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Abstract

By considering the Darboux transformation for the third order Lax operator of the
Sawada-Kotera hierarchy, we obtain a discrete third order linear equation as well as
a discrete analogue of the Gambier 5 equation. As an application of this result, we
consider the stationary reduction of the fifth order Sawada-Kotera equation, which (by
a result of Fordy) is equivalent to a generalization of the integrable case (i) Hénon-
Heiles system. Applying the Darboux transformation to the stationary flow, we find a
Bäcklund transformation (BT) for this finite-dimensional Hamiltonian system, which
is equivalent to an exact discretization of the generalized case (i) Hénon-Heiles system.
The Lax pair for the system is 3× 3, and the BT satisfies the spectrality property for
the associated trigonal spectral curve. We also give an example of how the BT may
be used as a numerical integrator for the original continuous Hénon-Heiles system.

1 Introduction

In the last decade or so there has been a huge interest in discrete integrable mappings
or correspondences. This started with work on discrete integrable equations with a La-
grangian structure [5, 36]. There are now many discrete integrable analogues of a variety of
classical systems including the Lagrange and Euler tops and their generalizations [33, 34].
More recently there has been much interest in discretizations of Hamiltonian systems
which preserve all the integrals of the continuous system [18, 19, 20, 21, 22, 11, 12]. In
[21] such discrete equations, satisfying an additional spectrality property (to be described
in Section 5), were referred to as Bäcklund transformations or BTs, by analogy with the
corresponding structures for integrable partial differential equations. The purpose of this
article is to construct a new BT for a generalized case (i) Hénon-Heiles system, by using
the connection with the Darboux transformation (DT) for the Sawada-Kotera Lax oper-
ator. DTs have been used in the past to construct integrable maps, both by us [18, 19]
and in the context of the dressing chain [31].
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The approach to constructing BTs for finite-dimensional systems that was adopted by
one of us in [18, 19] made use of the Darboux transformation (DT) for the Schrödinger
operator. In particular we found BTs (exact discretizations) for the Garnier and general-
ized case (ii) Hénon-Heiles system by using the fact that their Lax pairs are obtained by
reduction from the KdV hierarchy. In [17] it was explained how this related to the theory
of the Ermakov-Pinney equation. This is the second order nonlinear differential equation

ffxx − 1
2
f2

x + 2V f2 +
�2

2
= 0, (1.1)

where V is an arbitrary function of the independent variable x, the subscript denotes the
derivative, and � is a constant. Often this is rewritten in terms of the variable q with
f = −q2/2, in which case it is known as Pinney’s equation,

qxx + V q +
�2

q3
= 0. (1.2)

In the classical work of Ermakov [9] and Pinney [25] it was shown that (1.1), or equivalently
(1.2), is connected to the Schrödinger equation

Lψ := (∂2
x + V )ψ = 0; (1.3)

the general solution of (1.1) is given by f = ψ1ψ2, a product of two (zero energy) eigen-
functions of the operator L with Wronskian �. As a member of the class 22 of Gambier
[14, 15], the equation (1.1) is linearisable by differentiation with respect to x into the third
order equation

fxxx + 4V fx + 2Vxf = 0 . (1.4)

Various authors [6, 27, 30, 37] have been interested in obtaining discrete versions of
(1.1) or (1.2) which preserve the properties of the continuous equation. Making use of
the connection with (1.3) and the Darboux transformation [8, 7] (DT) for the Schrödinger
operator, one of us [17] obtained a BT for (1.1), leading to an exact discretization of the
Ermakov-Pinney equation which may be written in terms of q as

√
�2 + κ2 q2 q2 +

√
�2 + κ2 q2 q2 = Ωq2. (1.5)

The quantity Ω is a function of Bäcklund parameters κ, κ and a sequence of potentials V ,
V , V related by the Darboux transformation. (Note that we have taken p → f = −q2/2,
� → �/2 compared with the formulae in reference [17].) The discrete Pinney equations in
[6, 17] have also been related to a discrete Schwarzian equation of form

(ϕ−ϕ) (ϕ− ϕ)
(ϕ−ϕ) (ϕ−ϕ)

− ΩΩ
κ2

= 0 , (1.6)

first given by Faddeev and Takhtajan [10]. In the next Section we apply the DT approach
to a third order operator, leading to a discrete Gambier 5 equation, before using these
results in the context of the case (i) Hénon-Heiles system.
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2 Discrete Gambier 5 equation

In the Gambier classification [15], another second order nonlinear equation belonging to
the class 5,

Yxx + 3Y Yx + Y 3 + rY + q = 0 , (2.1)

where r and q are two functions of x, is linearizable by the transformation Y = ∂x logψ
into the third order linear equation

ψxxx + rψx + qψ = 0 .

