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Abstract

It is shown that for a certain class of Yang-Baxter maps (or set-theoretical solutions
to the quantum Yang-Baxter equation) the Lax representation can be derived straight
from the map itself. A similar phenomenon for 3D consistent equations on quad-
graphs has been recently discovered by A. Bobenko and one of the authors, and by F.
Nijhoff.

1 Introduction

In 1990 V.G. Drinfeld suggested the problem of studying the solutions of the quantum
Yang-Baxter equation in the case when the vector space V is replaced by an arbitrary set
X and tensor product by the direct product of the sets (“set-theoretical solutions to the
quantum Yang-Baxter equation”) [1]. In the paper [2] one of the authors investigated the
dynamical aspects of this problem and suggested a shorter term “Yang-Baxter map” for
such solutions.

For each Yang-Baxter map one can introduce the hierarchy of commuting transfer-
maps which are believed to be integrable (see [2]). In this note we explain how to find Lax
representations for a certain class of Yang-Baxter maps thus giving another justification
for this conjecture. We were motivated by the explicit examples of the Yang-Baxter maps
from [2] and recent results on the equations on quad-graphs, satisfying the so-called “3D
consistency condition” [3, 4].
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2 Yang-Baxter maps and their Lax representations

Let X be any set and R be a map:

R : X ×X → X ×X.
Let Rij : Xn → Xn, Xn = X ×X × ..... ×X be the map which acts as R on i-th and
j-th factors and identically on the others. Let R21 = PRP , where P : X2 → X2 is the
permutation: P (x, y) = (y, x).

Following [2], we call R the Yang-Baxter map if it satisfies the Yang-Baxter relation

R23R13R12 = R12R13R23, (2.1)

considered as the equality of the maps of X ×X ×X into itself. If additionally R satisfies
the relation

R21R = Id, (2.2)

it is called reversible Yang-Baxter map. Reversibility condition will not play an essential
role in this note but it is satisfied in all the examples we present.

The standard way to represent the Yang-Baxter relation is given by the diagram in
Fig. 1. However we would like to use here also an alternative (dual) way to visualize
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Figure 1. Standard representation of the Yang–Baxter relation

it, which emphasizes the relation with 3D consistency condition for discrete equations on
quad-graphs (see [3, 5]). In this representation the fields (elements of X) are assigned to
the edges of elementary quadrilaterals, so that Fig.2 encodes the map R : (x, y) �→ (x̃, ỹ).
Then the Yang-Baxter relation is illustrated as in Fig. 3. It encodes the 3D consistency
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Figure 2. A map associated to an elementary quadrilateral; fields are assigned to edges



Lax Matrices for Yang-Baxter Maps 225

❑

�



R13R23

R12
x

y

z

x23
y13

z12 x2
y1

z1 =
❑�



R13

R23

R12

x
y

z

x23
y13

z12

x3

y3

z2

Figure 3. “Cubic” representation of the Yang–Baxter relation

of the maps R attached to all facets of an elementary cube. The left–hand side of (2.1)
corresponds to the chain of maps along the three rear faces of the cube on Fig. 3:

R12 : (x, y) �→ (x2, y1), R13 : (x2, z) �→ (x23, z1), R23 : (y1, z1) �→ (y13, z12),

while its right–hand side corresponds to the chain of the maps along the three front faces
of the cube:

R23 : (y, z) �→ (y3, z2), R13 : (x, z2) �→ (x3, z12), R12 : (x3, y3) �→ (x23, y13).

So, (2.1) assures that two ways of obtaining (x23, y13, z12) from the initial data (x, y, z)
lead to the same results.

One can consider also parameter-dependent Yang-Baxter maps R(λ, µ), with λ, µ ∈ C,
satisfying the corresponding version of Yang-Baxter relation

R23(µ, ν)R13(λ, ν)R12(λ, µ) = R12(λ, µ)R13(λ, ν)R23(µ, ν). (2.3)

The reversibility condition in this situation reads

R21(µ, λ)R(λ, µ) = Id. (2.4)

One thinks of the parameters λ, µ as assigned to the same edges of the quadrilateral in
Fig. 2 as the fields x, y are. Moreover, opposite edges are thought of as carrying the same
parameters. Thus, in Fig. 3 all edges parallel to the x (resp. y, z) axis, carry the parameter
λ (resp. µ, ν). Although this can be considered as a particular case of the general notion,
by introducing X̃ = X×C and R̃(x, λ; y, µ) = R(λ, µ)(x, y), it is convenient for us to keep
the parameter separately.

