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Abstract

Analogies in the spectral study of dissipative Schrödinger operator and Boltz-
mann transport operator are analyzed. Scattering theory technique together
with functional model approach are applied to construct spectral representa-
tions for these operators.

1. The topic of this survey is scattering and spectral analysis of some non selfad-
joint operators of mathematical physics appearing in the study of processes with
radiation or dissipation of energy. The properties of the corresponding dynamical
semigroups are determined by the spectral structure of non selfadjoint Hamiltonians
while scattering approach is the way to describe the time asymptotic behavior of
solutions to corresponding evolutionary equations.

The following questions to be discussed are of special interest in this context:

• localization of the spectrum of non selfadjoint Schrödinger-type operators;

• the so-called separation of spectral components and closely related spectral
decomposition problem;

• spectral singularities and absolute continuity of continuous spectrum compo-
nent;

• construction of wave operators and their stationary representation (i.e. time-
independent description).
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Some recent results in these directions will be presented here for the case of two
operator models, namely dissipative Schrödinger operator and Boltzmann integro-

differential operator appearing in the theory of particles transport.
First of all the pioneering work [1] by T. Kato on non-stationary scattering theory

for non selfadjoint operators must be mentioned. As an application of his general
approach Kato considered in H = L2(0,∞) Schrödinger operator

L = L0 + V = − d2

dx2
+ V (x)

corresponding to Dirichlet boundary condition at zero. Complex potential V (x) was
supposed to be small enough in the following sense

∫ ∞

0

x |V (x)| dx < 1 . (∗)

Under this assumption operator L has purely continuous spectrum σc(L) = R+

and moreover L is equivalent to selfadjoint operator L0. If condition (∗) is not
fulfilled operator L may have eigenvalues and in this setting the question arises:
when space H can be decomposed into the direct sum of invariant subspaces

H = Hd + Hc

so that spectrum of L in Hd is discrete while restriction of L to the subspace Hc,
Lc for notation, is similar to L0.

The second operator model in question comes from the theory of particles trans-
port and is related to the linearized Boltzmann equation. In the space L2(R ×
[−1, 1]) consider the operator

(L = L0 + V = ) i µ
∂

∂x
+ i c(x)

∫ 1

−1

· dµ

The so-called propagation coefficient c(x), x ∈ R, is a bounded nonnegative func-
tion. This operator setting is due to K. Friedrichs (and is called Friedrichs model
in particles transport theory). The spectral structure of L in the case when c(x)
is proportional to the indicator of a segment was studied in detail by J. Lehner and
G. Wing [2].

I hope that it cannot bring us to misunderstanding if we shall use the same
notation L = L0 + V in this situation as well. In what follows some of the results
can be formulated in a common way for Schrödinger and Boltzmann operators and
moreover those results are obtained by similar methods. This is the reason for such
a usage of notation. Anyway it will be specified which of the two operators is ment.

2. Let us first discuss the structure of the spectrum and localization of spectral
components for the operators introduced in section 1.
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To deal with Schrödinger operator introduce Jost solution e(x, k) of the equation

− y′′ + V (x) y = k2 y

with asymptotic behavior e(x, k) ∼ eikx, x → ∞, and denote e(k) := e(0, k).
Function e(k) is analytic and bounded in the upper half-plane C+ provided

∫ ∞

0

|V (x)| dx < ∞ .

Under this assumption the spectrum of the operator L = − d2

dx2
+ V (x) consists

of two components:

continuous σc(L) = R+ & discrete σd(L) = {k2 : e(k) = 0}.

The set of eigenvalues is bounded and its accumulation points (if any) belong to R+.
There are no positive eigenvalues anyway, while real zeroes of e(k) give rise to the
so-called spectral singularities (cf. [3]). In the case of compactly supported potential
V (x) spectral singularities are the poles of analytic continuation of the resolvent
kernel; when λ approaches spectral singularity the resolvent R(λ) = (L − λI)−1

grows in norm faster than
(

dist{λ, σ(L)}
)−1

.

Proposition 1. Under the condition

∫ ∞

0

x |V (x)| dx < ∞

function e(k) is continuous in the closed upper half-plane and discrete spectrum

σd(L) is finite provided operator L has no spectral singularities.

