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Abstract

We discuss the dynamics of an affinely-rigid body in two dimensions. Translational
degrees of freedom are neglected. The special stress is laid on completely integrable
models solvable in terms of the separation of variables method.

1 Introduction

The general formulation of the mechanics of an affinely-rigid body in n dimensions was
presented in [1, 2, 3]. Obviously, it is the special case n = 3 that is directly physically appli-
cable, if a proper potential model is chosen. For realistic potentials, the three-dimensional
problem is very difficult. The reason is that the group SO(3, IR) (and generally SO(n, IR)
for n > 2) is semisimple and because of this the deformative degrees of freedom in kinetic
energy form are mixed in a very malicious, non-separable way. Some general aspects of the
two-dimensional model were investigated in [4]. The two-dimensional study may be also
useful as a preliminary step towards the analysis of realistic three-dimensional problems.
Here we consider some isotropic dynamical models in two dimensions. They are both phys-
ically reasonable (e.g. from the point of view of macroscopic elasticity) and analytically
treatable in terms of the separation of variables method (Stäckel theorem). Some expres-
sions for the action-angle variables are derived, in particular, the dependence of energy on
the action parameters is discussed. Our calculations are based on the method of complex
integration, elaborated in this context by Max Born [5]. The degeneracy of these models
is explicitly described and Bohr-Sommerfeld quantization is performed.

2 Some integrable two-dimensional problems

Discussed is the two-dimensional affinely-rigid body. Namely, we consider discrete or con-
tinuous system of material points for which the configuration space may be identified with
the affine group. In other words, all affine relations between its constituents are frozen,
i.e. during the affine motion such fundamental affine relationships like the parallelism of
straight lines, ratio of segments on the same straight line, and of course the very manifold of
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all straight lines are preserved. When translational motion is neglected, the configuration
space becomes identical with the linear group Q = GL(2, IR). We are interested in quali-
tative properties of the particular dynamical model rather than in geometric foundations
of the theory analyzed in [3]. That is why we prefer to use here the matrix notation. The
motion of the affinely-rigid body (without translations) has the form: xi(t, a) = Φi

A(t)aA,
where xi(t, a) is the position of the a-th material point at the time instant t and Φ is the in-
ternal configuration of the body, which connects Lagrangian coordinates aA with Eulerian
ones xi. The most adequate description of degrees of freedom is that based on the following
decomposition of matrices: Φ = ODRT , where O, R ∈ SO(2, IR) are orthogonal matrices,
D is diagonal and positive, and the orthogonal group SO(2, IR) is a commutative group
of plane rotations. Spatial rotations are described by the action of SO(2, IR) on GL(2, IR)
through the left regular translations. Similarly, material rotations are represented by the
action of the rotation subgroup through the right multiplication. It leads to the natural
parameterization of the problem:

O =

[

cos θ − sin θ
sin θ cos θ

]

, D =

[

D1 0
0 D2

]

, R =

[

cosψ − sinψ
sinψ cosψ

]

where 0 ≤ θ ≤ 2π, D1 > 0 , D2 > 0, 0 ≤ ψ ≤ 2π.
Matrix D describes the scalar state of deformation, i.e. tells us how strongly the body

is deformed, but does not contain any information as to how the deformation is oriented
in physical space and in the body. The orthogonal matrices O and R describe the space
and body orientation of the strain. This decomposition is unique up to the permutation of
diagonal elements of D accompanied by the simultaneous multiplying of O, R on the right
by the appropriate special orthogonal matrix. This implies that the potential energy of
doubly isotropic models depends only on D and is invariant with respect to the permutation
of its non-vanishing matrix elements [2]. We consider the affinely-rigid body with the
double dynamical isotropy: spatial and material. This means that the system is invariant
under both physical and material rigid rotations. Restricting the usual multi-particle
kinetic energy to the manifold of affine constraints we obtain [2, 3]: T = 1

2Tr(dΦ
dt
J dΦ

T

dt
),

where J denotes the co-moving quadrupole moment of inertia. We shall consider only
highly symmetric model, where J is isotropic, i.e., its matrix has the form µI; µ denoting
a positive constant and I the 2× 2 identity matrix. Then the isotropic kinetic energy has
the following form

T =
µ

2

[

(

D2
1 +D2

2

)

(

(

dθ

dt

)2

+

(

dψ

dt

)2
)

− 4D1D2
dθ

dt

dψ

dt
+

(

dD1

dt

)2

+

(

dD2

dt

)2
]

.

