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Abstract. In this paper, we consider the density estimation problem from independent and
identically distributed (i.i.d.) biased observations. We study the lower bound of convergence rates of

density estimation over Sobolev spaces W' (NeN*) under the L,risk by using Fano' slemma.

I ntroduction

In this paper, we consider the problem of estimating the density functions without observing
directly the sample X, ... X,. We observe an i.i.d. sample Yy, ... Y, from a biased distribution with
the following density function f ¥ (y) =g(y)f *(y)/«, where g(y) is the so-called weighting or biasing
function, # = E g(X). Our purpose is to estimate the density function f * from Y1, Y2, ... Yn. Several
examples about this biased data can be found in the literature. For instance, in paper [1], it is shown
that the distribution of the concentration of alcohol in the blood of intoxicated driversis of interest,
since the drunken driver has alarger chance of being arrested, the collected data are size-biased.

For unbiased data, Kerkyacharian and Picard [2] study a Besov space with matched case.
Donoho, Johnstone, Kerkyacharian and Picard [3] consider a Besov space with unmatched case.
They show the lower bound by using Korostelev and Assouad lemmas. However, the conditions of
those two lemmas are difficult to be verified. In 2011, Huiying Wang [4] give a proof by using
Fano’s lemma. In reference [3, 4], they show the lower bound of convergence rates over Besov for
L, risk.

So far, wavelet density estimations about the lower bound of convergence rates over Besov
spaces have made some achievements. However, there is afew people to study density estimation in
Sobolev spaces W\ (NeN") . In this paper, we study the lower bound of density estimation
convergence over Sobolev spaces.

Preliminaries
In this paper, we always assume that scaling wavelet ¢(x) is orthonormal, compactly supported
and N+1 regular. We consider the Sobolev baIIsV\~/,N(A, L) which isdefined by:
WN(A L)={ f: feW"(R), f isaprobability density on Rwith acompact support of
length< A, and [ "] <Lf.
Lemma 1 (Fano ' s lemma, [5]) Let (Q,X,R) be probability measurable spaces and
AeX, k=0L.m If AnNA=® for any k#v , A standing for the complement

of A andk,, = inf lZK(P,(,PV), we have

0svsmm kv
sup P(A°)= min{%,\/ﬁexp(— Bel,—km)} :
0<k<m

Lemma 2 (Varshamov-Gilbert lemma, [5]) Let® ={e =(g,,---,&, )} & € 01, then there exists a

Published by Atlantis Press, Paris, France.
© the authors, 2013
0792



Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13)

subset {€°,--,&" Jof @ withe® =(0,-+-,0)such that M > 2™, and Z\g‘k—gg\z%(osi;ejsm).
k=1

Main result

Theorem 3 Letpbe a compactly supported, N +1regular and orthonormal scaling function,
fXeWN(AL) . We assume that there exist two constants g, and g, such that, for
anyxe R0< g, <g(X)< g, <eo.If fX(x) isany estimator of f*, thenfor V1<r,p<eo,N>1/r,

we have
N-1/r+1/p

N
« max [Innjz(Nur)ﬂ S|
n

209 1(x)

fXeWN(AL) p

wherex > ymeansx > cy with apositive constantc.
Proof of Theorem 3: Using the idea of reference[4], firstly, we prove
N-1/r+1/p
~ Inn \2(N-vr)+1
2= 1700 - (M0

n

fXeWN(AL)

Now we construct h, (x), such thath, (x)e W" (A, L) and

N-1/r+1/ p
Inn 2(N-v/r)+1

fX(x)=h (x)| =|—
> 00-n o], -0
Letp be a compactly supported, N+1 regular and orthonormal scaling function, y be the
corresponding wavelet, and suppw € [0,1), | < A. Then there exists a compactly supported density
function h(x)satisfyingh(x) e W" (R), and h(x)‘[o',) =C,>0.
Denote A; ={0,1,2l,...,(2' -1)I,2'1} , then the number of elements inA,is2’+1. We define
a, =27 120 (x)=h(x)+a,p,, (x) k= 2/ }ke A,. Obviousy we have h,, (x)=h(x) ,
o) o,
Y7,

h.(x)e W"(A,L). Leth'(x)be the density function of Y,,Y,,---,Y, , then h'(x)=

any k=k’, weget
Il =2l v, ], 2alpl, =2, =

fnx - th < 77—2‘} then using Fano’ s Lemma, we have
p

supP( )>mln{ \/_exp( - )}

keA;
where P stands for the probability measure corresponding to the density function
£7(x)=f(x)f (%) f(x,). Since

