alone. In such cases we define the algebra A to be the one generated by both
sets. The derivations could be considered as outer derivations of the smaller algebra
generated by the xµ; they become inner in the extended algebra,

We shall suppose that A has a commutative limit which is an algebra C(V ) of smooth
functions on a space-time V endowed with a globally defined moving frame θα and thus a
metric. By parallelizable we mean that the module Ω1(A) has a basis θα which commutes
with the elements of A. For all f ∈ A

fθα = θαf. (2.4)

We shall see that this implies that the metric components must be constants, a condition
usually imposed on a moving frame. The frame θα allows one [17] to construct a repre-
sentation of the differential algebra from that of A. Following strictly what one does in
ordinary geometry, we shall introduce the set of derivations eα to be dual to the frame θα,
that is with

θα(eβ) = δα
β . (2.5)

We define the differential exactly as did E. Cartan in the commutative case. If eα is a
derivation of A then for every element f ∈ A we define df by the constraint df(eα) = eαf .
The differential calculus is defined as the largest one consistent with the module structure
of the 1-forms so constructed. One can at this point take [18] the classical limit to obtain
four functions λ̃α(x̃µ) which satisfy the equations

{λ̃α, x̃µ} = ẽµ
α.

This defines a Poisson structure directly from which one can calculate the {x̃µ, x̃ν}. In
this way only at the last moment does one pass to a noncommutative algebra and most of
the problem remains within the category of smooth manifolds.

It follows from general arguments that the momenta λα must satisfy the consistency
condition

2λγλδP
γδ

αβ − λγF γ
αβ − Kαβ = 0. (2.6)

The P γδ
αβ define the product π in the algebra of forms:

θαθβ = Pαβ
γδθ

γ ⊗ θδ. (2.7)

This product is defined to be the one with the least relations which is consistent with the
module structure of the 1-forms. The F γ

αβ are related to the 2-form dθα through the
structure equations:

dθα = −
1

2
Cα

βγθβθγ .

In the noncommutative case the structure elements are defined as

Cα
βγ = Fα

βγ − 2λδP
(αδ)

βγ . (2.8)
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It follows that

eαCα
βγ = 0. (2.9)

This must be imposed then at the classical level and can be used as a gauge-fixing condi-
tion.

Finally, to complete the definition of the coefficients of the consistency condition (2.6)
we introduce the special 1-form θ = −λαθα. In the commutative, flat limit

θ → i∂αdxα.

As an (antihermitian) 1-form θ defines a covariant derivative on an associated A-module
with local gauge transformations given by the unitary elements of A. The Kαβ are related
to the curvature of θ:

dθ + θ2 = K, K = −
1

2
Kαβθαθβ.

All the coefficients lie in the center Z(A) of the algebra.
The condition (2.6) can be expressed also in terms of a twisted commutator

[λα, λβ ]P = 2P γδ
αβλγλδ

as

[λα, λβ ]P = λγF γ
αβ + Kαβ .

It is also connected with the condition that d2f = 0. The differential df of an element
f ∈ A is given by df = eαfθα. Since, in particular

d2λγ = d([λβ , λγ ]θβ) = ([λα, [λβ , λγ ]] − 1
2 [λµ, λγ ]Cµ

αβ)θαθβ

it follows that

Pαβ
γδeαeβ − Cγ

αβeγ = 0.

This is the same as Equation (2.6).
Equation (2.8) is the correspondence principle which associates a differential calculus

to a metric. On the left in fact the quantity Cα
βγ determines a moving frame, which in

turn fixes a metric; on the right are the elements of the algebra which fix to a large extent
the differential calculus. A ‘blurring’ of a geometry proceeds via this correspondence. It is
evident that in the presence of curvature the 1-forms cease to anticommute. On the other
hand it is possible for flat ‘space’ to be described by ‘coordinates’ which do not commute.
The correspondence principle between the classical and noncommutative geometries can
be also described as the map

