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Abstract—This paper describes the design and implementation 
of a mini multi-process micro-kernel embedded Unix-like 
operating system on ARM platform in technical details, 
including MMU and memory space mapping, init process, 
inter-process communication, process management, TTY and 
tiny shell, multi-level priority-queue schedule, and signaling. 
The mini OS is developed on Linux platform with GNU tool 
chain by the author of this paper. The architecture of the mini 
OS is analogous to that of Minix. Based on it, other operating 
system components such as file system, network management, 
and copy-on-write can be appended to form a full-featured 
embedded operating system. The mini OS can be used for both 
embedded system application development and related 
curriculum teaching. 

Keywords-embedded operating system; multi-process; micro-
kernel; inter-process communication; ARM 

I.  INTRODUCTION 

With the rapid developments of electronic and computer 
technologies, embedded systems have already become more 
and more popular in the wide variety of fields. As the core 
component of computer system as well as embedded system, 
operating system has been playing a very important role. 

For the purpose of technical research and curriculum 
teaching, a mini multi-process micro-kernel embedded Unix-
like operating system [4] on ARM platform [6] is developed 
by the author of this paper. The advantage of the system is 
described in the following. 

• Multi-process micro-kernel architecture. Unlike 
uC/OS [9], which can only create tasks but no 
process, the mini OS is designed as multi-process 
micro kernel analogous to the famous Minix [1]. 
With such kind of architecture, the portability and 
scalability of the system can be improved 
significantly therefore is suitable for embedded 
systems. The mini OS consists of several system-
level tasks and various user-level processes, of 
which system-level tasks perform the core operations 
all in the kernel address space, while each of user-
level processes running in its own independent 
address space. 

• For both embedded development and curriculum 
teaching. On one hand, the essential techniques 
related to operating systems [2] and ARM machines 
[7] are involved, e.g., kernel boot, MMU, exceptions, 
task creation, process forking, multi-process 

schedule, inter-process communications, etc. All of 
these are obviously helpful for development on 
ARM based embedded systems as well as for 
students to learn and study. On the other hand, the 
mini OS is designed more readable, of which the 
source codes can be provided to students, guiding 
them to design tiny embedded operating system on 
ARM platform from scratch. 

• Simple and extensible. The mini OS accomplishes 
the essential part of an embedded operating system, 
while the amount of source codes is only about 4,100 
lines, small enough. Based on it, other components, 
such as copy-on-write, file system, network 
management, etc., can be appended to form a full-
featured multi-process micro-kernel embedded 
operating system on ARM platform. 

This paper firstly gives a brief overview of this ARM 
based mini multi-process micro-kernel OS, then describes 
the key techniques of its design and implementation, and 
finally gives an example to show the performance of it. 

II. OVERVIEW OF THE MINI MULTI-PROCESS MICRO-
KERNEL EMBEDDED OS 

A. Architecture of the Mini OS 
The architecture of the mini OS resembles that of Minix. 

The entire system is divided in to four layers: kernel layer, 
driver layer, server layer and user layer, as shown in Fig. 1. 
 

 
Figure 1.  Architecture of the mini micro-kernel embedded OS 

The kernel in the bottom layer schedules tasks and 
processes, and manages the transitions between the ready, 
running, and blocked states of them. The kernel also handles 
all messages between tasks and processes with inter-process 
communication (IPC) routines. In addition to the kernel itself, 

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France. 
© the authors, 2013 

0295



this layer contains two modules that function similarly to 
driver tasks. The clock task is an I/O device driver in the 
sense that it interacts with the hardware that generates timing 
signals, but it is not user-accessible like SD-card or NIC 
drivers – it interfaces only with the kernel and tasks. The 
system task is to provide a set of privileged kernel calls to 
the drivers and servers above it. Although the clock task and 
system task are compiled into the kernel’s address space, 
they are scheduled as separate processes and have their own 
call stacks. 

The three layers above the kernel are all limited to user 
mode. Each task or process in these layers is scheduled to 
run by the kernel and none of them can access I/O ports 
directly. However, the tasks and processes have different 
privileges. The tasks in layer 2 have the most privilege, those 
in layer 3 have some privilege, and the processes in layer 4 
have no special privilege. 

B. MMU and Memory Space Mapping 
For default, the process spaces on ARM architecture [5] 

are designated from the lower end of address 0, one for 32M. 
While for most NAND FLASH based ARM machine, the 
lower part of the address space is designated to FLASH 
memory except the lowest 4K, and the program space is 
designated from address 0x30000000. Therefore MMU must 
be used to map the entire address space to accommodate the 
requirement of the kernel. The address space mapping for the 
mini OS described in this paper is shown in Fig. 2. 

 

 
Figure 2.  Memory space mapping of the mini OS 

After mapping, the physical addresses for program codes 
are mapped to 0xC0000000 through 0xC4000000, and the 
physical addresses for special function registers are mapped 
to 0xD8000000 through 0xF0000000. The lower part of 
memory spaces is designated to 64 processes, each for 32M, 
while the physical address space of each is in fact only 1M 
within 0xC0000000 to 0xC4000000. 