20— ] =2 Phg[

200-n 0], 22 R 4c)2 D minf 2. V2 expl-e k).

where k,, :\I/DAfz_leZ K(P” P”) Next, we shows k,, < g,C;'na’/g,. From
! £V

If denote A :{

E

fnx_hk”pz’?_;]:”_ziphg(pg),

keA;

hY)
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" = n fln (X) _ C fl(xi) _ 1 pl
P L= 00 = 2T b I g = mele. )

and foranyu>0, Inu<u-1, wehave

e (1

K(P?,P)=nK(P:,PL)< ( 1(x) 1]dx n[ £ ()(f,(x) - f,(x)Pdx
(s o

and
<9 5 > c aﬂz//].‘k‘ dx = g,nCy"al / gy,

9 ke k2]l

1
-1
i : n 2(N-1/r)+1 Y 9 n
Taking 2' ~| — ,then nal =n2 20 —nf — | =|nn.
Inn Inn

We choose Csuchthatna’ <Clnn, Cg,[4(N-1/r)+2]<C,g,, then
V2lg"s > 21 g mile > «/_‘ NeCCle >,
fX(x)=h, (x)” > —m| n{ 20 exp(-3e )} >Cn,.Since

keA;
N+1/ p-1/r
1, = 2~ I(N+U/ p—1/r)||l//||p - C(m_njz(N—llr)ﬂ then
n
£ x Inn ;Llilplirl
Sl n (X)_hk(x)”p> o -
| N-1/r+1/p
Therefore, ‘nx (X)— f X (X)” o [m_I’IJZ(N—llr)ﬂ'
fXeWN(AL) p n
__N_
Next, weprove sup E||f *(x)-f* (X)H > n 2N Defining
fXeWN(AL) p
aj — 2*](N+l/2) ’ hgi (X) = h(x)+ aj Zgli(‘//jyk(x)’i =01---,M.
keA;
withe' = (g} )., . € {01} Obviously h,,(x)=h(x). Since

h, (x)=h(x)+a, > e, (x)=Cy—a, | 2Co—27 Py, = 0(for large j), soh, (x)is a
keA; keA;

probability density function. By the assumptions of ¢, the wavelety is compactly supported and
N+1 times differentiable. Thereforey e W, and we get

| o Zelwile]

Since Vk =K', suppy, N suppy, =@, thenwe get

r 1/r
[J‘ J :ajzj(1/2—l/r)2jN(kZ
€A

1/r
!,
From a, =2 (N“’Z), and Z‘e,‘(‘rszi, we have

keA;

<[n™ (], +

a, > ely™(x)

keA

3 ey ™ (x

keA;
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<fp™],

zgk‘//(N)
r

hence, th‘,”)(x)ﬂr < L.Therefore h.(x)e W (AL).

Let h'(x) be the density function of V,Y,,-Y,

n

h,
. then @nyzggiiﬁﬁ _
ﬂ .
,0), such that M >2%'® and

By
Varshamov-Gilbert lemma, there exists {¢°,---,&" | with £°=(0,---

Z‘ek—gk‘>— (0<i#I<M).Forany i=l,

k=1

p

2|yl 22 =y 22,
P

we have thi —h, Hp 2||1//||p2‘N"8‘1’p =7,.1f welet
77.

Aﬂz{ <§},i:QLWM,

then Vi=l,weget A, nA, =®.Using Fano'sLemma, we have

sup Ry (A% )= mi n{% M expl-3e -k, )} .

QV‘EWZ:

C
a; z (& — 8||<)‘//j,k
keAi

fX_h,

n &l

p

f X (x)- h, (X)H = 77_2, Phrli (A). Moreover,

p

ke p ke A

- n on _
J(x)=h, (x)” >sup2J Yi(Ak) ) mln{ M exp(-3e™ -k, )}
where K, =0|<51<fM—z K( i hY) Next, we shows k,, <g,C,a’2’/g,. We compute that

1#V

)

< gwmv)49&%AM_gumu>zx
M OEMI( P J [ U 1 j d
g M O<Z<:M C—1a2 Z.”l//l k(x)‘ dx = gan_laZZJ /g,

Taking 2! ~nW+1 , then na’=n2®" ~1

C<C,g,/32g,.From vM 2+/22"  we get

IMe ™ > 02 g0Camai2! /o 5 5214 1-32C0,C'r ") » 1

We choose C such that nafSC , and

N

So f X (x)— h, (x)”p > Sup—’ pn (Af)z cn, ad 7= ”l//”pszngp T

keA;

fX(x)— f* (x)” - n_z"“\lﬂ.

p

fXeWN(AL)
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