θ̃α 7→ θα (2.10)

with the product satisfying the condition

θ̃αθ̃β 7→ Pαβ
γδθ

γθδ.
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The tilde on the left is to indicate that it is the classical form. The condition can be
written also as

C̃α
βγ 7→ Cα

ηζP
ηζ

βγ

or as

lim
k̄→0

Cα
βγ = C̃α

βγ . (2.11)

A solution to these equations would be a solution to the problem we have set. It would be
however unsatisfactory in that no smoothness condition has been imposed. This can at
best be done using the inner derivations. We shall construct therefore the set of momentum
generators. The procedure we shall follow is not always valid; a counter example has been
constructed [19] for the flat metric on the torus. The correspondence principle which in
fact we shall actually use is a modified version of the map

ẽα 7→ λα

which is the inverse of that introduced by von Neumann to represent the Heisenberg
algebra.

We introduce an involution [20] on the algebra of forms using [21] a reality condition
on derivations, a procedure which is more or less a straightforward generalization of that
which is used in the case of ordinary differential manifolds. The involution depends on
the form of the product projection π. For general ξ, η ∈ Ω1(A) it follows that

(ξη)∗ = −η∗ξ∗.

In particular

(θαθβ)∗ = −θβθα.

The product of two frame elements is hermitian then if and only if they anticommute.
Recall that the product of two hermitian elements f and g of the algebra is hermitian if
and only if they commute. When the frame exists one has necessarily also the relations

(fξη)∗ = (ξη)∗f∗, (fξ ⊗ η)∗ = (ξ ⊗ η)∗f∗

for arbitrary f ∈ A.
We write Pαβ

γδ in the form

Pαβ
γδ = 1

2δ
[α
γ δ

β]
δ + ik̄Qαβ

γδ (2.12)

of a standard projector plus a perturbation. If further we decompose Qαβ
γδ as the sum of

two terms

Qαβ
γδ = Qαβ

− γδ + Qαβ
+ γδ

symmetric (antisymmetric) and antisymmetric (symmetric) with respect to the upper
(lower) indices then the condition that Pαβ

γδ be a projector is satisfied to first order in k̄
because of the property that

Qαβ
γδ = Pαβ

ζηQ
ζη

γδ + Qαβ
ζηP

ζη
γδ.
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The compatibility condition with the product

(Pαβ
ζη)∗P ηζ

γδ = P βα
γδ

is satisfied provided Qαβ
γδ is real.

We can now write (2.6) in the form

[λα, λβ ] + 2ik̄ [λγ , λδ] Qγδ
+ αβ = Kαβ + λγ(F γ

αβ − 2ik̄λδQ
γδ
− αβ). (2.13)

This implies that to lowest order

K+αβ = ik̄K−γδQ
γδ
+ αβ

so that we can rewrite (2.6) as two independent equations

[λα, λβ ] = K−αβ + λγF γ
−αβ − 2ik̄λγλδQ

γδ
− αβ , (2.14)

0 = K+αβ + λγF γ
+αβ − 2ik̄λγλδQ

γδ
+ αβ . (2.15)

This is the form which we shall use.
Under a change of frame basis the coefficients of the spin connection also change. We

mention only the linear approximation. If

θ′α = θα − Hα
βθβ

then

C ′α
βγ = Cα

βγ + D[βHα
γ].

The only restriction on Hα
β, apart from the condition that it be small and antisymmetric,

is that it must leave the condition (2.9) invariant or impose it if it is not satisfied.
It is necessary [1] to introduce a flip operation

σ : Ω1(A) ⊗ Ω1(A) → Ω1(A) ⊗ Ω1(A)

to define the reality condition and the Leibniz rules. If we write

Sαβ
γδ = δβ

γ δα
δ + ik̄Tαβ

γδ

we find that a choice [8] of connection which is torsion-free, and satisfies all Leibniz rules
is given by

ωα
β = 1

2Fα
γβθγ + ik̄λγTαγ

δβθδ. (2.16)

The relation

π ◦ (1 + σ) = 0

must hold [8, 9] to assure that the torsion be a bilinear map.
We shall suppose that A has a metric

g : Ω1(A) ⊗ Ω1(A) → A. (2.17)
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In terms of the frame one can define the metric by the condition that

g(θα ⊗ θβ) = gαβ . (2.18)

The gαβ are taken to form an arbitrary complex matrix which satisfies [21] the symmetry
condition

Pαβ
γδg

γδ = 0 (2.19)

as well as the reality condition

gβα + ik̄Tαβ
γδg

γδ = (gβα)∗.

