
Design of Mini Multi-Process Micro-Kernel Embedded OS on ARM

Bo Qu
School of Mathematics and Information Technology

Nanjing Xiaozhuang University
Nanjing, China

e-mail: Mr.QuBo@126.com

Zhaozhi Wu
School of Mathematics and Information Technology

Nanjing Xiaozhuang University
Nanjing, China

e-mail: wzz5958@126.com

Abstract—This paper describes the design and implementation
of a mini multi-process micro-kernel embedded Unix-like
operating system on ARM platform in technical details,
including MMU and memory space mapping, init process,
inter-process communication, process management, TTY and
tiny shell, multi-level priority-queue schedule, and signaling.
The mini OS is developed on Linux platform with GNU tool
chain by the author of this paper. The architecture of the mini
OS is analogous to that of Minix. Based on it, other operating
system components such as file system, network management,
and copy-on-write can be appended to form a full-featured
embedded operating system. The mini OS can be used for both
embedded system application development and related
curriculum teaching.

Keywords-embedded operating system; multi-process; micro-
kernel; inter-process communication; ARM

I. INTRODUCTION

With the rapid developments of electronic and computer
technologies, embedded systems have already become more
and more popular in the wide variety of fields. As the core
component of computer system as well as embedded system,
operating system has been playing a very important role.

For the purpose of technical research and curriculum
teaching, a mini multi-process micro-kernel embedded Unix-
like operating system [4] on ARM platform [6] is developed
by the author of this paper. The advantage of the system is
described in the following.

• Multi-process micro-kernel architecture. Unlike
uC/OS [9], which can only create tasks but no
process, the mini OS is designed as multi-process
micro kernel analogous to the famous Minix [1].
With such kind of architecture, the portability and
scalability of the system can be improved
significantly therefore is suitable for embedded
systems. The mini OS consists of several system-
level tasks and various user-level processes, of
which system-level tasks perform the core operations
all in the kernel address space, while each of user-
level processes running in its own independent
address space.

• For both embedded development and curriculum
teaching. On one hand, the essential techniques
related to operating systems [2] and ARM machines
[7] are involved, e.g., kernel boot, MMU, exceptions,
task creation, process forking, multi-process

schedule, inter-process communications, etc. All of
these are obviously helpful for development on
ARM based embedded systems as well as for
students to learn and study. On the other hand, the
mini OS is designed more readable, of which the
source codes can be provided to students, guiding
them to design tiny embedded operating system on
ARM platform from scratch.

• Simple and extensible. The mini OS accomplishes
the essential part of an embedded operating system,
while the amount of source codes is only about 4,100
lines, small enough. Based on it, other components,
such as copy-on-write, file system, network
management, etc., can be appended to form a full-
featured multi-process micro-kernel embedded
operating system on ARM platform.

This paper firstly gives a brief overview of this ARM
based mini multi-process micro-kernel OS, then describes
the key techniques of its design and implementation, and
finally gives an example to show the performance of it.

II. OVERVIEW OF THE MINI MULTI-PROCESS MICRO-
KERNEL EMBEDDED OS

A. Architecture of the Mini OS
The architecture of the mini OS resembles that of Minix.

The entire system is divided in to four layers: kernel layer,
driver layer, server layer and user layer, as shown in Fig. 1.

Figure 1. Architecture of the mini micro-kernel embedded OS

The kernel in the bottom layer schedules tasks and
processes, and manages the transitions between the ready,
running, and blocked states of them. The kernel also handles
all messages between tasks and processes with inter-process
communication (IPC) routines. In addition to the kernel itself,

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0295

this layer contains two modules that function similarly to
driver tasks. The clock task is an I/O device driver in the
sense that it interacts with the hardware that generates timing
signals, but it is not user-accessible like SD-card or NIC
drivers – it interfaces only with the kernel and tasks. The
system task is to provide a set of privileged kernel calls to
the drivers and servers above it. Although the clock task and
system task are compiled into the kernel’s address space,
they are scheduled as separate processes and have their own
call stacks.

