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Abstract

We derive and discuss equations of motion of infinitesimal affinely-rigid body moving
in Riemannian spaces. There is no concept of extended rigid and affinely rigid body in
a general Riemannian space. Therefore the gyroscopes with affine degrees of freedom
are described as moving bases attached to the material point. This base is a remnant
of extended rigid and affinely rigid body in a flat space. The special stress is laid
on affinely rigid bodies in two-dimensional constant curvature spaces (sphere and
pseudosphere). In particular, we consider incompressible affinely rigid bodies, like,
e.g. fat spots on a water surface (e.g. petrol pollution). This is a two-dimensional
analogue of three-dimensional incompressible objects like fluid droplets.

1 Introduction

In a generic Riemann space (M,g) it is rather typical that the isometry and affine groups
are trivial, or at least, their dimensions are smaller than those for flat spaces. So there is
no concept of extended rigid or affinely-rigid body. However, one can consider infinitesimal
objects of this kind, so small that one can consider them as injected into tangent spaces.
More precisely, such objects are structured material points, i.e., material points with at-
tached linear bases describing internal degrees of freedom. These bases will be denoted by
e = (. . . , eA, . . .), and their duals by ẽ = (. . . , eA, . . .). Local coordinates xi in M establish
representation of e, ẽ as fields of matrices ei

A, eA
i , where eA

i ei
B = δA

B. When the
body is metrically-rigid, i.e., the frame is orthonormal, gije

i
Aej

B = δAB then the functions
(xi, ei

A), being functionally dependent cannot be used as generalized coordinates on the
configuration space, i.e., the bundle F (M,g) of g-orthonormal frames. Therefore, it is only
the general form of balance laws for spin and linear momentum that may be explicitly
written, but not an effective dynamical system. Obviously, for affinely rigid body (xi, ei

A)
are well defined generalized coordinates. The simplest way to escape the difficulty in the
rigid body case and to establish effective generalized coordinates on (FM, g) is to use some
fixed g-orthonormal nonholonomic reference system E = (. . . , EA, . . .) (field of frames) on
M ; gijE

i
AEj

B = δAB . As usual, the inverse co-frame will be denoted by Ẽ = (. . . , EA, . . .).
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Usually E is somehow chosen on the basis of details of (M, g)-geometry. Now we can put:
eA(t) = EB (x(t)) RB

A(t), where eK , EL are attached at x(t), and R is time dependent or-
thogonal matrix, δCDRC

ARD
B = δAB . There are some standard methods for parameterizing

SO(n,R) (Euler angles, rotations vector etc.) and in this way some independent coordi-
nates on F (M,g) may be introduced. The co-moving components of angular velocity Λ
are defined in a usual way,

DeB

Dt
:= eAΛA

B, ΛA
B = ΩA

B +κA
B , κA

B =
[

R−1
]A

C

dRC
B

dt
, ΩA

B =
[

R−1
]A

F
ΓF

DCRD
BRC

GvG, (1.1)

where vG are the co-moving components of the translational velocity: vG = eG
i (dxi/dt)

and ΓF
DC are anholonomic components of the affine connection with respect to E (∇BEA =

ECΓC
AB). We discuss in some details the motion of infinitesimal gyroscopes moving on

the two-dimensional constant curvature spaces like the sphere and pseudosphere [1].

2 Infinitesimal homogeneously-deformable gyroscope

An extended affinely rigid body is a system of material points with all affine relations
kept frozen during any admissible motion [2, 3]. In a non-Euclidean physical space we can
consider only infinitesimal objects of this kind, just as it was the case with rigid bodies in
Riemannian space. There are no longer any constrains imposed on ei

A, so in principle there
is no reason to use the prescribed reference frame EA any longer. But from the point of view
of practical applications such a description is still useful. Namely, it is rather typical that
we are interested in problems in which finite rotations interact with extra imposed small
deformations. Therefore, in the affine case we continue to use some prescribed anholonomic
orthonormal frame E.

