
BAVC: Classifying Benign Atomicity Violations via Machine Learning*

Qichang Chen1, a, *, **, Zhanfang Chen1, b, Zhuang Liu1, c, Xin Feng1, d, Zhengang
Jiang1, e, Liqiang Wang2, f, Hongyi Ma2, g, Ping Guo2, h, Hao Qian3, i

1Institute of Computer and Information Technology, Changchun University of Science and
Technology, Changchun, Jilin, China

2Dept. of Computer Science, University of Wyoming, Laramie, WY, USA
3 Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA

achenqichang10@gmail.com, bjeffy2100@126.com, clz1227@live.cn, dfengxin@cust.edu.cn,
ejzg@cust.edu.cn, fwang@cs.uwyo.edu, ghma3@uwyo.edu, hpguo@uwyo.edu, ihqian@ksu.edu,

Keywords: Atomicity Violations, Concurrency Errors, Machine Learning, Software Testing, Program
Analysis

Abstract. The reality of multi-core hardware has made concurrent programs pervasive.
Unfortunately, writing correct concurrent programs is difficult. Atomicity violation, which is caused
by concurrent executions unexpectedly violating the atomicity of a certain code region, is one of the
most common concurrency errors. However, atomicity violation bugs are hard to find using
traditional testing and debugging techniques. In this paper, we investigate an approach based on
machine learning techniques (specifically decision tree and support vector machine (SVM)) for
classifying the benign atomicity violations from the harmful ones. A benign atomicity violation is
known not to affect the program's correctness even it happens. We formulate our problem as a
supervised-learning problem and apply these two machine learning techniques to classify the
atomicity violation report. Our experimental evaluation shows that the proposed method is effective
in identifying the benign atomicity violation warnings.

Introduction
The reality of multi-core hardware has put us at a critical turning point in software development. In

order for software applications to benefit from the continued exponential throughput advances in new
processors, the applications will need to be well-written multi-threaded software programs. However,
writing correct multi-threaded programs is inherently difficult because concurrency can introduce
errors that do not exist in sequential programs. In particular, concurrent accesses to shared data must
be properly synchronized. Otherwise, concurrency-related errors may happen.

An atomicity violation occurs when an interleaved execution of a set of code blocks (expected to
be atomic) by multiple threads is not equivalent to any serial execution of the same code blocks.
Figure 1 illustrates a harmful atomicity violation that happens when the two synchronization blocks
in thread 2 can execute between the two synchronization blocks in thread 1.

Figure 1 A Java example demonstrating an atomicity violation

A benign warning is a real atomicity violation which does not violate the correctness of the
program execution. To be more accurate, some programmer will expect that such kind of atomicity

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0658

violation (or rather thread interactions) to happen for some code blocks during execution. However,
this subtle thing cannot be captured by our or any existing runtime atomicity violation detection. Thus
it will also be reported as an atomicity violation warning. Even given an atomicity violation report,
we still need to identify and verify it to be a true warning rather than a false positive or a benign
warning by analyzing and reasoning over the program source code.

This may involve significant efforts since it demands that we need to be analyzing those code
blocks which caused this atomicity violation and understand the programmer's intention and the
complicated interactions among those multiple program components as well. It is very
time-consuming to accurately classify these atomicity violation reports on a manual base. To address
this limitation, we proposed a benign atomicity violation classifier(Benign Atomicity Violation
Classifier - BAVC) based on the machines learning techniques for filtering out benign atomicity
violations in multi-threaded Java programs and evaluated it on several benchmarks. The technique
relieves the programmer from manually sorting out the false alarms in the reported atomicity
violations as it does not require any human intervention after the report is generated. It is most useful
when there are hundreds of atomicity violations reported for a program that is beyond the human's
capability.

 BAVC takes a set of structural and semantic properties that are extracted from the code blocks
involved in an atomicity violation and outputs a classification label(i.e., true positive, false positive,
benign). Its input atomicity violation report is generated from our prior tool HAVE [3].

Benign Atomicity Violations
Figure 4 shows the four summarized various benign atomicity violation patterns that were

collected from in our prior experiments. The intuition behind it is that many benign atomicity
violations fall into only a few categories, that similar ones share some similar traits that can be
generalized and identified. For example, the spin lock example shown in the bottom left graph of
Figure 3 is a benign atomicity violation pattern that is not a concurrency error and will not affect the
program’s correctness. The other three examples shown in Figure 3 are also benign atomicity
violation patterns that are known to be part of a correct concurrent program.

