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Abstract

We give a short review of recent results on L2-cohomology of infinite configuration
spaces equipped with Poisson measures.

1 Introduction

Let X be a complete, connected, oriented Riemannian manifold of infinite volume without
boundary, with curvature bounded below. The configuration space ΓX over X is defined
as the set of all locally finite subsets (configurations) in X:

ΓX := {γ ⊂ X : γ ∩ Λ is finite for each compact Λ ⊂ X} . (1.1)

The theory of configuration spaces has received a great interest in recent time. This can
be explained by various important applications in statistical mechanics and quantum field
theory, as well as by the rich and interesting intrinsic structure of ΓX . ΓX represents
a bright example of an infinite dimensional ”manifold-like” space. However, it does not
possess any proper structure of a Hilbert or Banach manifold. On the other hand, many
important geometrical objects, like differential forms, connections and the de Rham com-
plex over ΓX can be introduced in a specific way. A crucial role here is played by a
probability measure on ΓX (in particular, a Poisson or Gibbs measure), which is quasi-
invariant with respect to the action of a group of diffeomorphisms of X. This philosophy,
inspired by the pioneering works [1] and [2], has been initiated and developed in [3], [4]
and has lead to many interesting and important results in the field of stochastic analysis
on configuration spaces and its applications, see also references in [5], [6].

In this note, we give a short review of recent results on the L2-cohomology of ΓX

equipped with the Poisson measure π. In Section 2, we define and study the de Rham
complex of π-square-integrable differential forms over ΓX and the corresponding Laplacian
acting in this complex. We describe the structure of the spaces of harmonic forms. In
Section 3, we consider the case where X is an infinite covering of a compact manifold,
and compute the L2-Betti numbers of ΓX . That is, we introduce a natural von Neumann
algebra containing projections onto the spaces of harmonic forms, and compute their
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traces. Further, we introduce and compute a regularized index of the Dirac operator
associated with the de Rham differential on ΓX . For a more detailed exposition, see [5],
[11], [7], [8] and references given there.

Let us remark that the situation changes dramatically if the Poisson measure π is
replaced by a different (for instance Gibbs) measure. From the physical point of view,
this describes a passage from a system of particles without interaction (free gas) to an
interacting particle system, see [4] and references within. For a wide class of measures,
including Gibbs measures of Ruelle type and Gibbs measures in low activity- high tem-
perature regime, the de Rham complex was introduced and studied in [6]. The structure
of the corresponding Laplacian is much more complicated in this case, and the spaces of
harmonic forms have not been studied yet.

Acknowledgments. I am very grateful to the organizers for inviting me to a most
stimulating workshop. I would like to thank G. A. Goldin, Yu. S. Samoilenko and M.
A. Shubin for interesting and stimulating discussions during the workshop. The financial
support by the organizing committee is gratefully acknowledged.

2 De Rham complex over a configuration space

Following [2], [3], we define the tangent space to ΓX at a point γ as the Hilbert space

TγΓX =
⊕

x∈γ

TxX (2.1)

(we fix a Riemannian structure on X). Under a differential form W of order n over ΓX ,
we will understand a mapping

ΓX ∋ γ 7→ W (γ) ∈ (TγΓX)∧n. (2.2)

Let γ ∈ ΓX and x ∈ γ. By Oγ,x we will denote an arbitrary open neighborhood of x in X
such that Oγ,x ∩ (γ \ {x}) = ∅. We define the mapping

Oγ,x ∋ y 7→ Wx(γ, y) := W (γy) ∈ (TγyΓX)∧n, γy := (γ \ {x}) ∪ {y}. (2.3)

This is a section of the Hilbert bundle (TγyΓX)∧n 7→ y ∈ Oγ,x.The Levi–Civita connection
on TX generates in a natural way a connection on this bundle. We denote by ∇X

γ,x the
corresponding covariant derivative and use the notation

∇ΓW (γ) := (∇X
γ,x Wx(γ, x))x∈γ ∈ TγΓX ⊗ (TγΓX)∧n. (2.4)

Let π be the Poisson measure on ΓX with intensity given by the volume measure. We
define the Hilbert space L2

πΩn of complex n-forms which are π-square integrable.