Setting Y1 = ψx/ψ, Y2 = ψxx/ψ, the equation (2.1) is equivalent to the projective Riccati
system [1]

Y1,x = Y2 − Y 2
1 , (2.2)

Y2,x = −Y1Y2 − rY1 − q . (2.3)

Several attempts to discretize the system (2.2)–(2.3) and therefore the equation (2.1) have
been investigated by Lie group consideration and discrete Painlevé approach [26, 16], in
order to recover (2.2) and (2.3) in the continuous limit.

In order to derive a discrete version of the equation (2.1) we here extend the approach
explained in the previous section for the discrete EP equation by considering the DT
associated with the third order linear equation

ψxxx + V ψx = λψ (2.4)

where V is a function of x and λ is a constant. This equation corresponds to the scattering
problem associated with the Sawada-Kotera [29] nonlinear partial differential equation.
The DT for (2.4) has been previously considered in [3, 23]. Under the DT a new potential
V is obtained from the eigenfunction φ of an associated third order scattering problem

φxxx + V φx = µφ , (2.5)

according to the formula

V = V + 6∂2
x log φ . (2.6)

Then the transformation law for a new functionψ satisfying

ψxxx +V ψx = λψ (2.7)

follows from the DT. In matrix form, this becomes




ψ

ψx

ψxx


 = g




µ− λ −2Y2 2Y1

2λY1 2Y1Y2 − λ− µ −2Y 2
1

2Y2(Y2 − 2Y 2
1 ) −2Y1(Y2 − 2Y 2

1 )
2λ(Y2 − 2Y 2

1 ) +2Y1(λ + µ) −λ− µ







ψ

ψx

ψxx


 (2.8)

with g =
[
(µ− λ)(µ + λ)2

]−1/3.
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From (2.8) and its inverse




ψ

ψx

ψxx


 = ĝ




µ + λ 2(2Y 2
1 − Y2) 2Y1

−2Y1(Y2 − 2Y 2
1 )

2λY1 −µ + λ 2Y 2
1

−2Y2(Y2 − 2Y 2
1 )

2λY2 −2Y1(µ− λ) 2Y1Y2 + λ− µ







ψ

ψx

ψxx


 , (2.9)

with ĝ = g−1(µ2 − λ2)−1, one may obtain the following three equations:

ψ − g(µ− λ)ψ = g(−2Y2ψx + 2Y1ψxx) (2.10)
g(µ2 − λ2)ψ − (µ + λ)ψ = 2(2Y 2

1 − Y 2)ψx + 2Y 1ψxx (2.11)

ψ −g(µ− λ)ψ + 4ggλ(Y 2Y1 − Y 1Y2 + 2Y 1Y
2
1 )ψ

= 2gg
(
(λ + µ)(Y 2 + 2Y1Y 1) − 2Y 2Y1Y2 + 2Y 1Y2(Y2 − 2Y 2

1 )
)
ψx

+2gg
(−(λ + µ)Y 1 + 2Y1(Y 2Y1 + 2Y 1Y

2
1 − Y 1Y2)

)
ψxx (2.12)

The elimination of ψx, ψxx between (2.10), (2.11) and (2.12) yields the discrete third order
equation

A ψ + g
(
(λ + µ) B + (λ− µ) A + 2AA

)
ψ

+gg(λ + µ)
(
(λ− µ) B + (λ + µ)A− 2AA

)
ψ

+ggg(λ2 − µ2)(λ + µ)Aψ = 0, (2.13)

where

A = Y1Y 2 − Y 1Y2 − 2Y 2
1Y1, B = Y 1Y 2 − Y 1Y 2 − 2Y 2

1Y 1 − 2Y 1Y1Y 1.