C. Development Environment 
The mini OS is developed on Linux platform with well-

known GNU [10] tool chain in C [8] and ARM assembly [12] 
programming language. 

The advantage of using such kind of development 
environment is that, firstly, the tools are free and open 
sources, secondly, Linux platform is just a well-known 
programming environment never becomes outdated, and 
finally, convenient for development and research. 

Considering the conventions of development and porting, 
boot loader is not included into the mini OS. In the 
development environment formed by the author of this paper, 
the destination host is an embedded development board 
equipped with a multi-function boot loader. 

III. DRIVER AND SERVER TASKS 

For the mini OS described in this paper, five system-level 
tasks are designed, which are task_clk, task_sys, task_tty, 
task_pm, and task_fs. 

Task_clk performs the operations related to system clock, 
such as “alarm”, or invoke the scheduler periodically. 

Task_sys manipulate system calls related directly to the 
kernel, e.g. signaling functions. 

Task_tty is to implement a simple TTY terminal, based 
on which a tiny shell is designed to show the performance of 
the TTY, e.g. simple shell command and CTRL-C. 

Task_pm plays a very important role in the kernel, which 
accomplishes the essential functions for multi-process 
management such as fork(), exit(), and wait(), etc. 

Task_fs is to perform file system management. By now, 
however, only a basic frame is designed to implement system 
call functions read() and write(). A whole and entire file 
system will be designed on next stage. 

IV. INIT PROCESS 

For a multi-process kernel [3], init process is the 
foundation. Firstly, it is the first process of the entire process 
space; secondly, all other processes in the system are 
spawned by it or its children while it own is created directly 
by the kernel when booting; thirdly, when any process loses 
its parent, the init process becomes its new parent. For ARM 
architecture [11], the default size of the address space 
designated to each process is 32M, from 0 to 32M – 1. That 
means the code of a process should be allocated at the 
bottom space (that is started from address 0). For ordinary 
ARM development boards, however, the lower address space 
is designated to SRAM FLASH memory while the code 
space starts at 0x30000000. Based on such a space it is not 
convenient to design a lower address space process, e.g. 
starting from address 0. 

To resolve the problem, a dedicated way is designed to 
create and load a process starting at 0. By this way, two files 
are designed, i.e. an assembly program and a C program to 
implement the init process itself. The former in essential is 
the frame of the init process program which invokes the C 
program to fulfill the performance of the init process. The 
code size of the init process program is saved in the 
beginning of the assembly program which will be used when 
the init process is loaded into kernel. The latter implements 
the real function of the init process. Both programs are 
compiled and linked to form a binary image, which is 
attached to the tail of the kernel image. With such a way, the 
binary image of the init process can be loaded into SDRAM 
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memory together with the real kernel image from FLASH 
memory during booting. After that, the init process is loaded 
into the virtual process space with process id 1. Other user-
level processes will be forked by this process. 

V. MULTI-LEVEL PRIORITY-QUEUE SCHEDULE 

Obviously, schedule is the core role for multi-process 
operating systems. The schedule routine of the mini OS is 
designed in such a way that the tasks and processes be 
scheduled all together. To ensure the priority of all the 
system-level tasks over user-level processes, multi-level 
priority-queue schedule strategy [1, 2] is used. 

Five priority queues are designed, of which the highest 
priority queue is for kernel tasks task_clk and task_sys, the 
secondary for driver tasks, the third for server tasks, the 
fourth for init process and all other user level processes, and 
obviously, the lowest is task_idle which is the only user-level 
task located in kernel space and can only be scheduled when 
no any task or process is ready. By this way, all the tasks can 
be scheduled as soon as possible. Only when no any task is 
running can a user-level process be scheduled. Fig. 3 shows 
the allocation of the five queues. 

 

 
Figure 3.  Five queues for multi-level priority-queue schedule 

VI. INTER-PROCESS COMMUNICATION 

There are several techniques to accomplish inter-process 
communications, such as message passing, signaling, and 
pipes, etc. The mini OS described in this paper implements 
the first two, i.e. message passing and signaling. 

The foundation of the inter-process communication is 
software interrupt. The SWI (SoftWare Interrupt) on ARM is 
just such a mechanism. Since the message passing is the core 
way to accomplish the communications and system calls, 
there only one type of calls to SWI, i.e. message passing, 
named as IPC (Inter-Process Communication) by which all 
other system call functions are implemented, e.g. fork(), 
read(), write(), and signaling functions. 

IPC is the core routine in the mini OS, which manipulates 
the sending, receiving, notifying of the messages among 
tasks and processes. The algorithm and the code of IPC are 
designed analogous to that of Minix with the strategy known 
as “rendezvous” [1]. 

In such a way, if the send operation is done before 
receive, the sending process is blocked until receive happens, 
at which time the message can be copied directly from the 
sender to the receiver, with no intermediate buffering. 

Similarly, if the receive is done first, the receiver is blocked 
until a send happens. 

VII. PROCESS MANAGEMENT 

According to Unix [4] specification, all the processes in 
an operating system must be forked by another one, as its 
parent, except for init process just mentioned above. The 
mini OS described in this paper follows this kind of 
specification. To realize the creation of a new process based 
on an existing process, function fork() is designed. The 
algorithm [1] of the function is shown in Fig. 4. 