The three layers above the kernel are all limited to user
mode. Each task or process in these layers is scheduled to
run by the kernel and none of them can access I/O ports
directly. However, the tasks and processes have different
privileges. The tasks in layer 2 have the most privilege, those
in layer 3 have some privilege, and the processes in layer 4
have no special privilege.

B. MMU and Memory Space Mapping
For default, the process spaces on ARM architecture [5]

are designated from the lower end of address 0, one for 32M.
While for most NAND FLASH based ARM machine, the
lower part of the address space is designated to FLASH
memory except the lowest 4K, and the program space is
designated from address 0x30000000. Therefore MMU must
be used to map the entire address space to accommodate the
requirement of the kernel. The address space mapping for the
mini OS described in this paper is shown in Fig. 2.

Figure 2. Memory space mapping of the mini OS

After mapping, the physical addresses for program codes
are mapped to 0xC0000000 through 0xC4000000, and the
physical addresses for special function registers are mapped
to 0xD8000000 through 0xF0000000. The lower part of
memory spaces is designated to 64 processes, each for 32M,
while the physical address space of each is in fact only 1M
within 0xC0000000 to 0xC4000000.

C. Development Environment
The mini OS is developed on Linux platform with well-

known GNU [10] tool chain in C [8] and ARM assembly [12]
programming language.

The advantage of using such kind of development
environment is that, firstly, the tools are free and open
sources, secondly, Linux platform is just a well-known
programming environment never becomes outdated, and
finally, convenient for development and research.

Considering the conventions of development and porting,
boot loader is not included into the mini OS. In the
development environment formed by the author of this paper,
the destination host is an embedded development board
equipped with a multi-function boot loader.

III. DRIVER AND SERVER TASKS

For the mini OS described in this paper, five system-level
tasks are designed, which are task_clk, task_sys, task_tty,
task_pm, and task_fs.

Task_clk performs the operations related to system clock,
such as “alarm”, or invoke the scheduler periodically.

Task_sys manipulate system calls related directly to the
kernel, e.g. signaling functions.

Task_tty is to implement a simple TTY terminal, based
on which a tiny shell is designed to show the performance of
the TTY, e.g. simple shell command and CTRL-C.

Task_pm plays a very important role in the kernel, which
accomplishes the essential functions for multi-process
management such as fork(), exit(), and wait(), etc.

Task_fs is to perform file system management. By now,
however, only a basic frame is designed to implement system
call functions read() and write(). A whole and entire file
system will be designed on next stage.

IV. INIT PROCESS

For a multi-process kernel [3], init process is the
foundation. Firstly, it is the first process of the entire process
space; secondly, all other processes in the system are
spawned by it or its children while it own is created directly
by the kernel when booting; thirdly, when any process loses
its parent, the init process becomes its new parent. For ARM
architecture [11], the default size of the address space
designated to each process is 32M, from 0 to 32M – 1. That
means the code of a process should be allocated at the
bottom space (that is started from address 0). For ordinary
ARM development boards, however, the lower address space
is designated to SRAM FLASH memory while the code
space starts at 0x30000000. Based on such a space it is not
convenient to design a lower address space process, e.g.
starting from address 0.

To resolve the problem, a dedicated way is designed to
create and load a process starting at 0. By this way, two files
are designed, i.e. an assembly program and a C program to
implement the init process itself. The former in essential is
the frame of the init process program which invokes the C
program to fulfill the performance of the init process. The
code size of the init process program is saved in the
beginning of the assembly program which will be used when
the init process is loaded into kernel. The latter implements
the real function of the init process. Both programs are
compiled and linked to form a binary image, which is
attached to the tail of the kernel image. With such a way, the
binary image of the init process can be loaded into SDRAM

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0296

memory together with the real kernel image from FLASH
memory during booting. After that, the init process is loaded
into the virtual process space with process id 1. Other user-
level processes will be forked by this process.

V. MULTI-LEVEL PRIORITY-QUEUE SCHEDULE

Obviously, schedule is the core role for multi-process
operating systems. The schedule routine of the mini OS is
designed in such a way that the tasks and processes be
scheduled all together. To ensure the priority of all the
system-level tasks over user-level processes, multi-level
priority-queue schedule strategy [1, 2] is used.

