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Abstract

A fractional g-difference operator is presented and its properties are investigated. Es-
pecially, it is shown that this operator possesses an eigen function, which is regarded as
a g-discrete analogue of the Mittag-Leffler function. An integrable nonlinear mapping
with fractional g-difference is also presented.

1 Introduction

Fractional derivative goes back to the Leipniz’s note in his list to L’Hospital in 1695
and we now have many definitions of fractional derivatives [9]. In the last few decades,
many authors pointed out that derivatives and integrals of fractional order, especially
1/2-derivative, are very suitable for the description of physical phenomena.

We first define a fractional integral operator I¢ as follows.

Definition 1. Let a be a nonnegative real number. For a given function u(t)(t > 0), its
integral of order a is defined as follows.

I%u(t) = /0 K(a;t — s)u(s)ds (1.1)
IOu(t) = u(t)

where K(a;t) is a monomial given by
a—1
I'(a)

Fractional derivatives of order a > 0 are defined by a combination of normal derivative
and fractional integral in the following two manners.

K(a;t) = (t>0, a>0). (1.3)
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Definition 2. Let m be a positive integer such as m — 1 < a < m. Then for a given m
times continuously differentiable function u(t), its derivative of order a is defined by

D%(t) = (I *D™u)(t) = /0 K(m—a;t — s)u™ (s)ds (1.4)

Definition 3. For the same a,m,u(t) in the previous definition, a derivative of order a
1s defined by

Dou(t) = (D™ ™) (t) = (%)m /0 "K(m—art — s)u(s)ds. (1.5)

These two definitions are called Caputo and Riemann-Liouville fractional derivatives, re-
spectively. We here adopt Caputo’s definition 3.
The Mittag-Leffler function,

. .
Z]

E = —_ >0,zeC 1.6

=Y Gy 0>0:€0) (1.6)

was proposed by Mittag-Leffler [6] in 1903 as an entire function whose order can be cal-

culated exactly. Afterwards, it was clarified that the Mittag-Leffler function also plays

an important role in fractional calculus (See refs. [5, 8] for example). In other words, the

Mittag-Leffer function,

u(t) = i NEK(aj + 1;t) = B (At) (1.7)
j=0

is an eigen function of Caputo’s fractional derivative [5],
D%(t) = Au(t) (t>0). (1.8)

In a present paper [7], a discrete analogue of Mittag-Leffler function is presented, to-
gether with its relation with a certain fractional difference and a nonlinear integrable
mapping with fractional difference has been proposed. The main purpose of this paper
is a g-discretization of the above result. In section 2, we present a certain fractional
g-difference operator, which is a slight modification of Al-Salam’s fractional g-difference
operator [1], and investigate its properties. Section 3 is devoted to g-discretization of the
Mittag-LefHer function. We also show that ¢g-Mittag-Lefller function serves as an eigen
function of the fractional g-difference operator. Finally in section 4, a new type of nonlin-
ear integrable mapping equipped with fractional ¢-difference is presented.

2 Fractional g-difference

In this section, we present fractional g-addition and ¢-difference operators and investigate
their properties.

Before getting onto the main subject, we first give definitions of g-number, ¢g-binomial
coefficient and g-difference operator, together with their properties, which are required in
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this paper.! Let g be a given complex number. Throughout this paper, we impose the
assumption,

lq| > 1. (2.1)

We introduce g-number [a], defined by

a_
[a]g = qq_—117 (2.2)

we here rewrite [a], as [a] for the sake of simplicity. By making use of the g-number,

g-binomial coefficient is given as follows.

(2] -t ont] e tle ot 23

n [n]! [n}ln —1]---[1]
We here list some important properties of g-number and ¢-binomial coefficient used in
future.

[~ = =g "] (2.4)
__n] (1)t I)[HZ_I] (2.5)
RN o
i_[i”:qn[gj;ﬂ (2.7)
é:nflﬂHﬂqkz_nkm:[ﬁy] (2.8)

We here adopt backward g-difference operator A, defined by
fz) = flg~"a)

A = 2.
S = R (29)
Through dependent and independent variable transformations

x=q" f(x) = f(q") = fn, (2.10)
the g-difference operator in eq. (2.9) is rewritten equivalently as

f f n—1
Agfn="—0—= 2.11
o= s, .11)

We next introduce a fractional g-addition operator I¢* defined as follows.
Definition 4. Let « be a non-negative real number and { f,} is a given complex sequence.
Then a g-addition operator of fractional order v for {f,} is defined by
n—1 )
IS fr = q"D%(q — 1) [ } *EDE L (@>0n>1)  (212)
lc:0
I fn=fn (n>1) (2.13)

'For details of g-analysis, see ref. [2] for example.
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Substitution of @ = 1 into eq. (2.12) gives

n—1
. 1
Ifa=q""(q¢-1) [ L ]q2k('“ Y fork
k=0
n—1 ) L
=¢"Hqg— 1)) (-1)F(—1)rgF gkl g
k=0
n—1
= (=D " F
k=0
==Y "
k=1

which is a finite version of Jackson integral. This fractional g-addition operator satisfies
the following lemma.