Now the location of the spectral components for Boltzmann transport operator

L = i µ
∂

∂x
+ i c(x)

∫

1

−1

· dµ will be described. Assume that c(x) ∈ L∞(R) ∩
L1(R) and c(x) ≥ 0. Then

σ(L) = σc(L) ∪ σd(L) , σc(L) = R , σd(L) ⊂ iR+ .

The eigenvalues in the upper half-plane correspond to unstable modes of the initial
problem for the linearized Boltzmann equation. This is why the estimate of their
number is of particular interest.

Proposition 2. All eigenvalues of Boltzmann operator are semi-simple (i.e. cor-

responding Jordan blocks are diagonal ). The total multiplicity N(c) of eigenvalues

admits the following estimate

N(c) ≤ 1 +

∫∫

c(x) ln2 |x− y| c(y) dx dy .
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Remark. The right-hand side here is finite if c(x) = O(|x|−α), |x| → ∞, α > 1, and
finiteness of the right-hand side implies that c(x) ∈ L1(R). The estimate for N(c)
is obtained by a variant of the method known in the case of Schrödinger operator
as Birman-Schwinger principle [4].

Now let us consider a one-parameter family L0 + τV. When τ increases new
eigenvalues appear from zero and their number N(τc) increases. At the very mo-
ment when the new eigenvalue appears there is a spectral singularity at zero which
is not an eigenvalue however. A somewhat similar picture can be seen when the
family of Schrödinger operators L0 + τV is considered. Provided

∫ ∞

0

x |V (x)| dx < ∞

for τ sufficiently small Kato condition (∗) is satisfied and there are no eigenval-
ues at all. As τ increases eigenvalues arise from continuous spectrum; moreover
those points of the continuous spectrum from where the eigenvalues appear are just
spectral singularities.

3. Now we pass to consideration of continuous spectrum components for the oper-
ators in question. Denote by P a projection onto the linear span of root vectors of
L given by the formula

P =
1

2πi

∫

Γ

R(λ) dλ

where the contour Γ separates σd and σc. Projection P induces the decomposition

H = Hd + Hc .

Subspace Hd = PH corresponds to σd(L) in the sense that restriction Ld of L to
Hd has discrete spectrum σ(Ld) = σd(L).

Part Lc (we are interested in) is the restriction of L to the subspace Hc =
(I − P)H, called continuous spectrum subspace since σ(Lc) = σc(L).

For studying operator L in the subspace Hc it makes sense to apply non-
stationary scattering theory technique. It enables us to answer the following question
due to F. Berezin (see [5]): whether there is an equivalence of Lc to the unperturbed
operator L0 and, if so, construct the wave operators implementing this equivalence.
The first step to this end is

Theorem 1. Suppose that potential V (x) is bounded and ImV (x) ≥ 0. If the

integral
∫ ∞

x lnα x |V (x)|2 dx (1)

converges for α > 5/2 then there exists a bounded direct wave operator

Ω = s- lim
t→∞

exp(itL) exp(−itL0)

that intertwines L and L0 : LΩ = ΩL0.
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In order to establish the existence of the strong limit in this proposition (following
the procedure known as Cook’s criterion) it suffices to show that the derivative

d

dt
exp(itL) exp(−itL0)ϕ = i exp(itL)V exp(−itL0)ϕ

is integrable. Since the operators exp(itL) are contractive for t > 0 it is enough to
verify that the integral

∫ ∞
∥

∥V exp(−itL0)ϕ
∥

∥ dt

converges for the elements ϕ of some subset dense in H. Such a set exists provided
condition (1) is fulfilled.

The same approach applies to Boltzmann transport operator L = L0 + V.

Theorem 2. Direct wave operator Ω = s- lim
t→∞

exp(itL) exp(−itL0) exists provided

∫ ∞ dt√
t

(

∫

|x|>t

c(x)2 dx
)1/2

< ∞ .

The hypotheses concerning function c(x) mentioned above (Theorem 2 and
Proposition 2) as well as conditions imposed below in Theorem 3 are fulfilled if
for a certain α > 1

c(x) = O
(

|x|−α
)

as |x| → ∞ .

In particular under latter condition N(c) <∞, hence σd(L) is finite, and moreover
the direct wave operator Ω is well defined. For the elements ϕ of an appropriate
set dense in H and arbitrary ψ ∈ H one has

(

Ωϕ, ψ
)

=
(

ϕ, ψ
)

− 1

2π

∫ ∞

−∞

(
√
V R0(ω + i0)ϕ,

√
V R∗(ω − i0)ψ

)

dω .