It is tempting to suppose that to lowest order at least, in a semi-classical approxima-
tion, there is an analogue of Darboux’s lemma and that it is always possible to choose
generators which satisfy commutation relations of the form (2.2) with the right-hand in
the center. However the example we shall examine in detail shows that this is not always
the case. Having fixed the generators, the manifestations of curvature would be found
then in the form of the frame. The two sets of generators xµ and λα satisfy, under the
assumptions we make, three sets of equations. The commutation relations (2.2) for the
position generators xµ and the associated Jacobi identities permit one definition of the
algebra. The commutation relations for the momentum generators permit a second defini-
tion. The conjugacy relations assure that the two descriptions concern the same algebra.
We shall analyze these identities later using the example to show that they have interesting
non-trivial solutions.

The problem of gauge invariance and the algebra of observables is a touchy one upon
which we shall not dwell. It is obvious that not all of the elements of A are gauge invariant
but not that all observables are gauge-invariant. One of the principles of the theory of
general relativity is that all (regular) coordinates systems or frames are equal. In the
noncommutative case one finds that some are more equal than others. If one quantize
a space-time using two different moving frames one will obtain two different differential
calculi, although the two underlying algebras might be the same. This is equivalent to
the fact that the canonical transformations of a commutative phase space are a very
special set of phase-space coordinate transformations. It can also be expressed as the fact
that the Poisson structure which remains on space-time as the commutative limit of the
commutation relations breaks Lorentz invariance. In the special case where the Hα

β are
constants then the two quantized frames will be also equivalent. Since we have decided
to work only with algebras whose centers are trivial the converse will also be true. Since
we are interested in finding the ‘simplest’ differential calculus, one of the aspects of the
problem is the choice of ‘correct’ moving frame to start with.

One possible method of looking for a solution is to consider a manifold V embedded in
R

d for some d with the commutation relations

[yi, yj] = ik̄θij, θij ∈ R.

This will induce a symplectic structure on V which is intimately related to the one we
shall exhibit in the following sections. The details of this have yet to be investigated.
Let the larger algebra be B. It has a natural differential calculus defined by imposing the
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condition [yi, dyj ] = 0 that the differentials of the generators be a frame. It follows that
the associated metric is flat. The projection

Ω∗(B) −→ Ω∗(A)

would yield a solution to the problem but it is not necessarily easier to find. In fact a similar
situation arises in one of the possible definitions of a differential calculus as a quotient of
the universal differential calculus by a differential ideal. In that case the projection is
strictly equivalent to the calculus. One could also consider the problem of finding the
metric as an evolution equation in field theory in the sense that one can pass from the
Schrödinger picture to the Heisenberg picture with the help of an evolution Hamiltonian.

It is interesting to notice how the old Kaluza-Klein idea of gauge transformations as
coordinate transformations appears here. Gauge transformations are inner automorphisms
of the algebra with respect to some unitary (pseudo-)group GG ⊂ A of elements; the
complete dynamical evolution of the system can be described as an involution with respect
to one unitary element U = eiHt of a (pseudo-)group GH ⊂ A of elements of A, just as
in quantum field theory. The difference lies in the ‘size’ of the subalgebra AG in which
G takes its values, as can be measured for example by the dimension of the commutant
of the subalgebra generated by it; whereas in general dim(A′

G) = dim(A′), since gauge
transformations are relatively unimportant, in general dim(A′

H) = 0. A topological field
theory has dim(A′

G) = dim(A′

H).
A Riemann-flat solution to the problem is given by choosing

eµ
α = δµ

α, Kαβ = −
1

ik̄
θ−1
αβ ∈ Z(A).