 

 
Figure 4.  Algorithm of the function fork() 

When a process has exited or been killed but whose 
parent has not done a wait for it, the process enters a kind of 
suspended animation with the state set as M_HANGING. It 
is prevented from being scheduled and has its alarm timer 
turned off, but it is not removed from the PCB table. When 
the parent finally does the wait, the PCB table slot of the 
suspended process is freed and the kernel is informed. 

VIII. TTY AND TINY SHELL 

A brief TTY terminal is designed for the mini OS, on 
which a tiny shell is designed to perform several simple 
internal shell commands such as hello, echo, exit, etc. 

The TTY maintains two queues, one for TTY reading 
and another for writing. The input and output of the TTY 
terminal are designated to super terminal of the remote host 
via UART (serial port). To get the key strokes from the super 
terminal, the receiving of the UART is designed in interrupt 
mode by which an UART interrupt will occur when a key is 
pressed in the remote host super terminal. The sending mode 
of the UART is, however, designed as polling mode. Due to 
the limit of the paper space, the code of UART interrupt and 
tiny shell routines is not described in detail further. 

IX. SIGNALING 

Besides message passing, which forms the foundation of 
the inter-process communications (IPC) in this mini OS, 
another important communication mechanism is signaling 
which are popularly used in Unix and Linux. Some essential 
signaling functions are implemented in the mini OS and 

1. Check to see if PCB table is full; 
2. Get a new pid for the child; 
3. Copy the parent’s code, data and stack to the child’s 
memory; 
4. Duplicate PCB for child; 
5. Set child’s pid in its PCB; 
6. Send a message to system task; 
7. System task clears some fields of the child’s PCB, 
such as alarm, signal and signal handlers, etc.; 
8. After receiving from system task, the new child is 
really created; 
9. Send a message to child as the receiving message for 
child process with return value as child’s pid; 
10. Return to parent process with return value as 0. 
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some commonly used standard signals are supported, e.g. 
SIGALRM, SIGHUP and SIGCHLD, etc. Signal registration 
function, signal(), is also designed which is used to set the 
handler of a signal. The right time to perform the signal 
handler is when IRQ or SWI finished. This can be done by 
inserting a signal process routine at the end of IRQ or SWI. 

Firstly, the original return address of the IRQ or SWI is 
saved onto the stack of user process, and then a manipulate 
function, named build_sig(), is invoked, which checks the 
signal setting of the currently running user process and saves 
the corresponding parameter (signal number) and the signal 
handler onto the stack of the process. 

Secondly, when the IRQ or SWI handler exits, returning 
to user process space, the system jumps to a wrap function, 
sig_action(), which will invoke the real signal handler set by 
build_sig(). After that, all the register values are restored 
from the stack of user space and the program counter is set to 
the original return address of the IRQ or SWI. 

X. DEMO OF THE MINI OS 

To show the effects of this mini multi-process micro-
kernel embedded OS, several internal shell commands for 
test are designed in the init process, by which some useful 
system call and signaling functions are tested. Fig. 5 shows 
the result of command forktest. 

 

 
Figure 5.  A demonstration of the mini OS 

The system call functions used by the command are 
fork(), wait(), exit(), getpid(), gets(), signal(), alarm(), and 
pause(), in which alarm() and pause() are invoked by 
function sleep().  

When command is executed, it prompts user to enter the 
number of sub-processes. After that, some sub-processes are 
created by fork(), and then sleeping 3 times, once a second. 
When the three times sleeping finished, each of them exits. 
The parent process uses function wait() waiting for the exit 
of each sub-process and then return. 

Before exit of the sub-processes, user can press CTRL-C 
to quit all the sub-processes. In such case, signal SIGINT is 
captured by TTY and a message is sent to system task, which 
installs the default signal handler for SIGINT, exit(), as 

mentioned previously. After IRQ or SWI, this default signal 
handler will cause all the sub-processes to exit. 

XI. CONCLUSION 

The purpose of the mini OS described in this paper is to 
design a multi-process micro-kernel embedded operating 
system. Some further improvements will be developed on 
next stage, including following main components: 

• File system. A file system will be added to this mini 
OS, including the corresponding root file system. 
The function of loading and running executable files, 
of course, should be implemented as well since it is 
the foundation of shell commands. 

• Network process routines. A light weight TCP/IP 
routine is going to be added. By which, some 
network related functions can be implemented, e.g., 
for network sniffer, simple Web service, etc. 

• Copy-on-write. With the paging mechanism of ARM, 
copy-on-write way can used to realize a simple 
virtual memory space which not only can break the 
limit of 1M byte process space but also reduce the 
time cost of process creation. 

In view of limited space, some technical details, such as 
UART, IRQ, SWI, process switch, real time clock and time 
management, etc., are omitted. 

As mentioned above, the mini OS can be not only 
suitable for practical embedded systems development but 
also beneficial to the related curriculum teaching for under 
graduate computer majors. It can be improved further to 
form a full-featured multi-process micro-kernel embedded 
operating system. To research on it is of great value. 
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