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Abstract

The Green function for Klein-Gordon-Dirac equation is obtained. The case with the
dominating Klein-Gordon term is considered. There seems to be a formal analogy
between our problem and a certain problem for a 4-dimensional particle moving in the
external field. The explicit relations between the wave function, Green function and
initial conditions are established with the help of the T -exponent formalism.

1 Introduction

The idea of this paper is actually a by-product of the paper [1], where we discussed some
physical justification and a general solution for the Klein-Gordon-Dirac (KGD) equation.
This is a linear differential equation with constant coefficients which is obtained by super-
posing Dirac and d’Alembert operators and which has originally arisen from the U(2, 2)-
ruled gauge model of spinorial geometrodynamics in a natural and logical way [2, 3]. The
case considered here is in a sense complementary to the one studied in [1]-[3]. Namely,
restrictions on the correlations between coefficients of the KGD equation, which are nec-
essary for the existence of real non-negative solutions for the particle mass (non-tachyonic
situation) are just opposite to those in [1]-[3]. In other words, we are describing the case
with the dominating Klein-Gordon term; this situation is opposite to the case studied in
[1]-[3], where the Dirac term was dominating.

2 Green function for KGD equation

Let us consider the Klein-Gordon-Dirac equation [1]-[3]

ivγµ∂µΨ − ωΨ = ugµν∂µ∂νΨ, µ = 0, 3, (2.1)

derivable from the corresponding KGD Lagrangian

£ = ugµν∂µΨ∂νΨ +
iv

2

(
Ψγµ∂µΨ − ∂µΨγµΨ

)
− ωΨΨ, (2.2)
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where u, v, and ω are some real constants, γµ are Dirac matrices satisfying the Clifford
rules {γµ, γν} = 2gµν , gµν is the metric tensor, which in the specially relativistic (SR)
limit equals ηµν , i.e, the flat metric tensor on space-time manifold M with the signature
(+,−,−,−) and constant coefficients; Ψ = Ψ+γ0 is the Dirac conjugated wave function.
For completeness of description we should add the following initial conditions:

Ψ(xµ)|t=t0
= Ψ0(~r, t0),

∂Ψ(xµ)

∂t

∣∣∣∣
t=t0

= Φ0(~r, t0). (2.3)

From the equation (2.1) we can define the KGD operator K̂GD as follows:

K̂GD = ugµν∂µ∂ν − ivγµ∂µ + ω ≡ ugµν (∂µ − iaµ) (∂ν − iaν) + ω̃, (2.4)

where aµ = (v/2u)gµνγν and ω̃ = ω +ugµνaµaν − iugµν(∂µaν). In the specially relativistic
limit we have ω̃ = ω + v2/4u. We can define the momenta p̂µ = −i∂µ (we use the natural
system of units, i.e., e = c = ~ = 1); then

K̂GD = −ugµν (p̂µ − aµ) (p̂ν − aν) + ω̃ ≡ −uK̂G, (2.5)

where K̂G = gµν (p̂µ − aµ) (p̂ν − aν)+m2 is some Klein-Gordon operator for the 3-dimensional
particle of the mass m2 = −ω̃/u (in the SR case m2 = −(4uω + v2)/4u2) in the external
field aµ. For the existence of real non-negative solutions for m2 (non-tachyonic situation)
we should have in the SR limit (uω < 0) ∧ (v2 ≤ 4|uω|). As we have already said in the
Introduction, this situation is complementary to the conditions which we had in [1]-[3],
i.e., (uω ≥ 0, ∀v) ∨ (uω < 0, v2 ≥ 4|uω|). Now we can define the Green function for the
KGD equation as follows:

K̂GDD(x, x0) = δ(4)(x − x0) or
(
Ĥx +

m

2

)
D(x, x0) = − 1

2mu
δ(4)(x − x0), (2.6)

where Ĥx = (1/2m)gµν (p̂µ − aµ) (p̂ν − aν) is the Hamiltonian operator for the 4-dimensio-
nal particle in the external field aµ. At this stage we consider a general form of the metric
tensor gµν(x), i.e., non-constant one; then the external field aµ(x) is also non-constant and
can be formally interpreted as some “electromagnetic” field. This analogy is, of course,
only superficial and is broken in the SR case, when gµν(x) becomes ηµν and aµ(x) becomes
a constant field aµ. Later on we will consider only the SR situation.