In the continuous limit (h → 0),

ψ ≡ ψ(x + 2h) = ψ + 2hψx + 2h2ψxx +
4
3
h3ψxxx + O(h4), (2.14)

ψ ≡ ψ(x + h) = ψ + hψx +
h2

2
ψxx +

h3

6
ψxxx + O(h4), (2.15)

ψ ≡ ψ(x− h) = ψ − hψx +
h2

2
ψxx − h3

6
ψxxx + O(h4), (2.16)

with

µ = − 8
h3

+ O(1), Y1 = −2
h

+
h

6
V + O(h2), (2.17)

the discrete equation (2.13) tends to the third order linear equation (2.4) and the relation
(2.17) for Y1 and the one for Y 1 are compatible with the transformation (2.6). Therefore
defining

ψ/ψ = 1 + hY ;ψ/ψ = 1 + hY ;ψ/ψ = 1 + hY (2.18)

and substituting in (2.13) we obtain the discrete Gambier 5 equation which in the contin-
uous limit tends to (2.1).
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3 Generalized Hénon-Heiles case (i)

A generalization of the integrable case (i) of the Hénon-Heiles system has the Hamiltonian

h1 =
1
2

(p2
1 + p2

2) +
1
6
q3
1 +

1
2
q1q

2
2 − �2

2q2
2

. (3.1)

The positions qj and pj are canonically conjugate variables, and � is a constant parameter.
Hamilton’s equations are

q′1 = p1, q′2 = p2, p′1 = −1
2
q2
1 − 1

2
q2
2, p′2 = −q1q2 − �2

q3
2

, (3.2)

giving the Newton equations

q′′1 = −1
2

(
q2
1 + q2

2

)
, q′′2 = −q1q2 − �2

q3
2

. (3.3)

Observe that the second Newton equation for q2 has the same form as Pinney’s equation
(1.2). The equations of motion (3.2) can be written in the Lax form

L′ = [N,L], (3.4)

with

L(λ) =




6λq1 −3
2q

2
1 − 1

2q
2
2 9λ− 3p1

9λ2 + 3λp1 −3λq1 − q2p2 q2
2

−λ
(

3
2q

2
1 + 1

2q
2
2

)
9λ2 + �2

q2
2
− p2

2 −3λq1 + q2p2


 ,

and

N(λ) =


 0 1 0

0 0 1
λ −q1 0


 , (3.5)

where λ is the spectral parameter, and the prime in (3.4) denotes the derivation corre-
sponding to the flow generated by the Hamiltonian h1 (3.1). The Lax equation (3.4) is
just the compatibility condition for the matrix linear system

L Ψ = η Ψ, (3.6)

Ψ′ = NΨ, (3.7)

which was derived from the Lax pair for the Sawada-Kotera equation in [13].
The Hamiltonian flow preserves the spectral curve Γ : P(λ, η) = 0, with

P(λ, η) ≡ det (η1 − L(λ)) = η3 − �2η − 729λ5 + 162h1λ
3 − 9h2λ. (3.8)

The two independent conserved quantities for the generalized case (i) Hénon-Heiles system
are the coefficients h1, h2 appearing in the formula (3.8) for the spectral curve, given by
(3.1) and

h2 =
(
p1p2 +

1
2
q2
1q2 +

1
6
q3
2

)2

− �2
(
p2
1

q2
2

+
2
3
q1

)
. (3.9)

The algebraic variety Γ in C
2 defined by the vanishing of the polynomial (3.8) is a Riemann

surface of genus 4. Observe from (3.8) that Γ has the involution

(λ, η) ∈ Γ ⇐⇒ (−λ,−η) ∈ Γ. (3.10)
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Figure 1. Plot of q1 versus q2 from numerical integration of the case (i) generalized Hénon-Heiles
system with parameter �2 = −10 and initial data q1(0) = −1.8, p1(0) = 14, q2(0) = 2, p2(0) = 5.

4 Bäcklund transformation

To construct a Bäcklund transformation for the generalized integrable case (i) Hénon-
Heiles system, we use the fact that the Hamiltonian flow generated by (3.1) is a stationary
flow in the Sawada-Kotera hierarchy, as first observed in [13]. Thus if Ψ in (3.6) and (3.7)
is written as a column vector, Ψ = (ψ,ψ′, ψ′′)T , then with the form of the matrix N as
in (3.5), the first component just satisfies the spatial part of the Sawada-Kotera Lax pair,
i.e.