4. The further steps aim to establish the so-called completeness relationship

ΩH = Hc

and to construct inverse wave operator

Ω̃ = s- lim
t→∞

exp(itL0) exp(−itL) .

Theorem 3. In the hypothesis of Theorem 2 suppose that c(x) 6= 0 and besides

c(x)
(

ln |x − y|
)2
c(y) ∈ L1(R × R). If zero is not a spectral singularity for corre-

sponding Boltzmann operator L = L0 +V then completeness relationship holds and

there exists wave operator Ω̃ on the subspace Hc. Moreover

Lc = ΩL0 Ω̃ ,

where Ω̃ is left-inverse to Ω and its right-inverse in the subspace Hc.
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This gives a solution to Friedrichs’ problem about spectral decomposition for the
Boltzmann transport operator in the following sense: in terms of direct and inverse
wave operators one explicitly constructs the spectral representation of the operator
L = L0 + V.

Now we turn back to the dissipative ( ImV (x) ≥ 0) Schrödinger operator L =
L0 +V and discuss the similar question regarding its continuous spectrum subspace
Hc. For the sake of simplicity let us restrict ourselves to the case of purely imaginary
potential V (x) = iQ(x), function Q(x) being real-valued and nonnegative.

Theorem 4. Assume that
∫ ∞

0

xQ(x) dx < ∞

and there exists an interval ∆ ⊂ R+ such that Q(x) 6= 0, x ∈ ∆. If operator

L = L0 + iQ has no spectral singularities then completeness relationship holds. On

the subspace Hc inverse wave operator Ω̃ exists and

Lc = ΩL0 Ω̃

where Ω̃ Ω = I and Ω Ω̃ϕ = ϕ for ϕ ∈ Hc.

In this situation continuous spectrum of non selfadjoint operator L is in fact
absolutely continuous in the (natural) sense that Lc is similar to selfadjoint operator
L0 possessing absolutely continuous spectrum. This similarity is realized by direct
and inverse wave operators Ω and Ω̃.

The most essential part of this scheme is completeness relationship ΩH = Hc to
which an outline of the proof will be given below. First one has to establish that
the range of Ω coincides with the outer subspace Ne of the operator L :

ΩH = Ne = closH
{

ψ ∈ H : sup
ε>0

∫

R

‖
√

QR(ω + iε)ψ‖2 dω <∞
}

.

The so-called inner subspace Ni consists of vectors ψ ∈ H such that

Ni =
{

ψ ∈ H :
(

(R(ω+ iε)−R(ω− iε))ψ, ϕ
)

→ 0, ε ↓ 0, a.e. ω ∈ R, ∀ϕ ∈ H
}

.

In the representation of functional model (see [6]) one can verify that subspaces Ne

and Ni are mutually complementary and thus

H = Ne + Ni .

Since Ne ⊂ Hc and Hd ⊂ Ni the space H admits the decomposition

H = Hd + Ne +
(

Hc ∩ Ni

)

.

So in order to establish completeness relationship it suffices to show that

Ne = Hc ⇔ Hc ∩Ni = {0} .
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5. Sometimes it turns out possible to reduce the latter question to the study of
certain scalar analytic function. To this end some preliminary considerations are
required. The so-called characteristic function of the operator L is given by the
formula

S(λ) = I + 2 i
√

Q (L∗ − λI)−1
√

Q .

Operator function S(λ) is analytic in C+ and is invertible provided λ is not an
eigenvalue:

S−1(λ) = I − 2 i
√

Q (L− λI)−1
√

Q , λ 6∈ σd(L) .

Analytic function m(λ) 6≡ 0 is called a scalar multiple for S(λ) if there exists an
operator function Σ(λ) bounded and analytic in C+ such that

Σ(λ)S(λ) = S(λ) Σ(λ) = m(λ) I .

For the Boltzmann transport operator (as well as in some other cases) such a scalar
multiple is constructed in the form of an appropriate Fredholm determinant. For
one-dimensional Schrödinger operator the scalar multiple can be given explicitly:
m(λ) = e(

√
λ). Note that

m(λ) = 0 in C+ ⇔ λ ∈ σd(L) .

It is well known that every bounded analytic in C+ function, in particular m(λ),
admits the so-called Nevanlinna-Riesz factorization:

m(λ) = m1(λ) ·m2(λ) ·m3(λ) .