The Green function can be obtained formally from (2.6) as follows:

D(x, x0) = − 1

2mu

(
Ĥx +

m

2

)−1
δ(4)(x − x0). (2.7)

We can use the Feynman representation of the inverse operator (as, e.g., in [4]), i.e.,

B̂−1 = ±1

i

∫ ∞

0
dse−ǫse±isB̂, ǫ → 0, (2.8)

to rewrite (2.7) in the following form:

D(x, x0) = − i

2mu

∫ ∞

0
dse−is m

2 Q(x, s;x0, 0), (2.9)
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where s is an evolution parameter (the proper time), Q(x, s;x0, 0) = e−isĤxδ(4)(x − x0) is
the Green function for the corresponding stationary Schrödinger equation in 4-dimensional
space:

i
∂ϕ(x; s)

∂s
= Ĥxϕ(x; s), Ĥx =

1

2m
ηµν (p̂µ − aµ) (p̂ν − aν) . (2.10)

It is obtained by performing the differentiation over s of Q(x, s;x0, 0):

(
i

∂

∂s
− Ĥx

)
Q(x, s;x0, 0) = iδ(4)(x − x0)δ(s). (2.11)

For obtaining the explicit expression for the Green function Q(x, s;x0, 0) we can use
the following equality for operators [4, 5]:

e
α

2
Â2

=
1√
2π

∫ +∞

−∞

dξexp

(
−1

2
ξ2 ± ξ

√
αÂ

)
; (2.12)

then:

Q(x, s;x0, 0) = − im2

4π2s2
exp

{
im

2s

[
(t − t0)

2 − (~r − ~r0)
2
]
+ iaµ(xµ − xµ

0 )

}
. (2.13)

Finally, after substituting (2.13) in (2.9) and introducing a new variable ξ = m/s, we
represent the total Green function D(x, x0) in the following form:

D(x, x0) = −G(y, z)

8π2u
exp {iaµ(xµ − xµ

0 )} , G(y, z) =

∫ ∞

0
dξ exp

{
−1

2

(
yξ +

z

ξ

)}
, (2.14)

where y = i
[
(~r − ~r0)

2 − (t − t0)
2
]
, z = im2. For performing the integration proce-

dure in (2.14) we can construct formally the differential equation for which our function
G(y, z) is a solution. It turns out that this is the modified Bessel equation ∂2G/∂z2 −
(y/4z)G = 0, which has the following solution (the condition for mixed second derivatives,
i.e., ∂2G(y, z)/∂y∂z = ∂2G(y, z)/∂z∂y = (1/4)G(y, z), is already taken into account):
G(y, z) = aδ(−iy)+ b

√
z/yZ1(

√
yz), where a, b are constants, Z1(z) is either the modified

Bessel function of the first kind I1(z) or the second kind K1(z) [6].

We can notice that for a massless “particle” we have G(y, 0) =
∫ ∞

0 dξ exp {−yξ/2} =
2πδ(−iy) + 2P/y (Sokhotskyi formulae), where P/y is a generalized function (just like δ-
function) and the symbol P itself stands for the integration in the principal value meaning
[5]. For the modified Bessel functions we can write the approximate formulae I1(z) ≈ z/2
and K1(z) ≈ 1/z for |z| ≪ 1. Hence, we can choose the modified Bessel function of the sec-
ond kind K1 and our constants a and b are as follows: a = 2π, b = 2. Then we have

√
yz =

m
√

(t − t0)2 − (~r − ~r0)2 for (t − t0)
2 > (~r − ~r0)