ψ′′′ + q1ψ
′ = λψ. (4.1)

From our previous formula (2.8) in Section 2, we know that the Darboux transformation
for the linear problem (4.1) can be written in matrix form as

Ψ−→ Ψ̃ = M(λ, µ)Ψ, (4.2)

where (up to rescaling by a constant prefactor, which can depend on λ, µ)

M(λ, µ) =




µ− λ −2Y2 2Y1

2Y1λ 2Y1Y2 − λ− µ −2Y 2
1

2Y2(Y2 − 2Y 2
1 ) −2Y1(Y2 − 2Y 2

1 )
2(Y2 − 2Y 2

1 )λ +2Y1(λ + µ) −λ− µ




, (4.3)

and

Y1 =
φ′

φ
, Y2 =

φ′′

φ
, φ′′′ + q1φ

′ = µφ. (4.4)
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The Darboux transformation (4.2) acts on both parts of the Lax pair, so that Ψ̃ satisfies
the same linear system (3.6) and (3.7), but with L, N replaced by L̃, Ñ, which are the same
matrices but with qj , pj replaced by new positions and momenta q̃j , p̃j . In particular,
the first component ψ̃ of the vector Ψ̃ is an eigenfunction of the Darboux-transformed
Sawada-Kotera Lax operator, i.e.

ψ̃′′′ + q̃1ψ̃
′ = λψ̃.

Thus the Darboux transformation acting on the linear system induces a Bäcklund trans-
formation (BT) on the finite-dimensional Hamiltonian system, and applying (4.2) to the
first equation (3.6) yields the discrete Lax equation

M(λ, µ) L(λ) = L̃(λ) M(λ, µ). (4.5)

However, a priori the quantities Y1 and Y2 are defined in terms of derivatives of the
eigenfunction φ as in (4.4). In order for (4.5) to define a discrete dynamical system, these
quantities must be obtained as suitable functions of the dynamical variables qj , pj and/or
q̃j , p̃j . As it stands, (4.5) provides the correct form of the BT, with Y1 and Y2 to be
determined.

To find the precise form of the mapping from qj , pj to q̃j , p̃j , it is necessary to eliminate
Y1 and Y2 by comparing coefficients of λ on both sides of (4.5), with µ being regarded
as a parameter in the BT (the Bäcklund parameter). Initially (to prove that the BT
is a canonical transformation) it will be most convenient to consider the BT in implicit
form, with both the Yj and the momenta given as functions of the coordinates, i.e. Yj =
Yj(qk, q̃k), pj = pj(qk, q̃k), p̃j = p̃j(qk, q̃k) for j = 1, 2. Comparison of both sides of (4.5)
yields the following relations:

p1 = 3Y 3
1 + (2q1 + q̃1)Y1 − 1

12Y1

(
q2
2 − q̃2

2

) − 3µ,
p̃1 = −3Y 3

1 − (q1 + 2q̃1)Y1 − 1
12Y1

(
q2
2 − q̃2

2

)
+ 3µ,

(4.6)

p2q2 = Z + q2
2

(
Y1 − 1

6Y1
(q1 − q̃1) − µ

2Y 2
1

)
,

p̃2q̃2 = −Z + q̃2
2

(
−Y1 − 1

6Y1
(q1 − q̃1) + µ

2Y 2
1

)
,

(4.7)

where

Z = 9Y 5
1 +

9
2

(q1 + q̃1)Y 3
1 − 9µY 2

1 +
1
2

(
q2
1 + q1q̃1 + q̃2

1 +
1
2
q2
2 +

1
2
q̃2
2

)
Y1

+
1

24Y1
(q1 − q̃1)(q2

2 − q̃2
2) +

µ

4Y 2
1

(q2
2 + q̃2

2), (4.8)

with

Z2 = �2 +
µ2q2

2 q̃
2
2

4Y 4
1

, (4.9)

and also

Y2 = Y 2
1 +

1
6

(q̃1 − q1). (4.10)
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The above formulae deserve some further explanation. Observe that from (4.6) and
(4.7) the momenta are given in terms of the coordinates as well as Y1 and the quantity Z.
In turn, Z is defined in terms of the coordinates and Y1 according to the expression (4.8).
Finally, substituting for Z from (4.8) into (4.9), we see that Y1 satisfies a polynomial
of degree 14 with coefficients depending on the coordinates q1, q2, q̃1, q̃2 and µ. The
discrete Lax equation (4.5) means that the spectral curve given by (3.8) is preserved, and
hence the two quantities h1, h2 are conserved under the BT. So as it stands the Bäcklund
transformation is defined only implicitly; the equation for Y1 introduces multivaluedness,
so we have an integrable correspondence of the kind first detailed in [36]. In order to have
an explicit BT, we make use of the spectrality property in the next Section. However,
first it is necessary to derive the exact generating function S(qk, q̃k) which proves that the
transformation is canonical. From the expressions (4.6), (4.7) for the momenta we find
that