We have introduced the inverse matrix θ−1
αβ of θαβ; we must suppose the Poisson structure

to be non-degenerate: det θαβ 6= 0. The relations can be written in the form

λα = −Kαµxµ, [λα, λβ ] = Kαβ . (2.20)

This structure is flat according to our definitions.
We shall find it convenient to consider a curved geometry as a perturbation of a non-

commutative flat geometry. The measure of noncommutativity is the parameter k̄; the
measure of curvature is the quantity µ2. There are two special interesting limits. If we
keep k̄µ2 small but fixed then we can let k̄ → 0 or k̄ → ∞. The former (latter) corre-
sponds to a ‘small’ (‘large’) universe filled with ‘small’ (‘large’) cells. The number of cells
is given by (k̄µ2)−1. We can assume the flat-space limit to have commutation relations of
the form (2.1) with

Jµν = θµν(1 + o(ik̄µ2)).

3 The Kasner metric

All quantities in this section are commutative and should have a tilde on them to emphasize
this fact. For notational simplicity however we drop this symbol. Choose a symmetric
matrix p = (P a

b ) of real numbers. A moving frame for the Kasner metric is given by

θ0 = dt, θa = dxa − P a
b xbt−1dt. (3.1)
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The 1-forms θα are dual to the derivations

e0 = ∂t + P i
jx

jt−1∂i, ea = ∂a

of the algebra A. The space X of all derivations is free of rank 4 as an A-module and the
eα form a basis. The Lie-algebra structure of X is given by the commutation relations

[ea, e0] = Cb
a0eb, [ea, eb] = 0 (3.2)

with

Cb
a0 = P b

a t−1.

For fixed time it is a solvable Lie algebra which is not nilpotent. We have written the
frame in coordinates which are adapted to the asymptotic condition.

The expression for Cb
a0 contains no parameters with dimension but it has the correct

physical dimensions. Let GN be Newton’s constant and µ a mass such that GNµ is
a length scale of cosmological order of magnitude. As a first guess we would like to
identify the length scale determined by k̄ with the Planck scale: ~GN ∼ k̄ and so we
have k̄ ∼ 10−87sec2 and since µ−1 is the age of the universe we have µ ∼ 10−17sec−1. The
dimensionless quantity k̄µ2 is given by k̄µ2 ∼ 10−120. We saw, and we shall see below, that
the spectrum of the commutator of two momenta is the sum of a constant term of order
k̄−1 and a ‘gravitational’ term of order µt−1 = k̄−1 × (k̄µ)t−1. So the gravitational term
in the units we are using is relatively important for t . k̄µ. The existence of the constant
term implies that the gravitational field is not to be identified with the noncommutativity
per se but rather with its variation in space and time. There is of course no evidence
either in favor or against this assumption. We make it for reasons of convenience: it is
easier to perturb an existing noncommutative structure and the constant term affords us
with a convenient starting point for a perturbative expansion.

The components of the curvature form are given by

Ωa
0 = (P 2 − P )a

b t
−2θ0θb, (3.3)

Ωa
b = −1

2P a
[cPd]bt

−2θcθd. (3.4)

The curvature form is invariant under a uniform scaling of all coordinates. The Ricci
tensor has components

R00 = Tr(P 2 − P )t−2, Rab = (Tr(P ) − 1)Pabt
−2.

The vacuum field equations reduce then to the equations

Tr(P ) = 1, Tr(P 2) = 1.

If pa are the eigenvalues of the matrix P a
b there is a 1-parameter family of solutions given

by

pa =
1

1 + ω + ω2
(1 + ω, ω(1 + ω), −ω). (3.5)
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The most interesting value is ω = 1 in which case

pa = 1
3(2, 2, −1).

The curvature invariants are proportional to t−2; they are singular at t = 0 and vanish as
t → ∞.