By the Lax matrix (or Lax representation) for such a map we will mean the matrix
A(x, λ; ζ) depending on the point x ∈ X, parameter λ and additional (“spectral”) param-
eter ζ ∈ C, which satisfies the following relation:

A(x, λ; ζ)A(y, µ; ζ) = A(ỹ, µ; ζ)A(x̃, λ; ζ), (2.5)

whenever (x̃, ỹ) = R(λ, µ)(x, y). As it was shown in [2], such a matrix allows one to produce
integrals for the dynamics of the related transfer-maps.
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Our main result is the following observation.
Suppose that on the set X we have an action of the linear group G = GLN , and that

the Yang-Baxter map R(λ, µ) has the following special form:

x̃ = B(y, µ, λ)[x], ỹ = A(x, λ, µ)[y], (2.6)

where A,B : X × C × C → GLN are some matrix valued functions on X depending on
parameters λ and µ and A[x] denotes the action of A ∈ G on x ∈ X. Suppose for the
beginning that the action of G on X is effective, i.e. A acts identically on X only if A = I.
Then we claim that both A(x, λ, ζ) and BT(x, λ, ζ) are Lax matrices for R. The claim
about B is equivalent to saying that B(x, λ, ζ) is a Lax matrix for R21.

The following argument is illustrated by either the standard or the “cubic” diagram for
the Yang-Baxter relation (Figs. 1,3). Look at the values of z12 produced by the both parts
of the Yang-Baxter relation (2.3): the left-hand side gives z12 = A(y1, µ, ν)A(x2, λ, ν)[z],
while the right-hand side gives z12 = A(x, λ, ν)A(y, µ, ν)[z]. Now since we assume that
the action of G is effective, we immediately arrive at the relation

A(x, λ, ν)A(y, µ, ν) = A(y1, µ, ν)A(x2, λ, ν),

which holds whenever (x2, y1) = R(λ, µ)(x, y). This coincides with (2.5), an arbitrary
parameter ν playing the role of the spectral parameter ζ.

Similarly, one could look at the values of x23 produced by the both parts of (2.3): the
left-hand side gives x23 = B(z, ν, λ)B(y, µ, λ)[x], while the right-hand side gives x23 =
B(y3, µ, λ)B(z2, ν, λ)[x]. Effectiveness of the action of G again implies:

B(z, ν, λ)B(y, µ, λ) = B(y3, µ, λ)B(z2, ν, λ),

whenever (y3, z2) = R(µ, ν)(y, z). This turns into (2.5) for the transposed matrices BT (or
for the inverse matrices B−1); the role of spectral parameter is here played by an arbitrary
parameter λ.

It should be mentioned that this kind of arguments was first used to derive Lax repre-
sentations for 3D consistent discrete equations on quad-graphs with fields on vertices in
[3, 4]. In fact the 3D consistency condition is the exact analog of the Yang-Baxter relation
for the problems with fields on vertices (see [5]).

In order to cover all the known examples we have to extend the proposed scheme in
the following way. Let us say that A(x, λ, ζ) gives a projective Lax representation for the
Yang-Baxter map R if the relation (2.5) holds up to multiplication by a scalar matrix
cI, where c may depend on all the variables in the relation. One can easily modify the
arguments from [2] to produce the integrals for the transfer-maps using the projective Lax
matrix: all the ratios of the eigenvalues of the monodromy matrix are obviously preserved
by these maps.

Assume now that the action of G = GLN on X is projective, i.e. scalar matrices
are acting trivially and moreover if the action of A on X is trivial then A is a scalar.
Then our previous considerations show that the matrices A(x, λ, ζ) and BT(x, λ, ζ) give
projective Lax representations for the corresponding Yang-Baxter maps (2.6). In practice
for a natural choice of matrices A, B in (2.6) we have actually proper Lax representations,
as the following examples show.
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3 Example 1: Adler’s map

Here X = CP1 and the map has the form

x̃ = y − λ− µ
x+ y

, ỹ = x− µ− λ
x+ y

. (3.1)

This map (modulo additional permutation) first appeared in Adler’s paper [6] as a sym-
metry of the periodic dressing chain [7]. The Lax pair for this map was known from the
very beginning since it comes from re-factorization problem for the matrix

A(x, λ, ζ) =
( x x2 + λ− ζ

1 x

)
.

Our point is that we can actually see this matrix directly in the map:

ỹ = x− µ− λ
x+ y

=
x2 + xy − (µ− λ)

x+ y
= A(x, λ, µ)[y],

where the group G = GL2 is acting on CP1 by Möbius transformations. In this example
B(x, λ, ζ) = A(x, λ, ζ), which reflects the symmetry of the map: R21 = R.

4 Example 2: Interaction of matrix solitons

One-soliton solutions of the matrix KdV equation

Ut + 3UUx + 3UxU + Uxxx = 0

have the form [8]
U = 2λ2P sech2(λx− 4λ3t),

where the matrix amplitude P must be a projector: P 2 = P , and λ is the parameter

measuring the soliton velocity. If we assume that P has rank 1 then P =
ξ ⊗ η
〈ξ, η〉 . Here ξ

is a vector in a vector space V of dimension N , η is a (co)vector from the dual space V ∗,
and bracket 〈ξ, η〉 means the canonical pairing between V and V ∗.