2 and
√

yz = im
√

(~r − ~r0)2 − (t − t0)2 for
(t − t0)

2 < (~r − ~r0)
2. So for the latter case it is convenient not to use the modified Bessel

functions K1 but the Hankel functions H
(1)
1 or H

(2)
1 , the Bessel functions of the third kind,

which are interrelated as follows: (2/π)K1(ix) = −H
(1)
1 (−x) = −H

(2)
1 (x).
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Finally, the Green function D(x, x0) has the following form:

D(x, x0) = −exp {iaµ(xµ − xµ
0 )}

4πu

[
δ
(
(t − t0)

2 − (~r − ~r0)
2
)

+

+





m
π

K1

(
m
√

(t−t0)2−(~r−~r0)2
)

√
(t−t0)2−(~r−~r0)2

, if (t − t0)
2 > (~r − ~r0)

2

− im
2

H
(2)
1

(
m
√

(~r−~r0)2−(t−t0)2
)

√
(~r−~r0)2−(t−t0)2

, if (t − t0)
2 < (~r − ~r0)

2


 . (2.15)

3 General solution of the KGD equation

Now let us consider the two-component wave function
−→
Ψ = (Ψ1,Ψ2)

T , Ψ1 = Ψ, Ψ2 =
i∂Ψ/∂t. Then our second-order differential equation (2.1) (in the SR case) becomes the
system of two first-order ones:

i
∂Ψ1

∂t
= Ψ2, (3.1a)

i
∂Ψ2

∂t
=

(
−△ + i

v

u
γj∇j +

ω

u

)
Ψ1 −

v

u
γ0Ψ2. (3.1b)

In the symbolic way we may rewrite the previous equations as follows:

i
∂
−→
Ψ

∂t
= L̂~r(t)

−→
Ψ , L̂~r(t) =

[
0 1

−△ + iv
u

γj∇j + ω
u

− v
u
γ0

]
. (3.2)

The initial conditions (2.3) for this symbolic Schrödinger equation can be rewritten as

follows:
−→
Ψ0(~r, t0) = (Ψ0(~r, t0),Φ0(~r, t0))

T . Then we can use the T -exponent method for
describing the Green function of Schrödinger equation [4]. First of all, the differential
equation (3.2) can be rewritten as the integro-differential one:

−→
Ψ(~r, t) =

−→
Ψ0(~r, t0) +

1

i

∫ t

t0

dt′L̂~r(t
′)
−→
Ψ(~r, t′). (3.3)

Using the iteration method we can solve this equation and introduce the Green function
in the matrix form as follows:

−→
Ψ(~r, t) =

∫
d3~r0Ĝ(~r, t;~r0, t0)

−→
Ψ 0(~r0, t0), (3.4a)

Ĝ(~r, t;~r0, t0) = θ(t − t0)δ(~r − ~r0)T exp

{
−i

∫ t

t0

dt′L̂~r(t
′)

}
. (3.4b)

The T -exponent operator here is understood as a series:

T exp

{
−i

∫ t

t0

dt′L̂~r(t
′)

}
= 1 +

∑

n≥1

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnL̂~r(t1)L̂~r(t2) . . . L̂~r(tn),

and the symbol T itself stands for the chronological multiplication of operators, e.g., for
two operators Â(t) and B̂(t′) we have the following rule:

T
(
Â(t)B̂(t′)

)
= θ(t − t′)Â(t)B̂(t′) + θ(t′ − t)B̂(t′)Â(t). (3.5)
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The equation (3.4a) can be rewritten in the explicit form:

Ψ(~r, t) =

∫
d3~r0 [G11(~r, t;~r0, t0)Ψ0(~r0, t0) + iG12(~r, t;~r0, t0)Φ0(~r0, t0)] , (3.6a)

i
∂Ψ(~r, t)