Now we return to the general, non-restricted motion of infinitesimal affinely-rigid bodies.
In a general Riemannian manifold (M,g) we have the following expression for the total
kinetic energy ([4]-[6]):

T =
m

2
gij

dxi

dt

dxj

dt
+

1

2
gij

Dei
A

Dt

Dej
B

Dt
JAB = Ttr + Tint. (2.1)

After putting eA = EBϕB
A (now ϕB

A is a general nonsingular matrix), we obtain for the
internal part of the kinetic energy:

Tint =
1

2
δMNϕM

K ϕN
L ΛK

A ΛL
BJAB , (2.2)

where the co-moving affine angular velocity Λ is implicitly defined by the formula (1.1)
and JAB is the co-moving quadrupole of inertia . One can show that in analogy to (1.1):

ΛA
B =

(

ϕ−1
)A

F
ΓF

DCϕD
BϕC

GvG +
(

ϕ−1
)A

C

(

dϕC
B/dt

)

, vE = eE
i (dxi/dt). The parameterization

of ϕ which we choose, depends on the structure of internal inertia J . When J = JIdn

(Idn denoting the n × n identity matrix, J being a scalar constant), then it is convenient
to use the two-polar decomposition [7]:

ϕA
B = UA

C DC
D

[

V −1
]D

B
, (2.3)
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where U, V are orthogonal and D is diagonal. After some calculations we obtain then:

T = −
J

2
tr[D2χ2] −

J

2
tr[D2ϑ2] + Jtr[DχDϑ] +

J

2
tr[(Ḋ)2], (2.4)

where D is the diagonal factor of the two-polar decomposition and the skew-symmetric
matrices χ, ϑ represent, respectively, the angular velocities related to U and V . More
precisely: ϑ = V −1 (dV/dt) , whereas χ is defined by the following formulae: (DwA/Dt) =
wBχB

A, wA := EBUB
A .

3 Motion on two-dimensional sphere and pseudosphere and

action variables

We discuss the compressible and incompressible motion on two-dimensional spheres and
pseudospheres. J are isotropic, so we use the two-polar decomposition. From now on all
angular velocities become one-dimensional objects, denoted by scalar factors χ, ϑ; more

precisely, they are equal to χǫ and ϑǫ where ǫ :=

[

0 −1
1 0

]

. The two-polar decomposition

(2.3) is based on: U =

[

cos α − sinα
sin α cos α

]

, V =

[

cos β − sin β
sin β cos β

]

, D =

[

λ 0
0 µ

]

. The

internal kinetic energy (2.2) is given by:

Tint =
J

2

[

λ̇2 + µ̇2

]

+
J

2

[

λ2 + µ2
]

χ2 +
J

2

[

λ2 + µ2
]

ϑ2 − 2Jλµχϑ. (3.1)

If we want to describe an incompressible body, like drop of water in three dimensions
or spot of fat on two dimensional water surface then for planar problems we should use
µ = 1/λ; the internal kinetic energy is then given by the formula:

Tint =
J

2

[

1 +
1

λ4

]

λ̇2 +
J

2

[

1

λ2
+ λ2

]

χ2 +
J

2

[

1

λ2
+ λ2

]

ϑ2 − 2Jχϑ, (3.2)

where now χ and ϑ are the only independent components of angular velocity matrices
denoted previously by the same symbols. All expressions for sphere and pseudosphere
look similarly so we can use common symbols S, C for denoting the functions sin, cos
in the spherical case and sh, ch, respectively in the pseudospherical case. Explicitly:
ϑ = dβ/dt and χ = dα/dt + C (r/R) dϕ/dt. It is convenient to include the compressible
case: γ := α+β δ := α−β, x := (1/2) (λ − µ) , y := (1/2) (λ + µ). For the incompressible
case: γ := α + β δ := α − β. If µ = 1/λ ⇒ x := (1/2) (λ − 1/λ), y := (1/2) (λ + 1/λ)
the deformation variable are interdependent, so for the incompressible case we will use λ
alone. The metric elements are given by the following expressions [1]:

ds2 = dr2+R2S2 (r/R) dϕ2; on sphere r ∈ [0, πR) and on pseudosphere r ∈ [0,∞]. (3.3)

Then the kinetic energy may be written in the following form:

T = (m/2)Gij(dqi/dt)(dqj/dt),

where
{

qi
}

= {r, ϕ, γ, δ, x, y}
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We assume Lagrangians of the form L = T − V , V depending only on generalized
coordinates. Now we use the “polar” coordinates on S2 (0, R), and H2 (0, R). In both cases
they are denoted by the same symbols (r, ϕ). The translational energies have the form [1]:

Ttr = (m/2)
[

(dr/dt)2 + R2S2 (r/R) (dϕ/dt)2

]

.