We can notice that the matrices O and R do not enter into this equation, hence the
angles θ, ψ are cyclic variables. In these coordinates the Hamilton-Jacobi equation is non-
separable even in the interaction-free case. However, the separability becomes possible
in new variables, obtained by the π

4 -rotation in the plane of deformation invariants D1,
D2 and by an appropriate modification of angular variables. Thus, we introduce new
coordinates: α = 1

√

2
(D1 +D2), β = 1

√

2
(D1 −D2), η = θ−ψ, γ = θ+ψ. In macroscopic,

phenomenological elasticity theory D1 > 0 , D2 > 0, thus α > 0, |β| < α. However,
describing discrete or finite systems of material points (e.g. molecules), one can admit
singular and mirror-reflected configurations. Then, to some extent D1, D2, α, β may
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be arbitrary. In these coordinates the kinetic energy has the form (both diagonal and
separable)

T =
µ

2

[

α2

(

dη

dt

)2

+ β2

(

dγ

dt

)2

+

(

dα

dt

)2

+

(

dβ

dt

)2
]

. (2.1)

In our calculations we will use the following coordinates on the invariants plane, to separate
the Hamilton-Jacobi equation:

1. Cartesian coordinates α, β (mentioned above).

2. Polar coordinates r, ϕ which are defined as follows: α =
√
r cos ϕ2 , β =

√
r sin ϕ

2
(r > 0, −π/2 < ϕ < π/2).

The kinetic energy has the following form

T =
µ

2

[

r cos2 ϕ

2

(

dη

dt

)2

+ r sin2 ϕ

2

(

dγ

dt

)2

+
1

4r

(

dr

dt

)2

+
r

4

(

dϕ

dt

)2
]

. (2.2)

The Cartesian and polar variables are orthogonal, thus we can use the classical Stäckel the-
orem to determine a general form of potentials which are in some sense isotropic and admit
analytical calculations based on the separation of variables method. The corresponding
stationary Hamilton-Jacobi equation is separable for potentials of the shape, corresponding
to the Cartesian and polar coordinates:

V (θ, ψ, α, β) =
Vη (θ − ψ)

α2
+
Vγ (θ + ψ)

β2
+ Vα(α) + Vβ(β),

V (θ, ψ, r, ϕ) =
Vη (θ − ψ)

r cos2 ϕ
2

+
Vγ (θ + ψ)

r sin2 ϕ
2

+ Vr(r) +
Vϕ(ϕ)

r
.

We consider doubly-isotropic models, in which the potential energy does not depend on
variables θ, ψ (equivalently η, γ), i.e.: Vη = 0 and Vγ = 0. Performing the Legendre
transformation we obtain the corresponding Hamiltonian in the form:

1. Cartesian coordinates H = Hα +Hβ:

H =
1

2µ

(

(pθ − pψ)2

4α2
+ p2

α

)

+
1

2µ

(

(pθ + pψ)2

4β2
+ p2

β

)

+ Vα(α) + Vβ(β), (2.3)

where pθ, pψ, pα, pβ are the canonical momenta conjugate to θ, ψ, α, β, respectively,

and Hα = 1
2µ

(

(pθ−pψ)2

4α2 + p2
α

)

+ Vα(α), Hβ = 1
2µ

(

(pθ+pψ)2

4β2 + p2
β

)

+ Vβ(β). The

quantities Hα,Hβ, pθ, pψ form a Poisson-involutive system of constants of motion.