We shall naturally be lead to consider a family of metrics obtained from the Kasner
metric by a redefinition of the matrix P which depends on a vector ka, eigenvector of
P with eigenvalue q. The previous formulae will be modified. This energy-density we
interpret as due to the existence of supplementary noncommutative dimensions. We start
then with a Kasner solution in dimension 4 and we add a fuzzy structure which forces us
out of the 1-parameter family of vacuum solutions into a family of solutions with similar
properties except for the existence of a pressure-free distribution of energy density.

4 The Kasner algebra

The Kasner metric is of Petrov type I and has four distinct principal null vectors. The
limiting Poisson structure defines an additional two principle null vectors. We must also
choose the frame so that it is in some way adapted to these vectors. A major problem,
which has not been solved, is to possess a criterium by which one can decide if the frame is
well-chosen. From the form of the principal null directions in the present case we conclude
that the frame is properly aligned with respect to them except possibly for a rotation
around the k-axis. We recall that the vectors ka and la come from the limiting symplectic
structure and P a

d from the limiting metric. It is most convenient to describe the algebra
using the momentum generators.

Following the general argument we introduce an array of polynomials Lαβ quadratic in
the momenta and write

[λa, λb] = Kab + Lab, [λ0, λa] = K0a + L0a.

To stress the fact that the Kαβ diverges when k̄ → 0 we write

K0a = (ik̄)−1la, Kab = (ik̄)−1ǫabck
c

with two space-like vectors la and ka. To determine the form of Lαβ we must consider the
commutative limit. Since the Kasner metric is a vacuum solution and noncommutativity
gives rise naturally to a cosmological constant we shall only be able to recover the Kasner
metric as a double limit; first we must take a limit k̄ → 0 to recover a commutative theory
and then we must take the limit α → 0 to recover Kasner’s solution. That is we shall
not be able to define a series of geometries which are strictly speaking noncommutative
versions of the Kasner metric.

From the classical limit we must choose the Lαβ so that for arbitrary f ∈ A

[ea, eb]f = 0, [ea, e0]f − P b
aτ(t)ebf = 0.

We have here introduced the element τ of the subalgebra of A generated by t which must
tend to t−1 in the commutative limit. From the Leibniz rules we find that

[Lab, f ] = 0, [La0, f ] = P b
aτebf. (4.1)
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The integrability condition for this system is the condition

eaτ = 0. (4.2)

From the correspondence principle and the structure of the Kasner metric we obtain the
momentum-position commutation relations

[λ0, t] = 1, [λ0, x
b] = P b

c (τxc − 1
2 [τ, xc]),

[λa, t] = 0, [λa, x
b] = δb

a.
(4.3)

It follows in particular that the condition (4.2) is satisfied.

To solve (formally) Equations (4.1) it suffices to chose f = xµ. We obtain then with
f = t that Lαβ is a function of t alone and with f = xa that

Lab = 0, La0 = τP b
aλb.

To allow for a family of metrics which includes the Kasner solution we shall add to the
commutation relations a term of the form

Mαβ = αm−2τ2Kαβ , m2 = µ2c2, c2 = kala

with α an arbitrary real number. The components Ma0 can be absorbed into a redefinition

Qb
a = P b

a + αc−2kbla

of P b
a . We arrive finally at an algebra defined by the relations

[λa, λb] = (ik̄)−1(1 + α
τ2

m2
)ǫabck

c, (4.4)

[λ0, λa] = (ik̄)−1(la − ik̄τQb
aλb) (4.5)

with

Qb
aτ → P b

a t−1.

We must now find an explicit expression for τ .

If we multiply both sides of (4.5) by ka then we find the equation

e0(−ik̄µ2kaλa) + m2 + τ(−ik̄µ2Qa
bk

bλa) = 0.

It would seem that the only natural way to solve this equation is to choose the symplectic
form such that ka is an eigenvector of Qa

b . Let q be the associated eigenvalue and define
the element

τ = −ik̄µ2kaQb
aλb = q(−ik̄µ2kaλa)

which must satisfy the equation

τ̇ + q(m2 + τ2) = 0.
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Since we have added an extra term to Equation (4.4) we must assure that the modified
Jacobi identities are also satisfied. That is we must verify that the equation

[λ0, Lab] = [L0a, λb] + [λa, L0b]

is an identity. It can be written as

τ̇ +
1

2
(Tr Q − q)(

m2

α
+ τ2) = 0.