∂t
=

∫
d3~r0 [G21(~r, t;~r0, t0)Ψ0(~r0, t0) + iG22(~r, t;~r0, t0)Φ0(~r0, t0)] , (3.6b)

i.e., for defining Ψ(~r, t) at any time instant t it is necessary to know only the Green function
matrix components G11(~r, t;~r0, t0) and G12(~r, t;~r0, t0). With the help of differentiation over
t in (3.4b) we can find the following equation for the Green function Ĝ:

∂Ĝ

∂t
= −iL̂~r(t)Ĝ + δ(t − t0)δ(~r − ~r0)Î , (3.7)

where Î is the identity matrix. In the explicit form it is a system of four equations:

i
∂G11

∂t
= G21 + iδ(t − t0)δ(~r − ~r0), (3.8a)

i
∂G12

∂t
= G22, (3.8b)

i
∂G21

∂t
=

[
−△ +

iv

u
γj∇j +

ω

u

]
G11 −

v

u
γ0G21, (3.8c)

i
∂G22

∂t
=

[
−△ +

iv

u
γj∇j +

ω

u

]
G12 −

v

u
γ0G22 + iδ(t − t0)δ(~r − ~r0). (3.8d)

From the equations (3.8a) and (3.8c) we can see that the matrix component G11 satisfies
the following equation:

K̂GDG11 = uδ(~r − ~r0)
∂

∂t
δ(t − t0) − ivγ0δ(~r − ~r0)δ(t − t0). (3.9)

Equivalently, composing (3.8b) and (3.8d) we obtain

K̂GDG12 = −iuδ(~r − ~r0)δ(t − t0). (3.10)

The initial conditions for these equations, which can be obtained from (3.6), are as follows:

G11(~r, t0;~r0, t0) = δ(~r − ~r0), G12(~r, t0;~r0, t0) = 0. (3.11)

The G11 and G12 are not independent functions. If we use the properties of the δ-function
in (3.9), then we may replace the differentiation over t by the differentiation over t0. We
can notice that the KGD operator K̂GD and the operator i∂/∂t0 +(v/u)γ0 are commuting
because they act on different variables. Then we can write that

G11(~r, t;~r0, t0) =

[
i

∂

∂t0
+

v

u
γ0

]
G12(~r, t;~r0, t0). (3.12)

Moreover, the equation (3.10) for the Green function G12(~r, t;~r0, t0) is almost identical
with the equation (2.6) for the KGD equation Green function D(~r, t;~r0, t0). Hence, if we
define the retarded Green function for the KGD equation

Dret(~r, t;~r0, t0) = θ(t − t0)D(~r, t;~r0, t0), (3.13)
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then we can write that G12(~r, t;~r0, t0) = −iuDret(~r, t;~r0, t0).
The general solution of the KGD equation (2.1) (for the time instant t > t0) with the

initial conditions (2.3) is as follows:

Ψ(~r, t) =

∫
d3~r0

(
u

∂

∂t0
− ivγ0

)
Dret(~r, t;~r0, t0)Ψ0(~r0, t0)

+ u

∫
d3~r0Dret(~r, t;~r0, t0)Φ0(~r0, t0). (3.14)

4 Conclusions

We have found the general solution for the KGD equation with the help of the Green
function method. The KGD operator has been reduced to some extent to the usual Klein-
Gordon operator, i.e., we supposed that the Klein-Gordon term in (2.1) was dominating.
This was possible due to special relations between the coefficients of KGD equation. These
relations are complementary to the ones in [1], where we have found the general solution
for KGD equation as a superposition of two Dirac plane harmonic waves with different
masses. In [2, 3] it has been shown that the appearance of two mass shells in the general
solution not only is not undesirable but even can help explain, for example, a mysterious
kinship between heavy leptons and their neutrinos or the corresponding pairing between
quarks. Otherwise, the mass splitting △m = m+−m− could be very large (then perhaps it
is too difficult to excite the m+-states) or very small (then perhaps it is below the present
accuracy of our experiments) for not being found in the experimental way.
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