
A New Multivariate-based Ring Signature Scheme

Ling ling Wang 
College of Information Science &Technology, 
 Qingdao University of Science &Technology, 

 Qingdao 266061, China 
E-mail: teacherwll@163.com 

 
Abstract—Most of the existing ring signature schemes are 
based on traditional cryptography, such as RSA and discrete 
logarithm. Unfortunately these schemes would be broken if 
quantum computers emerge. The MQ-problem based Public-
Key Cryptosystem (MPKC) is an important alternative to 
traditional PKCs for its potential to resist future attacks of 
quantum computers. In this paper, we proposed a new ring 
signature scheme based on MPKC, which has the properties of 
consistent, unforgery, signer-anonymity. 

Keywords: ring signature; multivariate public-key 
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I. INTRODUCTION 

Ring signatures were first introduced and implemented 
by Rivest and Tauman[1]. In a ring signature scheme, the 
formation of all possible signers, i.e. ring members, serves as 
a part of the ring signature for the signed messages. A valid 
ring signature will convince a verifier that the signature is 
generated by one of the ring members, without revealing any 
information about which participant is the actual signer. Ring 
signatures were originally proposed as a secret leaking 
technique. It guarantees the anonymity of the revealer. Now 
most of the existing ring signature schemes are based on 
traditional Public key cryptosystem, such as RSA, DLP, IDB, 
etc. Ring signature schemes based on bilinear pairings and 
identify-based cryptography [2] was first proposed by Zhang. 
Later, Wang[3,4] proposed a XTR-based and certificateless 
ring signature schemes.  

With the existence of quantum computers, the problems 
such as integer factoring or discrete logarithms can be solved 
in polynomial time, which will be a serious threat to the 
security of existing deniable ring signatures. It is imminent to 
build a new public key cryptosystem which can replace the 
cryptosystems based on the number theory and survive from 
future attacks utilizing quantum computers. Multivariate 
public key cryptosystems (MPKCs) potentially could resist 
future quantum computing attacks, and it is much more 
computationally efficient than number theoretic-based 
systems. Multivariate public key cryptography has already 
experienced 20 years of development. There are many 
MPKCs, such as MIA family[5], OV family[6], HFE 
family[7], TTM family, MFE family and an lIC family. 
Multivariate public key cryptosystems over a finite field of 
odd characteristics is a new idea to get fast signature 
schemes. Odd-characteristic systems can be much simpler 
than their even-characteristic counterparts while still evading 
algebraic attacks. As multivariate public key cryptosystem 
over a finite field of odd characteristic is a safer and more 

efficient cryptosystem, it has recently been widespread 
[8,9,10].  

Recently, Sakumoto et al.[13] presented a new 
identification based on MPKC and proved it secure. In this 
paper, we extended the identification scheme by applying the 
Fiat-Shamir paradigm [14] to transform it into a signature 
scheme. We proposed a new ring signature scheme based on 
Multivariate Public-Key Cryptosystem. We also give a 
specific scheme which was proved secure. By virtue of the 
Multivariate Public-Key Cryptosystem, our scheme can 
survive from future attacks utilizing quantum computers. 
And it is much more computationally efficient than number 
theoretic-based systems.  

The rest of this paper is structured as follow. In section 2, 
we review briefly multivariate public key cryptography and 
deniable ring authentication. In section 3, we present a 
generic construction for MPKC-based ring signature scheme 
and the security analysis. In section 4, we draw our 
conclusions. 

II.  PRELIMINARIES 

A. Ring Signatures 

  We call a set of possible signers a ring, the ring member 
who produces the actual signature the signer and each of the 
other ring members a non-signer. Assume there are n 
members in a ring. A ring signature scheme is defined by the 
following procedures: 

–Key-Gen(k) is a probabilistic polynomial algorithm that 
accepts security parameter k, and returns system parameters 
and key pairs(public key Pi and the corresponding secret key 
Si).  

–ring-sign(m, P1, P2,…, Pr, s, Ss) is a probabilistic 
polynomial algorithm that produces a ring signature σ  for 
the message m, given the public keys P1, P2,…, Pr of r ring 
members, together with the secret key Ss of the s-th member 
(who is the actual signer). 

–ring-verify(m, Ss) is a deterministic algorithm that takes 
a message m and a signature σ  (which includes the public 
keys of all the possible signers), outputs either true if the ring 
signature is valid, or false otherwise. 