Five priority queues are designed, of which the highest
priority queue is for kernel tasks task_clk and task_sys, the
secondary for driver tasks, the third for server tasks, the
fourth for init process and all other user level processes, and
obviously, the lowest is task_idle which is the only user-level
task located in kernel space and can only be scheduled when
no any task or process is ready. By this way, all the tasks can
be scheduled as soon as possible. Only when no any task is
running can a user-level process be scheduled. Fig. 3 shows
the allocation of the five queues.

Figure 3. Five queues for multi-level priority-queue schedule

VI. INTER-PROCESS COMMUNICATION

There are several techniques to accomplish inter-process
communications, such as message passing, signaling, and
pipes, etc. The mini OS described in this paper implements
the first two, i.e. message passing and signaling.

The foundation of the inter-process communication is
software interrupt. The SWI (SoftWare Interrupt) on ARM is
just such a mechanism. Since the message passing is the core
way to accomplish the communications and system calls,
there only one type of calls to SWI, i.e. message passing,
named as IPC (Inter-Process Communication) by which all
other system call functions are implemented, e.g. fork(),
read(), write(), and signaling functions.

IPC is the core routine in the mini OS, which manipulates
the sending, receiving, notifying of the messages among
tasks and processes. The algorithm and the code of IPC are
designed analogous to that of Minix with the strategy known
as “rendezvous” [1].

In such a way, if the send operation is done before
receive, the sending process is blocked until receive happens,
at which time the message can be copied directly from the
sender to the receiver, with no intermediate buffering.

Similarly, if the receive is done first, the receiver is blocked
until a send happens.

VII. PROCESS MANAGEMENT

According to Unix [4] specification, all the processes in
an operating system must be forked by another one, as its
parent, except for init process just mentioned above. The
mini OS described in this paper follows this kind of
specification. To realize the creation of a new process based
on an existing process, function fork() is designed. The
algorithm [1] of the function is shown in Fig. 4.

Figure 4. Algorithm of the function fork()

When a process has exited or been killed but whose
parent has not done a wait for it, the process enters a kind of
suspended animation with the state set as M_HANGING. It
is prevented from being scheduled and has its alarm timer
turned off, but it is not removed from the PCB table. When
the parent finally does the wait, the PCB table slot of the
suspended process is freed and the kernel is informed.

VIII. TTY AND TINY SHELL

A brief TTY terminal is designed for the mini OS, on
which a tiny shell is designed to perform several simple
internal shell commands such as hello, echo, exit, etc.

The TTY maintains two queues, one for TTY reading
and another for writing. The input and output of the TTY
terminal are designated to super terminal of the remote host
via UART (serial port). To get the key strokes from the super
terminal, the receiving of the UART is designed in interrupt
mode by which an UART interrupt will occur when a key is
pressed in the remote host super terminal. The sending mode
of the UART is, however, designed as polling mode. Due to
the limit of the paper space, the code of UART interrupt and
tiny shell routines is not described in detail further.

IX. SIGNALING

Besides message passing, which forms the foundation of
the inter-process communications (IPC) in this mini OS,
another important communication mechanism is signaling
which are popularly used in Unix and Linux. Some essential
signaling functions are implemented in the mini OS and

1. Check to see if PCB table is full;
2. Get a new pid for the child;
3. Copy the parent’s code, data and stack to the child’s
memory;
4. Duplicate PCB for child;
5. Set child’s pid in its PCB;
6. Send a message to system task;
7. System task clears some fields of the child’s PCB,
such as alarm, signal and signal handlers, etc.;
8. After receiving from system task, the new child is
really created;
9. Send a message to child as the receiving message for
child process with return value as child’s pid;
10. Return to parent process with return value as 0.

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0297

some commonly used standard signals are supported, e.g.
SIGALRM, SIGHUP and SIGCHLD, etc. Signal registration
function, signal(), is also designed which is used to set the
handler of a signal. The right time to perform the signal
handler is when IRQ or SWI finished. This can be done by
inserting a signal process routine at the end of IRQ or SWI.