We will now give an isomorphic description of the space L2
πΩn via the space L2

πΩ0 of
π-square integrable functions on ΓX and spaces L2Ωn(Xm) of square-integrable complex
forms on Xm, m = 1, . . . , n. We have

(TγΓX)∧n =

n
⊕

m=1

⊕

η⊂γ,|η|=m

T
(n)
η Xm, (2.5)
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where |η| means the number of points in η, and T
(n)
η Xm :=

⊕

k1+···+km=n(Tx1X)∧k1 ∧
· · · ∧ (TxmX)∧km for any finite configuration η = {x1, ..., xm}. We denote by Wm(γ; η) the

projection of W (γ) ∈ (TγΓX)∧n onto the subspace T
(n)
η Xm.

Theorem 1. [5] Setting for m = 1, . . . , n

(InW )(γ;x1, . . . , xm) :=
1√
m!

Wm(γ ∪ {x1, . . . , xm}; {x1, . . . , xm}), (2.6)

we obtain the isometry

In : L2
πΩn → L2

πΩ0
⊗

[

n
⊕

m=1

L2Ωn(Xm)

]

. (2.7)

We define the de Rham differential dn : L2
πΩn → L2

πΩn+1 by the formula

(dnW )(γ) := (n + 1)1/2 ASn+1(∇ΓW (γ)), (2.8)

where ASn+1 : (TγΓX)⊗(n+1) → (TγΓX)∧(n+1) is the anti-symmetrization. Let d∗
n be the

adjoint operator.

Theorem 2. [5] d∗
n : L2

πΩn+1 → L2
πΩn is a densely defined operator.

Thus the operator dn is closable. We denote its closure by d̄n and introduce an infinite
Hilbert complex

L2
πΩ0 d̄0−→ · · · d̄n−1−→ L2

πΩn d̄n−→ L2
πΩn+1 d̄n+1−→ · · · . (2.9)

Define in the standard way H
(n)
π := d̄n−1d

∗
n−1 + d∗

nd̄n, which is a self-adjoint operator
in L2

πΩn. It will be called the Hodge-de Rham Laplacian of the Poisson measure π.
Standard operator arguments show that the Hilbert spaces Hn

π := Ker d̄n/clo {Im dn−1}
and KerH

(n)
π are canonically isomorphic, and we identify them.

Theorem 3. [5] 1) Let H
(n)
Xm be the Hodge-de Rham Laplacian in L2Ωn(Xm). Then:

InH
(n)
π =

(

H(0)
π ⊗ 1 + 1⊗

(

n
⊕

m=1

H
(n)
Xm

))

In, (2.10)

2) The isometry In generates the unitary isomorphism of Hilbert spaces

Hn
π = KerH(n)

π ≃
⊕

s1, ..., sd = 0, 1, 2...
s1 + 2s2 + ... + dsd = n

(H1(X))
1
⋄s1 ⊗ · · · ⊗ (Hd(X))

d
⋄sd , (2.11)

where Hm(X) := KerH
(m)
X , m = 1, 2, ..., d, d = dim X − 1, and

m⋄ s means the symmetric
tensor power when m is even and skew-symmetric tensor power when m is odd.

Remark 1. H
(0)
π is the Dirichlet operator of the Poisson measure π introduced in [3]. In

particular, it was shown there that KerH
(0)
π consists of constant functions, which together

with (2.10) implies (2.11).
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Remark 2. Formula (2.11) holds also for spaces of finite configurations, see [8]. In fact,
it is a “symmetrized” version of the Künneth formula.

We see from (2.11) that all spaces Hn
π, n ∈ N, are finite dimensional provided the spaces

Hm(X), m = 1, ..., d, are so. In this case,

dimHn
π =

∑

s1, ..., sd = 0, 1, 2...
s1 + 2s2 + ... + dsd = n

β
(s1)
1 · · · β(sd)

d , (2.12)

where β
(s)
k :=

(

βk

s

)

, when k is odd, β
(s)
k :=

(

βk + s − 1
s

)

, when k is even, and

β
(0)
k := 1. Here βk := dimHk(X).

