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Abstract. The reality of multi-core hardware has made concurrent programs pervasive. 
Unfortunately, writing correct concurrent programs is difficult. Atomicity violation, which is caused 
by concurrent executions unexpectedly violating the atomicity of a certain code region, is one of the 
most common concurrency errors. However, atomicity violation bugs are hard to find using 
traditional testing and debugging techniques. In this paper, we investigate an approach based on 
machine learning techniques (specifically decision tree and support vector machine (SVM)) for 
classifying the benign atomicity violations from the harmful ones. A benign atomicity violation is 
known not to affect the program's correctness even it happens. We formulate our problem as a 
supervised-learning problem and apply these two machine learning techniques to classify the 
atomicity violation report. Our experimental evaluation shows that the proposed method is effective 
in identifying the benign atomicity violation warnings. 

Introduction 
The reality of multi-core hardware has put us at a critical turning point in software development. In 

order for software applications to benefit from the continued exponential throughput advances in new 
processors, the applications will need to be well-written multi-threaded software programs. However, 
writing correct multi-threaded programs is inherently difficult because concurrency can introduce 
errors that do not exist in sequential programs. In particular, concurrent accesses to shared data must 
be properly synchronized. Otherwise, concurrency-related errors may happen. 

An atomicity violation occurs when an interleaved execution of a set of code blocks (expected to 
be atomic) by multiple threads is not equivalent to any serial execution of the same code blocks. 
Figure 1 illustrates a harmful atomicity violation that happens when the two synchronization blocks 
in thread 2 can execute between the two synchronization blocks in thread 1. 

 
Figure 1 A Java example demonstrating an atomicity violation 

A benign warning is a real atomicity violation which does not violate the correctness of the 
program execution. To be more accurate, some programmer will expect that such kind of atomicity 
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violation (or rather thread interactions) to happen for some code blocks during execution. However, 
this subtle thing cannot be captured by our or any existing runtime atomicity violation detection. Thus 
it will also be reported as an atomicity violation warning. Even given an atomicity violation report, 
we still need to identify and verify it to be a true warning rather than a false positive or a benign 
warning by analyzing and reasoning over the program source code. 

This may involve significant efforts since it demands that we need to be analyzing those code 
blocks which caused this atomicity violation and understand the programmer's intention and the 
complicated interactions among those multiple program components as well. It is very 
time-consuming to accurately classify these atomicity violation reports on a manual base. To address 
this limitation, we proposed a benign atomicity violation classifier(Benign Atomicity Violation 
Classifier - BAVC) based on the machines learning techniques for filtering out benign atomicity 
violations in multi-threaded Java programs and evaluated it on several benchmarks. The technique 
relieves the programmer from manually sorting out the false alarms in the reported atomicity 
violations as it does not require any human intervention after the report is generated. It is most useful 
when there are hundreds of atomicity violations reported for a program that is beyond the human's 
capability. 

  BAVC takes a set of structural and semantic properties that are extracted from the code blocks 
involved in an atomicity violation and outputs a classification label(i.e., true positive, false positive, 
benign). Its input atomicity violation report is generated from our prior tool HAVE  [3]. 

Benign Atomicity Violations 
Figure 4 shows the four summarized various benign atomicity violation patterns that were 

collected from in our prior experiments. The intuition behind it is that many benign atomicity 
violations fall into only a few categories, that similar ones share some similar traits that can be 
generalized and identified. For example, the spin lock example shown in the bottom left graph of 
Figure 3 is a benign atomicity violation pattern that is not a concurrency error and will not affect the 
program’s correctness. The other three examples shown in Figure 3 are also benign atomicity 
violation patterns that are known to be part of a correct concurrent program. 

 

 
Figure 3 Four summarized benign atomicity violation patterns 

Design of BAVC  
Our approach consists of two steps: training and classification. The training stage involves 

generating the machine learning models from sample data set which consists of the four 
above-mentioned types of atomicity violations with correct labels. In the classification step, we apply 
the computed machine learning model to several atomicity violation reports which are obtained from 
benchmarks. Figure 3 illustrates the concept of BAVC and its workflow. 
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Figure 4 BAVC’s machine learner training model in which we feed the known atomicity violations to the machine 

learners and BAVC’s workflow 

Discussions 
  We tested BAVC on the following programs: elevator, tsp, sor, and hedc from [15] and Vector, 

Stack, HashTable class source programs from JDK 1.4. The experiment is performed on a machine 
with 1.8 GHz Intel dual-core CPU, 2GiB memory, Windows XP SP3, and Sun JDK 1.6. Our 
experimental evaluation of BAVC indicates that it is very effective in identifying benign atomicity 
violations and both the decision tree and the SVM models adopted in BAVC are able to locate 12 out 
of the total 13 the benign atomicity violations (92.3% accuracy) that have been classified manually by 
the programmers in those benchmarks. 

Related Work 
There are many existing research papers about detecting the various concurrency errors including 

deadlocks, data races and atomicity violations. Chen et al. [5] presents a combined static and dynamic 
analysis, a new algorithm based on conflict-edges to detect and report atomicity violations. In [22], 
Wang et al. proposed the reduction- based and block-based algorithms. Flanagan and Freund [9] 
independently proposed a reduction-based algorithm. Xu et al. [23] proposed inferring computation 
units based on data dependence and control dependence, then atomicity is checked on the 
computation units [20]. Lu et al. [14] used access interleaving invariants as indications of 
programmers' assumptions about the atomicity of certain code regions. There are few prior research 
results about applying machine learning techniques with program analysis reports and our paper is 
innovative in this aspect. 

Conclusion and Future Work 
 In this paper, we proposed and designed an innovative approach that applies the machine learning 

techniques to classifying the benign atomicity violations from harmful ones. Our experimental 
evaluation indicates this approach is very effective in identifying the benign ones and therefore very 
instrumental to the refining atomicity violation reports. 

Directions for our future work include tuning the machine learning parameters to improve the 
overall accuracy, incorporating fine-grain transaction boundaries information in the machine learning 
models to reduce the false negatives and positives, extending our experiment to other concurrency 
benchmarks for thorough evaluation. 
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