Firstly, the original return address of the IRQ or SWI is
saved onto the stack of user process, and then a manipulate
function, named build_sig(), is invoked, which checks the
signal setting of the currently running user process and saves
the corresponding parameter (signal number) and the signal
handler onto the stack of the process.

Secondly, when the IRQ or SWI handler exits, returning
to user process space, the system jumps to a wrap function,
sig_action(), which will invoke the real signal handler set by
build_sig(). After that, all the register values are restored
from the stack of user space and the program counter is set to
the original return address of the IRQ or SWI.

X. DEMO OF THE MINI OS

To show the effects of this mini multi-process micro-
kernel embedded OS, several internal shell commands for
test are designed in the init process, by which some useful
system call and signaling functions are tested. Fig. 5 shows
the result of command forktest.

Figure 5. A demonstration of the mini OS

The system call functions used by the command are
fork(), wait(), exit(), getpid(), gets(), signal(), alarm(), and
pause(), in which alarm() and pause() are invoked by
function sleep().

When command is executed, it prompts user to enter the
number of sub-processes. After that, some sub-processes are
created by fork(), and then sleeping 3 times, once a second.
When the three times sleeping finished, each of them exits.
The parent process uses function wait() waiting for the exit
of each sub-process and then return.

Before exit of the sub-processes, user can press CTRL-C
to quit all the sub-processes. In such case, signal SIGINT is
captured by TTY and a message is sent to system task, which
installs the default signal handler for SIGINT, exit(), as

mentioned previously. After IRQ or SWI, this default signal
handler will cause all the sub-processes to exit.

XI. CONCLUSION

The purpose of the mini OS described in this paper is to
design a multi-process micro-kernel embedded operating
system. Some further improvements will be developed on
next stage, including following main components:

• File system. A file system will be added to this mini
OS, including the corresponding root file system.
The function of loading and running executable files,
of course, should be implemented as well since it is
the foundation of shell commands.

• Network process routines. A light weight TCP/IP
routine is going to be added. By which, some
network related functions can be implemented, e.g.,
for network sniffer, simple Web service, etc.

• Copy-on-write. With the paging mechanism of ARM,
copy-on-write way can used to realize a simple
virtual memory space which not only can break the
limit of 1M byte process space but also reduce the
time cost of process creation.

In view of limited space, some technical details, such as
UART, IRQ, SWI, process switch, real time clock and time
management, etc., are omitted.

As mentioned above, the mini OS can be not only
suitable for practical embedded systems development but
also beneficial to the related curriculum teaching for under
graduate computer majors. It can be improved further to
form a full-featured multi-process micro-kernel embedded
operating system. To research on it is of great value.

REFERENCES
[1] A. S. Tanenbaum and A. S. Wookhull, Operating Systems: Design

and Implementation, 3E, Prentice Hall, Inc., 2008

[2] A. Silberschatz and P. B. Galvin, Operating System Concepts (6th
Edition), John Wiley & Sons, Inc., 2002.

[3] L. F. Bic and A. C. Shaw, Operating System Principles, Prentice Hall.
Inc., 2003.

[4] M. J. Bash: The Design of the UNIX Operating System, Prentice Hall,
Inc. (2006)

[5] A. N. Sloss, D. Symes and C. Wright, ARM System Developer’s
Guide: Designing and Optimizing System Software, Elsevier Inc,
2004

[6] T. Noergaard, Embedded Systems Architecture: A Comprehensive
Guide for Engineers and Programmers, Elsevier Inc, 2005

[7] W. Wolf, Computers as Components: Principles of Embedded
Computing System Design, Morgan Kaufmann pub, 2005

[8] M. Barr and A. Massa, Programming Embedded Systems, Second
Edition, O’Reilly Media, Inc., 2006

[9] J. J. Labrosse, Micro C/OS-II the Real-Rime Kernel, 2e, CMP Media
LLC, 2002

[10] Stallman R M, Using the GNU Compiler Collection, 2002
(http://www.gnuarm.com/pdf/gcc.pdf)

[11] ARM limited, ARM Architecture Reference Manual, 2005

[12] ARM limited, ARM Developer Suite Assembler Guide, 2001

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0298