In the canonical formalism: T = (1/2m)Gijpipj, H = T + V , where GijG
jk = δi

k.
In the spherical and pseudospherical case we use vector fields EA which are mutually
orthonormal and directed parallelly to “latitudes” and “meridians”, Eϕ, Er. The dynamics
in our models is doubly isotropic. After some calculations we obtain that the kinetic term
of the Hamiltonian for the compressible case has the form:

T =
p2

r

2m
+

p2
ϕ−2C r

R
pϕ (pγ+pδ)+

(

mR2

J
S2 r

R
+C2 r

R

)

(pγ+pδ)
2

2mR2S2 r
R

+
p2

x

2J
+

p2
y

2J
+

p2
γ

2Jx2
+

p2

δ

2Jy2
, (3.4)

and for the incompressible case

T =
p2

r

2m
+

(

(pγ +pδ)C
r
R
− p2

ϕ

)2

2mR2S2r
R

+
p2

γλ2

J(1 − λ2)2
+

p2

δλ
2

J(1 + λ2)2
+

p2

λλ4

2J(1 + λ4)
. (3.5)

In pseudospherical case mR2

J
S2

(

r
R

)

may have two forms: ±mR2

J
sinh2

(

r
R

)

; both of them

may be physically applicable. Hamilton-Jacobi equation H
(

qa, ∂S0

∂qa

)

= 1

2m
Gij ∂S0

∂qi
∂S0

∂qj +

V (q) = E is separable for potentials which consist of two terms: one depends on r
(translational variable) and the other depends on variables which concern the deformation:
V (q) = Vr(r)+Vx(x)+Vy(y), V (q) = Vr(r)+Vλ(λ). Then the action variables may be ex-
plicitly calculated. The resulting equations separate when ϕ, γ and δ are cyclic variables [8].

In the stationary case H
(

q, ∂S0

∂q

)

= E, S0 = Sr(r)+ lϕ+Cγγ+Cδδ+Sx(x)+Sy(y) and for

incompressible model S0 = Sr(r)+ lϕ+Cγγ +Cδδ +Sλ(λ)). Now we put pγ = 1

2
(pα + pβ)

and pδ = 1

2
(pα − pβ) . Then: S0 = Sr(r) + lϕ + Cαα + Cββ + Sx(x) + Sy(y), and in the

second case S0 = Sr(r) + lϕ + Cαα + Cββ + Sλ(λ). The Hamilton-Jacobi equation for the
compressible body has the form:

E =
1

2m

(

dSr (r)

dr

)2

+

(

l − CαC
(

r
R

))2

2mR2S2
(

r
R

) + V (r) +
1

2I

(

dSx

dx

)2

+
(Cα + Cβ)2

8Jx2
+ Vx(x) +

1

2J

(

dSy

dy

)2

+
(Cα − Cβ)2

8Jy2
+ Vy(y), (3.6)

and for the incompressible case:

E =
1

2m

(

dSr (r)

dr

)2

−

(

l − (Cα + Cβ)C
(

r
R

))2

2mR2S2
(

r
R

) + V (r)

+
C2

γλ2

J(1 − λ2)2
+

C2

δ λ2

J(1 + λ2)2
+

(

dSλ

dλ

)2 λ4

2J(1 + λ4)
+ V (λ), (3.7)

where Jq =
∫

2π

0
pqdq, pi = ∂S

∂qi . Explicitly

Jϕ =

∮

pϕdϕ = l

∫

2π

0

dϕ = 2πl, Jα =

∮

pαdα = Cα

∫

2π

0

dα = 2πCα.
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Now we can calculate Jr, Jx, Jy for the compressible case. The constants of separation
Cx and Cy have the same form for the sphere and pseudosphere:

Cx :=
1

2J

(

dSx

dx

)

+
(Jα + Jβ)2

32π2Jx2
+ Vx(x), Cy :=

1

2J

(

dSy

dy

)

+
(Jα − Jβ)2

32π2Jy2
+ Vy(y),

Jr =

∮

prdr =

∮

√

√

√

√2m (E − Cx − Cy − Vr(r)) −

(

Jϕ − JαC
(

r
R

))2

4π2R2S2
(

r
R

) dr, (3.8)