Figure 3 Four summarized benign atomicity violation patterns

Design of BAVC
Our approach consists of two steps: training and classification. The training stage involves

generating the machine learning models from sample data set which consists of the four
above-mentioned types of atomicity violations with correct labels. In the classification step, we apply
the computed machine learning model to several atomicity violation reports which are obtained from
benchmarks. Figure 3 illustrates the concept of BAVC and its workflow.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0659

Figure 4 BAVC’s machine learner training model in which we feed the known atomicity violations to the machine

learners and BAVC’s workflow

Discussions
 We tested BAVC on the following programs: elevator, tsp, sor, and hedc from [15] and Vector,

Stack, HashTable class source programs from JDK 1.4. The experiment is performed on a machine
with 1.8 GHz Intel dual-core CPU, 2GiB memory, Windows XP SP3, and Sun JDK 1.6. Our
experimental evaluation of BAVC indicates that it is very effective in identifying benign atomicity
violations and both the decision tree and the SVM models adopted in BAVC are able to locate 12 out
of the total 13 the benign atomicity violations (92.3% accuracy) that have been classified manually by
the programmers in those benchmarks.

Related Work
There are many existing research papers about detecting the various concurrency errors including

deadlocks, data races and atomicity violations. Chen et al. [5] presents a combined static and dynamic
analysis, a new algorithm based on conflict-edges to detect and report atomicity violations. In [22],
Wang et al. proposed the reduction- based and block-based algorithms. Flanagan and Freund [9]
independently proposed a reduction-based algorithm. Xu et al. [23] proposed inferring computation
units based on data dependence and control dependence, then atomicity is checked on the
computation units [20]. Lu et al. [14] used access interleaving invariants as indications of
programmers' assumptions about the atomicity of certain code regions. There are few prior research
results about applying machine learning techniques with program analysis reports and our paper is
innovative in this aspect.

Conclusion and Future Work
 In this paper, we proposed and designed an innovative approach that applies the machine learning

techniques to classifying the benign atomicity violations from harmful ones. Our experimental
evaluation indicates this approach is very effective in identifying the benign ones and therefore very
instrumental to the refining atomicity violation reports.

Directions for our future work include tuning the machine learning parameters to improve the
overall accuracy, incorporating fine-grain transaction boundaries information in the machine learning
models to reduce the false negatives and positives, extending our experiment to other concurrency
benchmarks for thorough evaluation.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0660

Acknowledgment

*Corresponding author.
**The research has been supported by Changchun University of Science and Technology New

Faculty Startup Fund, NSF Grants 0941735 and CAREER-1054834.

References

[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run-time race detection and
atomicity checking using partial discovered types. In Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM Press, Nov. 2005.

[2] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with static analysis and
runtime monitoring. In Proceedings of the Parallel and Distributed Systems: Testing and Debugging
(PADTAD). Springer-Verlag, Nov. 2005.

[3] Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting Atomicity Violations via Integrated
Dynamic and Static Analysis. In International Conference on Fundamental Approaches to Software
Engineering FASE), European Joint Conferences on Theory and Practice of Software (ETAPS), York,
UK, March 2009. Springer-Verlag.

[4] Q. Chen, L. Wang, and Z. Yang. Heat: A combined approach for thread escape analysis.
International Journal of Systems Assurance Engineering and Management (IJSAEM) Special Issue
on Advances in Software Testing, 1(1), 2011.

[5] Q. Chen, L. Wang, and Z. Yang. SAM: Self-adaptive Dynamic Analysis for Multithreaded
Programs. In Haifa Verification Conference (HVC) 2011. Haifa, Israel. Dec. 2011. Springer-Verlag.

[6]. C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multithreaded
programs. In Proc. ACM Symposium on Principles of Programming Languages (POPL), pages
256{267. ACM Press, 2004.

[7]. C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atomicity. IEEE Transactions on
Software Engineering, 31(4), Apr. 2005.

[8]. C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic atomicity
checker for multithreaded programs. In Proc. of ACM SIGPLAN conference on Programming
language design and implementation (PLDI). ACM Press, 2008.

[9]. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM Press, 2003.

[10] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifcations for concurrent
object-oriented software using model-checking. volume 2937 of LNCS. Springer-Verlag, Jan. 2004.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via access interleaving
invariants. In International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM Press, 2006.

[12] R. Majumdar and K. Sen. Hybrid concolic testing. In Proceedings of the 29th International
Conference on Software Engineering (ICSE), 2007.

[13] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated type-based analysis of data
races and atomicity. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM Press.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0661

[14] Christoph von Praun and Thomas R. Gross. {Object race detection}. In Proc. 16th ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
volume 36(11) of SIGPLAN Notices, pages 70–82. ACM Press, October 2001..

[15] C. von Praun and T. R. Gross. Object race detection. volume 36(11) of SIGPLAN Notices, pages
70-82. ACM Press, Oct. 2001.

[16] L. Wang and S. D. Stoller. Static analysis of atomicity for programs with non-blocking
synchronization. In Proc. ACM SIGPLAN 2005 Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM Press, June 2005.

[17] L.Wang and S. D. Stoller. Accurate and effcient runtime detection of atomicity errors in
concurrent programs. In Proc. ACM SIGPLAN 2006 Symposium on Principles and Practice of
Parallel Programming (PPoPP). ACM Press, 2006.

[18] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-threaded programs.
Transactions on Software Engineering, 32(2):93{110, Feb. 2006.

[19] M. Xu, R. Bodik, and M. D. Hill. A serializability violation detector for shared-memory server
programs. In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM Press, 2005.

Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0662