In a ring signature, different members can use different 
independent public key signature schemes, with different key 
and signature sizes. We can see that a ring signature scheme 
satisfies the properties of anonymity (or signer-ambiguity) 
and spontaneity (namely, no setup procedure). Rivest, et al. 
[1] formalized “Ring Signature” because their construction 
of the signature forms a ring structure. Some other works in 
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the literature also call this kind of signature (with the above 
properties) “Ring Signature” although some of them may not 
have a ring structure for their construction.  

B. Multivariate Signature Scheme 

Multivariate Public Key Cryptography is one of the main 
approaches for secure communication in the post-quantum 
world. The principle idea is to choose a multivariate system 
F of quadratic polynomials which can be easily inverted. 
After that one chooses two affine linear invertible maps S 
and T to hide the structure of the central map. The public key 
of the cryptosystem is the composed map P = S◦F◦T which 
is difficult to invert. The private key consists of S, F and T 
and therefore allows inverting P. 

The generic multivariate signature scheme is as follows:  
Key-Generating: Let k is a finite field, P be a map kn → 

km, S be an injective affine map over km and T be an 
invertible affine map over kn . The cipher P is constructed as 
a composition of three maps:  

P = S◦F◦T =( f 1 (x1, . . . , xn), f 2 (x1, . . . , xn), . . . , f m 

(x1, . . . , xn)), where f j (j = 1, 2, . . . ,m) ∈ k [x1, x2, . . . , xn]. 
The private key: The private key includes the two affine 

transformations S and T. The map P may or may not be part 
of the secret key depending on its precise nature. 

The public key: The public key includes the following: 
(1) The field k including its additive and multiplicative 

structure; 
(2) The m polynomials f 1(x1, . . . , xn) , f 2 (x1, . . . , xn), . . . , 

f m (x1, . . . , xn)∈k [x1, x2, . . . , xn]. 
Sign-algorithm: Let (y1’, . . . , ym’) ∈ km be a message 

(or message digests) to be signed. The signer computes the 
ring signature by the equation: (x1’, . . . , xn’)=P-1(y1’, . . . , 
ym’)= T-1◦F-1◦S-1(y1’, . . . , ym’). Then the signature on the 
message (y1’, . . . , ym’) is (x1’, . . . , xn’). 

Verify-algorithm: To verify that (x1’, . . . , xn’) is indeed a 
valid signature for the message (y1’, . . . , ym’),  the recipient 
determines whether or not the following equation holds. 

yj’= f j (x1’, . . . , xn’), j=1,2,…,m. 
The above process can be completed by anyone, because 

the public key is available for anyone.  
MQ-Problem: Given m quadratic polynomials p1,…, pm 

in n variables over a finite field F, find a vector x = (x1,…, xn) ∈Fn such that p1(x) =… = pm(x) = 0. 
The MQ-Problem is proven to be NP-hard[11] even for 

quadratic systems over the field of two elements [12]. 

C. The MQ-based identification scheme 

At CRYPTO 2011 Sakumoto et al. presented a new 
identification scheme whose security is based solely on the 
MQ-Problem [13]. In the scheme, every user chooses a 
vector s∈Fn as his secret key and compute his public key as 
v=P(s)∈Fm. In order to create a zero-knowledge proof of 
the vector s, a polar form of the multivariate system P is 
needed, which is defined as 

G(x; y) = P(x+ y) -P(x) -P(y) 
Since G(x; y) is bilinear in x and y, the knowledge of s is 

equivalent to knowing a tuple (r0, r1, t0, t1, e0, e1) satisfying 

G(t0, r1) + e0 = v - P(r1) - G(t1, r1) -e1  and (t0, e0) = (r0 -t1, 
P(r0) -e1). The 3-pass identification scheme between a 
prover and a verifier is as follows: 

(1) the prover chooses r0,t0∈ RFn, e0∈ RFm, computes 
r1=s-r0, t1=r0-t0, e1=P(r0)-e0; and  computes commitments 
c0=Com(r1, G(t0, r1)+e0), c1=Com(t0, e0), c2=Com(t1, e1),  
then sends (c0, c1, c2) to the verifier. 

(2)the verifier chooses the challenge Ch∈R{0,1,2}, and 
sends Ch to the prover. 

(3) If Ch=0, the prover sends Rsp= (r0, t1, e1) back; 
If Ch=1, the prover sends Rsp= (r1, t1, e1) back; 
If Ch=2, the prover sends Rsp= (r1, t0, e0) back; 
(4) If the verifier chooses 0 as the challenge Ch, he 

checks whether c1=Com(r0-t1, P(r0)-e1) and c2=Com(t1, e1) 
holds. If Ch=1, check whether c0=Com(r1,v- P(r1)-G(t1,r1)-
e1) and c2=Com(t1, e1) holds; If Ch=2, check whether 
c0=Com(r1, G(t0,r1)+e0) and c1=Com(t0, e0) holds. 