Lemma 1. Let o, 8 be non-negative real numbers, a,b be complex numbers and { fn},{gn}
be given complex sequences. Then q-addition operators satisfy the following linearity and
commutation rules.

Ig (afn +bgn) = a(lg fn) + b5 9n) (2.14)
I0IP fo = 1019 o = 190 £, (2.15)

Proof of Lemma 1. Equation (2.14) is obvious. We prove a commutation rule (2.15) by
employing some properties of a g-binomial coefficient.

1010 £
n—1
_q(n Do q—l az k‘|: :| k(k—1)/2 (n k— 1)B(q_1)ﬁ
=0
n—k—1 ' —ﬁ o
X Z (—1)3[ j ]qJ(Jl)/ankj
7=0
:q(n )(a+ﬂ a+ﬁz [ }qk(k—l)/Qq—Bk
n—k—1
S I I P
— J J
7=0
:q(n )(a+ﬂ a+ﬂz [ }qkz(k’—l)/?q—ﬁk

k-1
o Z (_1)nk1j|: .—5 k:] R k22

> n—j-—1-

<
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_ - Dia+d) awz i
& [ o s (h—1)/2+( ) V2, -8
— - k(k—1)/2+4(n—k—1—5)(n—k—2—7)/2 —Bk
<3 [an_]—_l_k}q :
k=0
(n 1)(a+ﬂ) a+ﬁz n j— 1 (n—j—1)(n—j— 2)/2f -

o n_zjjl —a —B k2 —k(n—j—1)—pk
2|k n—j-1-k]"

0
gD (ectB) (g _ 1yt i1 g(n=i=1)(n—j~2)/2 —a—p
Z T+ { n—j—1 ]
n—1)(a a i(j— - =
_ - DlesB) (g _ qyatd Z igil-nry, [ ; ﬁ}
:[a-i-ﬁfm
which completes the proof. |

Next we present a fractional g-difference operator Af, which can be regarded as a
g-discrete version of Caputo’s fractional derivative operator

Definition 5. Let a be a positive real number and m be a positive integer which satisfies
m—1<a<m. Then a fractional q-difference operator of order a > 0 s given by

AL fo =T AT fn
n—1
1
= g~ (= Dle=m)(y _ 1y~(a-m Z [ ] R VAN (2.16)
k=0

Remark 1. Fractional q-difference operator was first proposed by Al-Salam [1] in 1966.
Let f(x) be a given function and o € R\{1,2,3,---}. Then a g-difference operator K is
given by

K?f(x) 1—(] az [ :| k(k—1)/2—a(a— 1/2f( k) (2.17)
k=0

Fractional q-difference operator Ay presented here is a slight modification of Al-Salam’s
operator K¢'. The operator K satisfies the commutative rule,

B — KB — +4
KK =K/K; =K/ (2.18)
for any «, B, whereas the commutation rule for Ay does not always hold. However, as

is mentioned in the next section, the operator Ay possesses an eigen function, which is
regarded as a q-discrete analogue of the Mittag-Leffler function.
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3 ¢-Mittag-Leffler function

This section provides a ¢-discrete analogue of the Mittag-Lefller function and its relation
with the fractional g-difference operator Ag. We first introduce a fundamental function
My(a;n) defined by

n+a—2

M,(a;n) = (¢ — 1) [ 01 } (a>0,n€Z>). (3.1)

Remark 2. In the limit ¢ — 1 and n — oo with t = (¢ —1)n > 0 fized, the above function
converges to a monomial,

ta—l

M,(a;n) — K(a;t) = T(a)"

(3.3)

It is a well-known fact that this function K(a;t) plays an essential role in the theory of
fractional derivatives.

The above fundamental function My (a;n) satisfies the following two lemmas which
states the relation between M, (a;n) and ¢-difference (or fractional g-addition) operator.

Lemma 2. Ifa > 0 and n € Z>1, we have

AgMy(a+1;n) = My(a;n). (3.4)
Lemma 3. Ifa >0, a > 0 and n € Z>1, we have

I My(a;n) = My(a+ a;n). (3.5)

Proof of Lemma 2. This is proved essentially by using an addition rule of g-binomial
coefficient given by eq. (2.7).

My(a+1;n) — My(a+ 1;n— 1
A M,(a+15m) = Malad Lin) = My(a+ Lin — 1)

q" =gt
a0 )
=(g—1)%¢""" [n:;i;ﬂ W;—w
—@-v e

= Mq(a5 n)
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which completes the proof. |
Proof of Lemma 3. If o = 0, it is obvious. We suppose « > 0.

n—1
_ (n—Da, _ 1ya—1+a k| | gk | n—k+a—2
q (¢—1) kz_o( 1) [/{: ]92 [ E—1
_ q(n—l)cx(q o 1)a—1+a.