The change of the matrix amplitudes P of two solitons with the velocities λ1 and λ2

after their interaction is described by the following Yang-Baxter map [8, 9]:

R(λ1, λ2) : (ξ1, η1; ξ2, η2) → (ξ̃1, η̃1; ξ̃2, η̃2),

ξ̃1 = ξ1 +
2λ2〈ξ1, η2〉

(λ1 − λ2)〈ξ2, η2〉ξ2, η̃1 = η1 +
2λ2〈ξ2, η1〉

(λ1 − λ2)〈ξ2, η2〉η2, (4.1)

ξ̃2 = ξ2 +
2λ1〈ξ2, η1〉

(λ2 − λ1)〈ξ1, η1〉ξ1, η̃2 = η2 +
2λ1〈ξ1, η2〉

(λ2 − λ1)〈ξ1, η1〉η1. (4.2)

In this example X is the set of projectors P of rank 1 which is the variety CPN−1 ×
CPN−1, and the group G = GLN is acting on the projectors by conjugation (which
corresponds to the natural action of GL(V ) on V ⊗ V ∗).
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It is easy to see that the formulas (4.1), (4.2) are of the form (2.6) with the matrices

A(P, λ, ζ) = B(P, λ, ζ) = I +
2λ
ζ − λP = I +

2λ
ζ − λ · ξ ⊗ η〈ξ, η〉

(note that again R21 = R). Our results show that the matrix A(P, λ, ζ) gives a projective
Lax representation for the interaction map. In [9] it is shown that this is actually a genuine
Lax representation. One can explain in the same way the Lax matrices for more general
Yang-Baxter maps on Grassmannians from [9].

5 Example 3: Yang-Baxter maps arising from geometric
crystals

Let X = Cn, and define R : X ×X → X ×X by the formulas [10],[11]

x̃j = xj
Pj

Pj−1
, ỹj = yj

Pj−1

Pj
, j = 1, . . . , n, (5.1)

where

Pj =
n∑

a=1

(
a−1∏
k=1

xj+k

n∏
k=a+1

yj+k

)
(5.2)

(in this formula subscripts j + k are taken (mod n)). Clearly, the map (5.1) keeps the
following subsets invariant: Xλ×Xµ ⊂ X×X, where Xλ = {(x1, . . . , xn) ∈ X :

∏n
k=1 xk =

λ}. It can be shown that the restriction of R to Xλ × Xµ may be written in the form
(2.6). For this, the following trick is used. Embed this set into CPn−1 × CPn−1:

J(x, y) = (z(x), w(y)), z(x) = (1 : z1 : . . . : zn−1), w(y) = (w1 : . . . : wn−1 : 1),

zj =
j∏

k=1

xk , wj =
n∏

k=j+1

yk .

Then it is easy to see that in coordinates (z, w) the map R is written as

z̃ = B(y, µ, λ)[z] , w̃ = A(x, λ, µ)[w] ,

with certain matrices B,A from G = GLn, where the standard projective action of GLn

on CPn−1 is used. Moreover, a simple calculation shows that the inverse matrices are
cyclic two-diagonal:

B−1(y, µ, λ) =




y1 −1 0 . . . 0 0
0 y2 −1 . . . 0 0
0 0 y3 . . . 0 0

. . . . . .
0 0 0 . . . yn−1 −1
−λ 0 0 . . . 0 yn



, (5.3)
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A−1(x, λ, µ) =




x1 0 0 . . . 0 −µ
−1 x2 0 . . . 0 0
0 −1 x3 . . . 0 0

. . . . . .
0 0 0 . . . xn−1 0
0 0 0 . . . −1 xn



. (5.4)

To be more precise the matrices A,B are defined only up to multiplication by scalar
matrices. These scalar matrices are chosen in (5.3), (5.4) in such a way that the dependence
of the matrices B−1, A−1 on their “own” parameters (µ and λ, resp.) drops out, so that
the only parameter remaining in the Lax representation is the spectral one. In other words,
the Lax representation does not depend on the subset Xλ × Xµ to which we restricted
the map. Note also that we get this time only one Lax representation for R, since the
matrices BT coincide with A. It can be checked that this is actually a genuine (not only
projective) Lax representation.

As the last remark we would like to mention that our Lax representation is closely
related to the notion of the structure group GR of the Yang-Baxter map R [10]. It was
shown by Etingof in [10] that for the map (5.1) the so-called reduced structure groups G+

R

and G−
R can be realized as the subgroups of the loop group PGLn(C(λ)) generated by the

matrix functions A−1(x, ·, λ) with x ∈ X, resp. by B−1(x, ·, λ) with x ∈ X.
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