The first factor m1(λ) is the Blaschke product

m1(λ) =
∏ λ− λn

λ− λn

, {λn} = σd(L) ,

where λn are the zeroes of m(λ) in C+ that coincide with the eigenvalues of L.
The second factor, called outer function, has the form

m2(λ) = eib exp
( i

π

∫

R

ln |m(t)| tλ+ 1

λ− t

dt

1 + t2

)

, b ∈ R .

The third one is given by the formula

m3(λ) = eiaλ exp
(

i

∫

R

tλ− 1

λ+ t
dµ(t)

)

,

where a ≥ 0 and µ is a singular measure. This factor is called singular inner
function.
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Proposition 3. Suppose that characteristic function S(λ) has a scalar multiple

m(λ) = m1(λ) ·m2(λ) such that the singular inner factor in Nevanlinna-Riesz fac-

torization is trivial m3(λ) ≡ 1. Then the corresponding subspace Hc ∩Ni is zero:

Hc ∩Ni = {0} ⇒ Hc = Ne .

Thus, continuous spectrum subspace admits the following characterization: Hc

consists of those elements ϕ ∈ H for which vector valued function
√
QR(λ)ϕ

belongs to the Hardy class H2(C+). Remark that similar condition is known to
appear in scattering theory for selfadjoint operators and is related to what is called
Kato smoothness property. Note that in our setting (provided there exists such an
interval ∆ ⊂ R+ that Q(x) 6= 0 for x ∈ ∆ ) operator L = L0 + iQ is completely
non selfadjoint, i.e. it has no nontrivial invariant subspaces on which L induces a
selfadjoint operator.

6. The question when the singular inner factor in the factorization of the scalar
multiple is trivial reduces to the study of analytic properties of the resolvent near the
real axis. It turns out that in both problems concerning Boltzmann and Schrödinger
equations the answer to the question above is affirmative provided there are no

spectral singularities.
In order to study this question for the Schrödinger operator L one can apply the

results of the analytic functions theory to the scalar multiple m(λ) = e(
√
λ). As it

was already pointed out (Proposition 1) function m(λ) is continuous in the closed
upper half-plane if

∫ ∞

0

x |V (x)| dx < ∞

and the same holds true for its outer factor m2(λ). By virtue of the equality |m2(κ+
i0)| = |m(κ + i0)| and provided L has no spectral singularities (i.e. m(λ) has no
real zeroes) function m2(λ) does not vanish at points of the real axis. A finite
Blaschke product m1(λ) does not take zero value on the real axis too. This implies
immediately that

m3(λ) =
m(λ)

m1(λ) ·m2(λ)

is continuous in the closed upper half-plane. Now we make use of the following
assertion (see [7]): singular inner function can be extended from C+ by continuity
to those points of R that does not belong to the support of measure µ. By this fact
and continuity of m3(λ) up to the real axis it follows that suppµ = ∅ and therefore
m3(λ) = eiaλ, a ≥ 0. Taking into account that m(iτ) → 1 as τ → ∞ we have
a = 0. In general it may happen that the singular factor m3(λ) in Nevanlinna-Riesz
factorization of scalar multiple is nontrivial and in this case the singular continuous

spectrum of L is naturally understood as the support of measure µ.
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In conclusion stationary representations of wave operators Ω and Ω̃ related to
eigenfunction expansions for operator L must be mentioned (for details see [8]).
Denote by ψ(x, k) a solution to equation

− y′′ + V (x) y = k2 y

satisfying initial conditions ψ(0, k) = 0, ψ′(0, k) = k. In the case V (x) = 0 the
solution ψ(x, k) is just sin kx. Let Φ be the standard Fourier sine-transform and
consider a transformation

Ψ f(κ) =

∫ ∞

0

f(x)ψ(x, κ) dx ,

that maps L2(0,∞) onto itself provided
∫ ∞

0

(1 + x2) |V (x)| dx < ∞ .

Transformation Ψ vanishes on the subspace Hd while on the subspace Hc it is
invertible and its inverse is given by the formula

Ψ−1g(x) =
2

π

∫ ∞

0

g(κ)ψ(x, κ)
dκ

e(κ)e(−κ)
.

Proposition 4. In terms of transforms Ψ and Φ wave operators can be expressed

as follows:

Ω = Ψ−1e(κ) Φ , Ω̃ = Φ−1e(κ)−1Ψ

provided L has no spectral singularities.
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