2. Polar coordinates H = Hr +
hϕ
r

:

H =
2r

µ
p2
r +

1

2rµ

(

p2
θ + p2

ψ + 2pθpψ cosϕ

sin2 ϕ
+ 4p2

ϕ

)

+ Vr(r) +
Vϕ(ϕ)

r
, (2.4)

where pr, pϕ, pθ, pψ are the canonical momenta conjugate to r, ϕ, θ, ψ, respectively,

and Hr = 2r
µ
p2
r +Vr(r), hϕ = 1

2µ

(

p2
θ
+p2

ψ
+2pθpψ cosϕ

sin2 ϕ
+ 4p2

ϕ

)

+Vϕ(ϕ). In this case, the

quantities H,hϕ, pθ, pψ form a Poisson-involutive system of constants of motion.
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The stationary Hamilton-Jacobi equation is as follows:

1. Cartesian coordinates:

(

1

4α2
+

1

4β2

)

(

(

∂S

∂θ

)2

+

(

∂S

∂ψ

)2
)

+

(

1

2β2
− 1

2α2

)

∂2S

∂θ∂ψ
(2.5)

+

(

∂S

∂α

)2

+

(

∂S

∂β

)2

= 2µ (E − (Vα(α) + Vβ(β))) ,

where E is a fixed value of energy. Due to the fact that the variables θ, ψ have the
cyclic character, we may write: S = Sθ(θ) + Sψ(ψ) + Sα(α) + Sβ(β) = aθ + bψ +
Sα(α) + Sβ(β). Finally we obtain the action variables in the following form:

Jθ =

∮

pθdθ = 2πa, Jα = ±
∮

√

2µ (Eα − Vα(α)) − (Jθ − Jψ)2

16π2α2
dα,

Jψ =

∮

pψdψ = 2πb, Jβ = ±
∮

√

2µ (Eβ − Vβ(β)) − (Jθ + Jψ)2

16π2β2
dβ, (2.6)

where Eα, Eβ , a, b are separation constants.

2. Polar coordinates:

1

r sin2 ϕ

(

(

∂S

∂θ

)2

+

(

∂S

∂ψ

)2
)

+
2cosϕ

r sin2 ϕ

∂2S

∂θ∂ψ
+ 4r

(

∂S

∂r

)2

(2.7)

+
4

r

(

∂S

∂ϕ

)2

= 2µ

(

E − Vr(r) −
Vϕ(ϕ)

r

)

,

where E is a fixed value of energy and again the solutions are sought in the separated
form: S = Sθ(θ) + Sψ(ψ) + Sr(r) + Sϕ(ϕ) = aθ + bψ + Sr(r) + Sϕ(ϕ). After some
calculations the action variables are as follows:

Jθ =

∮

pθdθ = 2πa, Jr = ±
∮
√

µ

2r
(E − Vr(r)) −

µeϕ
2r2

dr,

Jψ =

∮

pψdψ = 2πb, Jϕ = ±
∮

√

µ

2
(eϕ − Vϕ(ϕ)) − Jθ2 + Jψ2 + 2JθJψ cosϕ

16π2 sin2 ϕ
dϕ,

(2.8)

where E, eϕ, a, b are separation constants.
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3 Some rigorously solvable models

In (2.6) and (2.8) the expressions Jα, Jβ, Jr, Jϕ depend on potentials Vα(α), Vβ(β),
Vr(r), Vϕ(ϕ), respectively. After specifying the form of these potentials we can obtain the
Hamilton function H as some function of our action variables, i.e. 1. H = E(Jα, Jβ , Jθ,
Jψ) and 2. H = E(Jr, Jϕ, Jθ, Jψ). So we can find the explicit dependence of the energy
E on the action variables and the possible further degeneracy. We will also perform the
usual Bohr-Sommerfeld quantization procedure for all our models.