_\k [ —« Lp(k=1)/ _q1\n—1—k (n—k—1)a+i(n—k—1)(n—k—2) —a
(0t ke z ]

_ q(n—l)a(q o 1)a—l—i—aq(n—l)a—i-%(n—l)(n—2)(_l)n—l_

n—1 8
Z —o k2 —(n—1)k+k(—a) —a
k|1 n—k—1

k=0
n—1)a a—1+a (n—1)a+5(n—1)(n— n— —(a+
= gD (g — 1)ettaghats (D=2 () 1[ S—fw]
n—1)a a—l+a (n—1)a+2(n—1)(n— — a a——n n— n+a+aoa—2
= ¢ Ve (g — 1)o7 MHegnmDatz(n=1)(n=2) = (n—1)(a+a) =z (n=1)( 2)[ L
= (q—1)0to! [n+zt61)z—2] = M,(a+ o;n),

where we have employed an upper negation rule (2.5) twice and a Vandermonde convolu-
tion rule (2.8). This completes the proof. |

We next introduce a g-analogue of the Mittag-Leffler function.

Definition 6. Let a be a positive real number. Then g-Mittag-Leffler function F, 4(X\;n)
s given by

Fa,q(A;n):Z)\JM (aj+1;n) = Z)\J q—1)% [n—;a_yl—l} (3.6)
=0

It can be verified easily from eq. (3.3) that the above function F, 4(\;n) converges to the
Mittag-Leffler function E,(At%) in the limit ¢ — 1 and n — oo with ¢t = (¢—1)n fixed. The
following main theorem states that ¢-Mittag-Leffler function serves as an eigen function
of the fractional g-difference operator Ag.
Theorem 1. Ifa >0 and n € Z>1, we have

AGFaq(Ain) = AFaq(Ain) (3.7)

Proof of Theorem 1. Let m be a positive integer such as m — 1 < a < m. Operating

|
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A7 on Fy 4(A;n) and noticing A, M,(1;n) = Ayl = 0, we have from Lemma 2
e -
AT Fog(\sn) = XA M(aj + 1;n)
7=0
o .
=> N My(aj —m+1;n). (3.8)
j=1

Operating fractional g-addition operator /;"~® on both sides of the above equation and
employing Lemma 3, we finally obtain

AGFuq(Nn) = I AT Fy g(An)

o
= Z NI™ M,y (aj —m + 1;n)
j=1

= Z)\qu(aj —a+1;n)

j=1
= S"NM(af + 1in) = AFg(in), (3.9)
j=0
which completes the proof. |

4 An integrable nonlinear mapping with fractional ¢-difference

We here give a new type of integrable nonlinear mapping which is equipped with fractional
g-difference. We start with a linear mapping,

APgn, = —agn, 0<p<1,0<a. (4.1)

The above equation is rewritten equivalently as

n—1
n n— _ -1
(1 + a(q —q 1)p)gn = gn—-1 + Z(_l)k ! I:p k :| qk(lﬁ_l)/Q(gnfk - gnflfk)
k=1

(4.2)
Through dependent variable transformation,
1
U = — 43
Togn 1 (43)
we obtain the following nonlinear mapping with fractional ¢-difference.
1 n __ ,n—1\p

n—1

_ _ -1 _ _
uly +alg =g £y (D! [p K } DR )
k=1
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The solution for eq. (4.4) is written as

U
up + (1 — o) Fpq(—a;n)’

Up =

Putting p = 1 in eq. (4.4), we have

Up — Un—1

T atn—1(1 — up)

which converges to the Riccatti equation,
i au(l —u)

in the continuum limit ¢t = ¢", u(t) = u, and g — 1.

(4.6)

The following Figure 1 illustrates the time evolution of the fractional mapping with
parameter p = n/4(n = 1,2,3,4) and up = 0.2,a = 4, ¢ = 21/10,

1.4 | - |

p= .

b2r p=1/2 *

| p:3/4 o

p=1 -

1+ e

OoooOOOOOOOOOOO o O O o
* * *x *x x * *
0.8 okok kKKK kK *x * Kk s
un ................ L] L] L[] [} [} Y ° ° °

0.6
0.4 F
0.2 4

0 | | | | |

5 10 15 2 o "

qTL

Figure 1. Time evolutions of the fractional mapping (4.4)

5 Concluding Remarks

We have presented one definition of fractional ¢-difference operator. We have also shown
that a ¢-discrete version of Mittag-Leffer function preserves the property that Mittag-
Leffler function is an eigen function of a fractional derivative. It should be noted, however,
that the Mittag-Lefler function possesses more abundant properties such as complex-
integral expression, asymptotic behavior [10]. It is unknown whether its g-discrete version

preserves such properties as well.

It is also an interesting problem to construct nonlinear integrable equations equipped
with fractional derivative, difference or g¢-difference. Although it contains many difficult
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problems, it is no doubt that the Mittag-Leffler function and its discrete analogues hold
the key to this problem.
The author is supported by J.S.P.S. Grant-in-Aid for Scientific Research (C) No.

13640212.
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