Jx =

∮

√

2J (Cx−Vx(x)) −
(Jα+Jβ)2

16π2x2
dx, Jy =

∮

√

2J (Cy−Vy(y)) −
(Jα−Jβ)2

16π2y2
dy. (3.9)

Now let us return to the incompressible case. The constants of separation for sphere
and pseudosphere are given by:

Cλ =
J2

γλ2

J4π2(1 − λ2)2
+

J2

δ λ2

J4π2(1 + λ2)2
+

(

dSλ

dλ

)2 λ4

2J(1 + λ4)
+ Vλ(λ),

Jr =

∮

prdr =

∮

√

√

√

√2m (E − Cλ − Vr(r)) −

(

l − (Jα + Jβ)C
(

r
R

))2

4π2R2S2
(

r
R

) dr, (3.10)

Jλ =

∮

√

2I (Cλ−Vλ(λ))
2J(1 + λ4)

λ4
−

J2
γ2J(1 + λ4)

J4π2(1 − λ2)2λ2
−

J2

δ 2J(1 + λ4)

J4π2(1 + λ2)2λ2
dλ. (3.11)

As we see Jλ has a more complicated form than Jx and Jy, but Jr for both cases is the
same.

If we want to calculate Jr explicitly, we should choose potentials which are related to
the geometry of our manifold and thus simplify calculations. We can choose potentials in
the form: Vr(r) = f(r) det[gij ], because det[gij ] it is a scalar density of weight −2, thus it
is a well-defined geometric object. In the spherical case

det[gij ] =
1

R2 sin2( r
R

)
→ f(r) = R2 cos2(

r

R
) → Vr(r) =

cos2( r
R

)

sin2( r
R

)
= cot2(

r

R
);

for such a potential and for the compressible spherical case Jr (3.8) has the form:

Jr =
√

2m4π2R2(E − Cx − Cy + 1) + J2
α

−
1

2

√

2m4π2R2 + (Jϕ + Jα)2 −
1

2

√

2m4π2R2 + (Jϕ − Jα)2, (3.12)

where Cx, Cy are constant. In an incompressible spherical case Jr has a similar form; we
must only put (−Cx − Cy) instead of (−Cλ) .

In the pseudospherical case we can choose:

det[gij ] =
1

R2 sinh2( r
R

)
→ f(r) = cosh2(

r

R
) → Vr(r) =

cosh2( r
R

)

R2 sinh2( r
R

)
=

1

R2
coth2(

r

R
).
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For the compressible pseudospherical case (3.8):

Jr = −

√

2m4π2R2(
1

R2
−E+Cx+Cy)+J2

α

+
1

2

√

2m4π2R2+(Jϕ+Jα)2 −
1

2

√

2m4π2R2 + (Jα − Jβ)2. (3.13)

In the incompressible pseudospherical model there is a similar structure and again we must
only put (−Cλ) instead of (−Cx − Cy) for the integration constants.

Now let us consider the motion in the plane of deformation variables x, y. There exist
“universally separable” potentials [7] and they have the form: V (x, y) = A/x2 + B/y2 +
C

(

x2 + y2
)

. If A, B and C are constants, then VF (x, y) = F/y2 +(F/4)
(

x2 + y2
)

, where
F is constant. For the incompressible model there exists a natural counterpart of the above
quoted potential. It has the form: VF (λ) = 4Fλ2/

(

λ2 + 1
)2

+F (1−λ4)2/16λ2. However,
as yet we were unable to find either the explicit solution or perform a qualitative analysis.
Taking into account the potential VF we can calculate the action variables Jx, Jy for all
discussed cases:

Jx = −

√

(Jα + Jβ)2

16
− πCx

√

2I

F
, Jy = −πCy

√

2I

F
− π

√

2IF +
(Jα − Jβ)2

16π2
. (3.14)

Remark. The affinely-rigid body is the simplest finite-dimensional generalization of the
metrically rigid body, with non-trivial degrees of freedom. The mechanics of affinely rigid
bodies provides a foundation of the theory of generalized media with internal degrees of
freedom (like molecular crystals). Affinely-rigid bodies model may be convenient in various
important procedures like the finite-elements for ordinary continuum.
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