There exist potentials [2, 3] which could lead to Hamilton-Jacobi equations separable
simultaneously in two mentioned above coordinate systems. As we know from analytical
mechanics this simultaneous separability usually has to do with some degeneracy and
additional constants of motion of completely integrable systems. General form of that
potential is as follows: V = A

α2 + B
β2 + C

(

α2 + β2
)

, where A, B, C are constants. By

an appropriate choice of A, B, C (more generally some arbitrary one-variable functions
might be used instead of them), one can obtain the potential with a local minimum at the
reference configuration Φ = I. In a certain neighborhood of Φ = I some phenomenological
conditions, known from elasticity theory, will be satisfied.

3.1 Cartesian model

Here we consider the model of the Cartesian potential i.e. V (α, β) = C
4

(

α2 + 4
α2

)

+ C
4 β

2,
C > 0. After some calculations we obtain the dependence of the energy E = Eα+ Eβ on
the action variables as follows:

E =
ω

4π
√

2

(

4J + |Jθ + Jψ| +
√

32µπ2C + (Jθ − Jψ)2
)

, ω =

√

C

µ
, (3.1)

where Eα = ω

4π
√

2

(

4Jα +
√

32µπ2C + (Jθ − Jψ)2
)

, Eβ = ω

4π
√

2
(4Jβ + |Jθ + Jψ|). There

exists a partial degeneracy of this system because the energy in (3.1) depends on a rational
combination of action variables typical for degenerated systems, i.e. J = Jα + Jβ . The
relationship between frequencies becomes να = νβ. The energy E depends on the action
variables Jθ, Jψ through their integer linear combinations. However, there occur two differ-
ent ones, thus there is no degeneracy. Then performing the Bohr-Sommerfeld quantization
procedure, i.e. supposing that J = nh, Jθ = mh, Jψ = lh, where h is the Planck constant
and n = 0, 1, . . . ; m, l = 0,±1, . . ., we obtain the energy spectrum in the form:

E =
1

2
√

2
~ω

(

4n+ |m+ l| +
√

(m− l)2 +
8Cµ

~2

)

. (3.2)

3.2 Polar model

Next we consider the model of the polar potential, i.e. V (r, ϕ) = C
4

(

r + 4
r

)

+C
r
tg2 ϕ

2 , C > 0.
Now we obtain the following expressions for the dependencies of the constant eϕ and the en-

ergy E on the action variables: E = Jr
π

√

C
2µ +

√

C2 + Ceϕ, where
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eϕ =
[√

1
2µπ2Jϕ +

√

1
32µπ2 (Jθ + Jψ)2 +

√

C + 1
32µπ2 (Jθ − Jψ)2

]2
− C. Finally

E =
ω

4π
√

2

(

4J + |Jθ + Jψ| +
√

32µπ2C + (Jθ − Jψ)2
)

. (3.3)

There exists also partial degeneracy of this system because the energy in (3.3) depends on
an integer combination of action variables, i.e. J = Jr + Jϕ. The relationship between fre-
quencies becomes νr = νϕ. The energy E depends on Jθ, Jψ through two different integer-
coefficients combinations, thus there is no degeneracy. The Bohr-Sommerfeld quantization
conditions yield the following form of the energy spectrum:

E =
1

2
√

2
~ω

(

4n+ |m+ l| +
√

(m− l)2 +
8Cµ

~2

)

. (3.4)

It is interesting to compare this expression with (3.2). Separability of the Hamilton-Jacobi
equation in two different coordinate systems has to do with hidden symmetries and degen-
eracy of the problem. So, our models are only one-fold degenerate and all trajectories are
dense on some three-dimensional tori. Therefore, Bohr-Sommerfeld quantization involves
three quantum numbers (in the sense of the old quantum theory).

The planar model is mathematically interesting in itself and effectively analytically
treatable. However, some applications are also possible in macroscopic elasticity and hy-
drodynamics (homogeneous vibrations of cross-sections of elastic cylinders or cross-sections
of fluid streams). Microscopic applications are also possible, e.g., vibrations of planar
molecules (such as S8, C6H6). Obviously, in microscopic problems the quantized models
are not only physically admissible, but just desirable.
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