dS =
∑

j=1,2

pj dqj − p̃j dq̃j

with

S =
63
5
Y 5

1 +
15
2

(q1 + q̃1)Y 3
1 − 18µY 2

1 +
3
2

(
q2
1 + q1q̃1 + q̃2

1 +
1
2
q2
2 +

1
2
q̃2
2

)
Y1

−3µ(q1 + q̃1) − 1
24Y1

(q1 − q̃1)(q2
2 − q̃2

2) +
�

2
log

(
Z − �

Z + �

)
. (4.11)

It is interesting to compare this with the formula for the generating function of the case
(ii) Hénon-Heiles system, which was presented in [18, 19]. In that case, S has exactly the
same functional dependence on an analogous quantity Z, and is a quintic expression in
another quantity y (the analogue of Y1) which for case (ii) is a function of the coordinates
given by the root of a quadratic (rather than a degree 14 equation as here for case (i)).

5 Spectrality and the explicit mapping

The spectrality property is the key to writing the BT for generalized case (i) Hénon-Heiles
in an explicit form. Essentially it means that given an eigenvalue ξ of the Lax matrix
L(µ), so that P(µ, ξ) = 0 and (µ, ξ) is a point on the spectral curve Γ, this eigenvalue is
canonically conjugate to the Bäcklund parameter µ. To see this we first note that when
λ = µ the Darboux matrix M(µ, µ) as in (4.3) becomes degenerate, with a one-dimensional
kernel spanned by a vector Φ:

M(µ, µ) Φ = 0, Φ = (1, Y1, Y2)T . (5.1)

By applying both sides of the discrete Lax equation (4.5) to the vector Φ and setting λ = µ
we see that L(µ)Φ ∈ ker M(µ, µ), which implies that Φ is an eigenvector of L(µ), i.e.

L(µ) Φ = ξ Φ (5.2)

and so P(µ, ξ) ≡ det (ξ1 − L(µ)) = 0.
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A careful calculation (taking into account the derivatives ∂Z
∂µ , ∂Y1

∂µ ) shows that

∂S

∂µ
=

Z

µ
− 9Y 2

1 − 1
4Y 2

1

(q2
2 + q̃2

2) − 3(q1 + q̃1).

If we consider the first row of the equation (5.2) and substitute for Y2 from (4.10), then it
is easy to see that

ξ = −µ
∂S

∂µ
, (5.3)

which shows that µ, ξ are canonically conjugate variables. This is the required spectrality
property, as introduced in [21].

Given the conjugate pair (µ, ξ) it is now possible to describe the BT explicitly as an
iterative map, rather than just an integrable correspondence. The exact formulae for the
new variables q̃j , p̃j in terms of qj , pj and the Bäcklund parameter µ are very unwieldy
if written out in full, so instead we prefer to present each iterative step of the BT in the
form of an algorithm, which is easily implemented on a computer:

Step 1. Pick a point on the spectral curve: Given the initial data qj , pj , the values
of the conserved quantities h1 and h2 are fixed; these are preserved under iteration of
the BT. Choosing a value for the Bäcklund parameter µ, the conjugate variable ξ is then
found from the formula (3.8) for the spectral curve Γ : P(µ, ξ) = 0, i.e. as a root of a
cubic equation. This gives a point (µ, ξ) on the spectral curve Γ.
Step 2. Find Y1 and Y2: By picking any two rows of the eigenvector equation (5.2), we
can solve for Y1 and Y2 in terms of qj , pj and the spectral data (µ, ξ) ∈ Γ. For instance,
taking the first two rows we have( −3

2q
2
1 − 1

2q
2
2 9µ− 3p1

−3µq1 − q2p2 − ξ q2
2

) (
Y1

Y2

)
=

(
ξ − 6µq1

−9µ2 − 3µp1

)
, (5.4)

which is easily solved to obtain explicit expressions for Y1 and Y2 (which we omit for
reasons of length).
Step 3. Find q̃1: Given the explicit form of Y1 and Y2 from (5.4), the new coordinate q̃1

is found in terms of the initial and spectral data by solving (4.10) to yield

q̃1 = q1 + 6(Y2 − Y 2
1 ). (5.5)