III. A MPKC-BASED RING  SIGNATURE SCHEME AND 

ITS SECURITY ANALYSIS 

A. A MPKC-Based ring signature scheme 

In this section, we present our MPKC-Based ring 
signature scheme (MRSS) by extending the identification 
scheme in [13]. We describe MRSS by providing the 
description of the following algorithms: Setup, MRSS-Sign 
and MRSS-Verify. 

Setup: a probabilistic algorithm outputs the system 
parameters (k, q,ξ, n, m, H), where k = GF (q) is a finite 
field with q = pξ, and p is a prime, m is the number of 
multivariate equations, n is the number of variables. Let H: 
{0, 1}∗ →ܼ௣∗  be a cryptographic secure hash functions. It also 
outputs the public key PK and secret key SK for each user in 
the system. Suppose that PKi/SKi are the public key and 
private key pairs of user Ui, where i = 0, 1, 2, . . . , t−1. Every  
user Ui chooses randomly a vector si. The public key is PKi 
=Pi: F

n→Fm , where Pi(si)=0.  
MRSS-Sign: To get a ring signature on a message m 

with respect to the ring U = (U0, U1, . . . , UN−1), a signer Us 

(0 ≤ s≤ N − 1) who owns the private key SKs generates a 
signature of message m as follows. 

a) Choose  ݎ଴௦, ݐ଴௦ ∈Fn, ݁଴௦ ∈Fm, compute 
ଵ௦ݎ  ൌ ܵs-ݎ଴௦, ݐଵ௦=ݎ଴௦-ݐ଴௦, ݁ଵ௦=Pi(ݎ଴௦)-	݁଴௦;  

        ܿ଴௦ ൌ ,ଵ௦ݎሺ݉݋ܥ ,଴௦ݐ	ሺݏܩ ଵ௦ሻݎ ൅ ݁଴௦ሻ, 									ܿଵ௦ ൌ ,଴௦ݐ	ሺ݉݋ܥ ݁଴௦ሻ, 																	ܿଶ௦ ൌ ,ଵ௦ݐ	ሺ݉݋ܥ ݁ଵ௦ሻ, 
b) For j∈{0, 1, …, s-1, s+1,…,N-1}, using 0 as “secret” 

key si, and compute  ܿ଴௝, ܿଵ௝	, ܿଶ௝ for the N-1 non-signers, 
Let C0= Com(c଴ଵ,… , c଴ே	) 

C1= Com(cଵଵ,… , cଵே	) 
C2= Com(cଶଵ, … , cଶே	) 

And compute ch=H(m||C0||C1||C2) 
c) For i∈{0, 1, … ,N-1}, 

If ch=0, let Rspi=(ݎ଴	௜ , ௜	ଵݐ , ݁ଵ	௜ ) 
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If ch=1, let Rspi=(ݎଵ௜, ௜	ଵݐ , ݁ଵ	௜ ) 

If ch=2, let Rspi=(ݎଵ௜, ௜	ଵݐ , ݁ଵ	௜ ) 
Let RSP=( Rsp0|| Rsp1||…|| RspN-1) 

The resulting signature is σ = (C0|| C1|| C2 || RSP). 
MRSS-Verify: To verity a signature (m, σ), the receiver 

performs the following. 
a) Compute ch=H(m||C0||C1||C2); 

b) If ch=0, parses RSP into ݎ଴	ଵ, ଵ	ଵݐ , ݁ଵ	ଵ , ,ଶ	଴ݎ ଶ	ଵݐ , ݁ଵ	ଶ ,ே	଴ݎ , … , ,ே	ଵݐ ݁ଵ	ே, for i=0,1,…, N-1, Compute 
 ܿଵ௜ ൌ ଴௦ݎ	൫݉݋ܥ െ	ݐଵ௜ , ௜ܲሺݎ଴௜ሻ െ	݁ଵ௜൯, 
 ܿଶ௜ ൌ ଵ௜ݐ	൫݉݋ܥ , ݁ଵ௜൯ 

And check, if C1= Com(cଵଵ,… , cଵே	) and  C2= 
Com(ܿଶଵ,… , ܿଶே	) If yes, returns 1 and accept it. Otherwise 0 
and reject it.  