3 L
2 Betti numbers of configuration spaces of coverings

An important example of a manifold X with infinite dimensional spaces Hp(X) is given by
an infinite covering of a compact Riemannian manifold (say M). In this case, an infinite
discrete group G acts freely by isometries on X and consequently on all spaces L2Ωp(X),
and X/G = M . The orthogonal projection

Pp : L2Ωp(X) → Hp(X) (3.1)

commutes with the action of G and thus belongs to the commutant Ap of this action which
is a semifinite von Neumann algebra. The corresponding von Neumann trace bp := TrApPp

gives a regularized dimension of the space Hp(X) and is called the L2-Betti number of X
(or M). L2-Betti numbers were introduced in [9] and have been studied by many authors
(see e.g. [10] and references given there). It is known [9] that bp < ∞.

It is natural to ask whether the notion of L2-Betti numbers can be extended to con-
figuration spaces over infinite coverings. It particular, is formula (2.12) valid in this case
(with βk replaced by bk)? In what follows, we construct a natural von Neumann algebra
containing the orthogonal projection

Pn : L2
πΩn → Hn

π, (3.2)

and compute its von Neumann trace. We assume that G is an ICC group (that is, all non-
trivial classes of conjugate elements are infinite). Under this condition, the von Neumann
algebra Ap is a II∞ factor. In the sequel, TrN denotes the faithful normal semifinite trace
on a II∞ factor N .

The following general statement holds. Let M be a II∞ factor and H be a separable
M-module. Let Sm ∋ g 7−→ Ug be the natural action of the symmetric group Sm in
H⊗m by permutations, and let Ps = 1

m!

∑

g∈Sm
Ug and Pa = 1

m!

∑

g∈Sm
(−1)sign(g)Ug

be projections in H⊗m onto symmetric tensor product H⊗̂m and antisymmetric tensor

powers H∧m respectively. Denote M(m)
s := {M⊗m, Ps}′′, M(m)

a := {M⊗m, Pa}′′. Let
W ∗(M⊗m, Sm) be the cross-product of M⊗m and Sm.
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Theorem 4. [8] M(m)
s and M(m)

a are II∞ factors isomorphic to W ∗(M⊗n, Sm), and for
any A ∈ M

Tr
M

(m)
s

(A⊗mPs) = Tr
M

(m)
a

(A⊗mPa) =
(TrMA)m

m!
. (3.3)

Let us consider the orthogonal projection P(m)
p :

(

L2Ωp(X)
)⊗m → (Hp(X))

p
3m. Theo-

rem 4 shows that A(m)
p := {A⊗m

p ,P(m)
p }′′ = W ∗(A⊗m

p , Sm), and Tr
A

(m)
p

P(m)
p =

(bp)m

m! .

Next, we introduce the von Neumann algebra

An :=
∏

s1, ..., sd = 0, 1, 2...
s1 + 2s2 + ... + dsd = n

A(s1)
1 ⊗ ... ⊗A(sd)

d . (3.4)

Since all algebras A(sk)
k are II∞ factors, so is An, with the trace defined by the traces in

A(sk)
k .

Theorem 5. [11] Let Pn = InPnI−1
n . Then: Pn ∈ An and

TrAnPn =
∑

s1, ..., sd = 0, 1, 2...
s1 + 2s2 + ... + dsd = n

(b1)
s1

s1!
...

(bd)
sd

sd!
, (3.5)

where b1, ..., bd are the L2-Betti numbers of X.

Theorem 4 implies that An is the minimal natural von Neumann algebra containing
Pn. We will use the notation bn := TrAnPn and call bn the n-th L2-Betti number of ΓX .

Example. Let X = H
d, the hyperbolic space of dimension d. It is known that the only

non-zero L2-Betti number of H
d is bd/2 (provided d is even). Then

bn =

{

(bd/2)
k

k! , n = kd
2 , k ∈ N

0, n 6= kd
2 , k ∈ N

. (3.6)

Let us introduce a regularized index indΓX
(d + d∗) of the Dirac operator associated

with the de Rham differential d : L2Ωeven
π → L2Ωodd

π setting

indΓX
(d + d∗) : =

∞
∑

k=0

(−1)kbk. (3.7)

Theorem 6. [11] The series on the right hand side of (3.7) converges absolutely, and

indΓX
(d + d∗) = eχ(M), (3.8)

where χ(M) is the Euler characteristic of M .

Corollary. The L2-cohomology of ΓX is infinite provided χ(M) 6= 0.
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