Step 4. Find p̃1: Subtracting the two equations (4.6) and solving for p̃1 gives

p̃1 = p1 − 6Y 3
1 − 3(q1 + q̃1)Y1 + 6µ, (5.6)

and this is found entirely in terms of qj , pj and µ, ξ by substituting for Y1 from Step 2
and for q̃1 from (5.5) as in Step 3.
Step 5. Find q̃2: Given p̃1 as in (5.6) and the other quantities obtained in Steps 1-4, q̃2

is found by solving the second equation of (4.6) to give

q̃2
2 = q2

2 + 12Y1

(
p̃1 + 3Y 2

1 + (q1 + 2q̃1)Y1 − 3µ
)
. (5.7)

Step 6. Find p̃2: Adding the pair of equations (4.7) and solving for p̃2 gives

p̃2 =
1
q̃2

(
−p2q2 + (q2

2 − q̃2
2)Y1 − 1

6Y1
(q1 − q̃1)(q2

2 + q̃2
2) − µ

2Y 2
1

(q2
2 − q̃2

2)
)
. (5.8)
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From (5.7) and Steps 1-4, the quantities Yj and q̃j for j = 1, 2 are all found in terms of
the initial data qj , pj and spectral data (µ, ξ), and thus from (5.8) it is clear that p̃2 is
found in these terms in the final Step.

6 Continuum limit

The discrete equations (4.6), (4.7) have a continuum limit to the Hamilton’s equations
(3.2) with continuous time t by taking qj = qj(t), pj = pj(t) with

q̃j = qj(t + h) ∼ qj + q′jh + . . . , p̃j = pj(t + h) ∼ pj + p′jh + . . . ,

for j = 1, 2, and

Y1 ∼ −2
h

+
q1

6
h + O(h2), µ ∼ − 8

h3
+ O(h0), (6.1)

by taking the limit h → 0. Thus it is apparent that the Bäcklund parameter µ plays the
role of an inverse time step. With the limiting behaviour as in (6.1) is clear from (4.10)
that Y2 has the leading order behaviour

Y2 ∼ 4
h2

− 2
3
q1 + O(h). (6.2)

An easier way to check the continuum limits, rather than substituting the small h
expansions into (4.6), (4.7), is to consider the discrete Lax equation (4.5). From the
expressions (6.1) and (6.2) it is straighforward to see that the matrix M has the expansion

M(λ, µ) ∼ − 8
h3

(
1 + hN(λ) + O(h2)

)
, (6.3)

If the shifted Lax matrix is expanded as L̃ ∼ L + hL′ + O(h2), and this is substituted
with (6.3) into (4.5), then the continuous Lax equation (3.4) arises in the limit h → 0.

It is also instructive to consider the discrete Newton equations

p̃j(qk
, qk) = pj(qk, q̃k) (6.4)

(with q
j

denoting qj evaluated at a reverse time step) arising from the BT. Using the
formula (4.6) we see that the first discrete Newton equation, j = 1 in (6.4), has the form

3(Y 3
1 +Y 3

1)+(2q1+ q̃1)Y1+(q
1
+2q1)Y 1−

1
12

(
(q2

2 − q̃2
2)/Y1 − (q2

2
− q2

2)/Y 1

)
−3(µ+µ) = 0,

and this has a continuum limit to the first Newton equation in (3.3). Taking j = 2 in (6.4)
yields the second discrete Newton equation, which can be rearranged as√

�2 +
µ2 q2

2 q̃
2
2

4Y 4
1

+

√
�2 +

µ2 q2
2 q

2
2

4Y 4
1

= Ωq2
2, (6.5)

with

Ω = −Y1 − Y 1 +
1
6

(
(q1 − q̃1)/Y1 − (q

1
− q1)/Y 1

)
+

1
2

(
µ

Y 2
1

+ µY 2
1

)
.
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In order to obtain the expression (6.5), we have taken a square root in the equation (4.9)
for Z and substituted into (4.7), and similarly for Z with all variables shifted back by one
lattice step. This second discrete Newton equation has a continuum limit to the second
Newton equation for q2 in (3.3). It is interesting to observe that (6.5) is almost identical in
form to the discrete Pinney equation (1.5) found in [17] using the Darboux transformation
for the (second order) Schrödinger equation (instead of the Darboux transformation for
the third order Sawada-Kotera Lax operator, as in this case).