If ch=1, parses RSP into ݎଵ	ଵ, ଵ	ଵݐ , ݁ଵ	ଵ , ,ଶ	ଵݎ ଶ	ଵݐ , ݁ଵ	ଶ ,ே	ଵݎ , … , ,ே	ଵݐ ݁ଵ	ே, for i=0,1,…, N-1, Compute 
 ܿ଴௜ ൌ ,ଵ௜ݎ	൫݉݋ܥ െ ௜ܲሺݎଵ௜ሻ െ ଵ௜ݐ௜ሺܩ , ଵ௜ሻݎ െ ݁ଵ௜൯, 
 ܿଶ௜ ൌ ଵ௜ݐ	൫݉݋ܥ , ݁ଵ௜൯ 

And check, if C0= Com(c଴ଵ,… , c଴ே	) and  C2= 
Com(ܿଶଵ,… , ܿଶே	) If yes, returns 1 and accept it. Otherwise 0 
and reject it.  

If ch=2, parses RSP into ݎଵ	ଵ, ଵ	଴ݐ , ݁଴	ଵ , ,ଶ	ଵݎ ଶ	଴ݐ , ݁଴	ଶ ,ே	ଵݎ , … , ,ே	଴ݐ ݁଴	ே, for i=0,1,…, N-1, Compute 
 ܿ଴௜ ൌ ,ଵ௜ݎ	൫݉݋ܥ ଴௜ݐ௜ሺܩ , ଵ௜ሻݎ െ ݁଴௜൯, 
 ܿଵ௜ ൌ ଴௜ݐ	൫݉݋ܥ , ݁଴௜ ൯ 

And check if C0= Com(c଴ଵ, … , c଴ே	) and  C1= 
Com(cଵଵ,… , cଵே	). If yes, returns 1 and accept it. Otherwise 0 
and reject it.  

B. Security analyses  

Theorem 1 MRSS is consistent. 
Proof. If the signatureσ=(C0|| C1|| C2 || RSP) is not 

altered, since the following equations hold. 
G(t0, r1) + e0 = v - P(r1) - G(t1, r1) -e1; 
(t0, e0) = (r0 -t1, P(r0) -e1). 

From the procedure of MRSS-Verify, the following 
equations will hold. ܿ଴௜ ൌ ,ଵ௜ݎ	൫݉݋ܥ ଴௜ݐ௜ሺܩ	 , ଵ௜ሻݎ െ ݁଴௜൯ = ,ଵ௜ݎ	൫݉݋ܥ	 െ ௜ܲሺݎଵ௜ሻ െ݅ܩሺݐଵ௜ , ଵ௜ሻݎ െ ݁ଵ௜൯; 

 ܿଵ௜ ൌ ଴௦ݎ	൫݉݋ܥ െ	 ଵ௜ݐ , ௜ܲሺݎ଴௜ሻ െ	݁ଵ௜൯=	݉݋ܥ൫	ݐ଴௜ , ݁଴௜ ൯; 
 ܿଶ௜ ൌ ଵ௜ݐ	൫݉݋ܥ , ݁ଵ௜൯. 

Then, MRSS is consistent. 
Theorem 2 MRSS is resistant to forgery. 
Proof. Since the MQ-Problem is NP-hard even for 

quadratic systems over the field of two elements. Therefore, 
given the public keys of the ring, it is impossible to compute 
the secret key of the signer. Given a message-signature 
pair(m, σ) and all public keys of the ring, it is infeasible to 
generate a valid ring signature. Hence, in the MRSS-Sign 
step, those who have no correct secret keys cannot forge the 
signature. 

Theorem 3 MRRS provides signer- anonymity. 
Proof. For the challenges 0, 1 and 2, the responses of both 

a signer and a non-signer are completely indistinguishable. 
Since r0, t0 and e0 are chosen uniformly at random and 
therefore the responses are random, too. Hence, the ring 
signatureσ=(C0|| C1|| C2 || RSP) is fully randomly distributed, 
even if the attacker has access to all private keys of the ring 
members, his probability to guess the identity of the real 
signer should not be greater than 1/2. As a result, the ring 
signature scheme should satisfy the property of anonymity. 

IV. CONCLUSIONS 

In this paper, we present a new ring signature scheme 
based on MPKC by transforming the identificaiotn scheme 
in [13] and gave its security analysis. Our scheme has the 
properties of consistent, unforgery, signer- anonymity. Since 
solving a set of multivariate quadratic polynomial equations 
over a finite field, is an NP-hard problem, our scheme can 
survive future attacks utilizing quantum computers. 
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