It can be considered an identity if it coincides with the previous equation for τ . This will
be the case if and only if

Tr Q = 3q, α = 1.

The ansatz is such that there is no real asymptotic region. The restriction on α means
that there is only one metric in the 1-parameter family around the Kasner which can be
made noncommutative.

From the definition of Qa
b we find that

Tr Q = 2, qa = 2
3 .

Therefore p1 = p2 = 2/3 and since

p + c−2k3l3 → q

we conclude that

p = 2
3 − 1 = −1

3 .

This is a consistency check since we have already assumed that Tr P = 1. Having the
expression for τ we can also conclude that the extra terms in the commutation relations
can be written in the form used in Section 2. They correspond respectively to

Qcd
a0 = 1

4µ2k(cQ
d)
a , Qcd

ab = −1
2αm2kckdǫabek

e.

We shall refer to the equation for τ as the dynamical equation. It is a direct consequence
of the Jacobi identities.

For ω of the form ω = −1 + ǫ such that one can write

pa = (−ǫ + ǫ2, ǫ, 1 − ǫ2) + o(ǫ3)

one finds that q = 1 − ǫ2. If one choose then

α = ǫ2

one finds the equation

τ̇ + ǫ2τ2 + m2 = 0.

The dynamical equation is invariant under the action of the ‘duality’ transformation

τ 7→ −m2τ−1.
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The functions

τ = m cot(qmt) ≃
1

qt
, m2 > 0, (4.6)

τ = |m| coth(q|m|t) ≃
1

qt
, m2 < 0, (4.7)

τ = |m| tanh(q|m|t) ≃ q|m|2t, m2 < 0. (4.8)

are solutions. The small-t expansion is a strong-field limit; the Kasner metric would be a
weak-field limit for large values of µt, provided that c → 0.

We end this section by considering a scaling limit wherein the mass-term vanishes
We do this by scaling the kinetic terms such that they progressively dominate. We set
accordingly

τ = ν−1τ0, t = νt0.

By the relations (4.3) we must scale the momenta as λα = νλ0α and therefore we must
scale k̄ = ν−2k̄0 and Kαβ = ν2K0αβ as one would expect by dimension analysis. The
dynamical equation becomes then

τ̇ + q(τ2 + (νm)2) = 0.

Alternatively one can scale the mass parameter m = νm0. The ‘fudge’ term Mαβ is
scale-invariant.

Some information can be obtained concerning the Jµν introduced in (2.1) by simply
looking at the commutation relations and the associated Jacobi relations. More informa-
tion can be obtained by considering representations, as we shall do in the next subsection.
From the Jacobi identities with two position operators and one momentum operator we
deduce that eaJ

µν = 0 and thereby the dependence of the commutator only on the gener-
ator τ . To use a covariant derivative on Jµν we must be able to express the latter using
frame indices.

Having ‘blurred’ the Kasner metric and deformed the resulting algebra we can now take
the ‘sharp’ limit and see what we obtain. With the form of P a

b we have the metric cannot
be Ricci-flat but has an induced cosmological constant due to the noncommutativity [14].
The metric is that of the flat FRW universe filled with dust. We refer elsewhere [22] for
a discussion of this point. The theory we are investigating has certain similarities with
theories of the type called Kaluza-Klein. That is, the additional noncommutative structure
can perhaps at least to a certain extent be assimilated to an effective commutative theory
in higher dimensions. This means that even if one could define a curvature tensor in
a satisfactory manner there is no reason to expect the Ricci tensor to vanish. One can
assume that to the lowest approximation the Ricci tensor of the total structure does vanish
and use the Ricci tensor of the four dimensions to elucidate the structure of the hidden
dimensions.
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