7 Numerical experiments

Since the BT we have constructed has a continuum limit to the Hamilton’s equations
(3.2), and preserves the value both integrals h1, h2, we expect that it should be a good
symplectic integrator for this generalized Hénon-Heiles system if the Bäcklund parameter
µ is large. As an example we consider solving the initial value problem for (3.2) with
parameter �2 = −10 and initial data

q1(0) = −1.8, p1(0) = 14, q2(0) = 2, p2(0) = 5. (7.1)

Using its default numerical integration package (RFK45), the computer algebra package
MAPLE produced the graphical plot Figure 1 of q1 versus q2 for an integration from t = 0
to t = 2 with timestep h = 0.01.

–2

0

2

4

6

0.5 1 1.5 2

Figure 2. Successive iterates of the BT plotted as q1(j/25) (lower curve) and q2(j/25) (upper
curve). The discrete mapping is iterated 50 times (j = 0, . . . , 50) with parameter �2 = −10, initial
data q1(0) = −1.8, p1(0) = 14, q2(0) = 2, p2(0) = 5 and Bäcklund parameter µ = −125000.

To make a comparison with some standard numerical integrators, we have applied 50
iterations of the BT, starting from the initial values (7.1), and choosing �2 = −10 and
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Bäcklund parameter µ = −125000 corresponding to a time step h = 0.04 (equivalent to
integrating from t = 0 to t = 2). This corresponds to values of the Hamiltonians of

h1 = 107.178000, h2 = 6039.18204 (7.2)

to 9 significant figures. The chosen value of the other spectral parameter is roughly
ξ = 2.8 × 109, corresponding to a real root of the cubic P(µ, ξ) = 0. The iteration of
the algorithm in Section 5 is straightforward to perform with MAPLE, and produces final
values (to 9 significant figures)

q1,BT (2) = −3.38140912, p1,BT (2) = −17.0082640,

q2,BT (2) = 7.20251308, p2,BT (2) = 10.6388167. (7.3)

We have plotted the iteration of the BT in Figure 2. Using MAPLE’s default RFK45
integrator with the same timestep h = 0.04 instead gives

q1,RFK(2) = −3.38140943, p1,RFK(2) = −17.0082654,

q2,RFK(2) = 7.20251377, p2,RFK(2) = 10.6388180. (7.4)

At the end of 50 steps of the BT, the values (7.2) of the Hamiltonians are not preserved
exactly due to rounding errors, but differ only in the tenth significant figure. For the
RFK45 method we find instead

h1,RFK = 107.178010, h2,RFK = 6039.18310,

which clearly differ from (7.2). It is also interesting to note that when we integrated from
t = 0 to t = 2 with the initial conditions (7.1) using a second-order Runge-Kutta method
(RK2) with the same timestep h = 0.04, the integration blew up and gave values for the
Hamiltonians of approximately

h1,RK2 = 1.0 × 104, h2,RK2 = 6.5 × 107.

Thus the BT seems to give the most accurate results with this timestep.

8 Conclusions

We have constructed an exact discrete analogue of the generalized case (i) Hénon-Heiles
system, which is associated with a trigonal spectral curve (3.8) of genus 4. From general
considerations (see e.g. [11, 12, 22]) we know that this discrete mapping corresponds to
a discrete linear flow on the (four-dimensional) Jacobian of this spectral curve. However,
the Hénon-Heiles system has two degrees of freedom, and with two other authors one of
us [35] constructed the separation of variables for this system in terms of a genus two
hyperelliptic spectral curve of the form

r2 = P6(s), (8.5)
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with P6 a sextic polynomial in s. From the Liouville-Arnold theorem [2] it is clear that
the level set of the integrals h1, h2 is a two-dimensional torus. Thus the (discrete or
continuous) Hénon-Heiles flow must correspond to a linear flow on a two-dimensional
subvariety of the trigonal Jacobian. However, we conjecture that this can be understood
directly on the level of the spectral curves in the sense that the genus four curve (3.8)
should be a double cover of the hyperelliptic curve (8.5). We will describe this explicitly
in future work, together with the discretization of the case (iii) Hénon-Heiles system which
is related to case (i) by a canonical transformation [4, 28].
Note added in proof: Since this paper was originally written, one of our colleagues,
John Merriman, has explicitly constructed the genus two hyperelliptic curve (8.5) as a
quotient of (3.8) by the involution (3.10). This will be presented in a forthcoming article.
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