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Abstract

In this paper we present a method for deriving infinite sequences of difference equations
containing well known discrete Painlevé equations by using the Bäcklund transforma-
tions for the equations in the second Painlevé equation hierarchy.

1 Introduction

The six Painlevé equations (PI–PVI) were discovered by Painlevé, Gambier and their
colleagues whilst studying second order ordinary differential equations of the form

w′′ = F
(
z, w, w′) , ′ ≡ d/dz (1.1)

where F is rational in w′ and w and analytic in z. The general solutions of the Pain-
levé equations, called the Painlevé transcendents, are transcendental in the sense that
they cannot be expressed in terms of known elementary functions and can be thought of
as nonlinear analogues of the classical special functions. However, PII–PVI also possess
rational solutions and solutions expressible in terms of special functions for certain values
of the parameters. Further PII–PVI possess Bäcklund transformations which relate one
solution to another such solution either of the same equation, with different values of the
parameters, or another such equation (cf. [1, 3, 4, 14, 19, 21, 38, 40, 42] and the references
therein).

The discrete Painlevé equations (dPI–dPVI), which have the form

xn+1 =
f1(xn; n) + xn−1f2(xn; n)
f3(xn; n) + xn−1f4(xn; n)

, (1.2)

where the fj(xn; n) are polynomials of degree at most four in xn, have stimulated interest
due to their role as integrable mappings (cf. [17]). In the continuum limit (nh = O(1)
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as h → 0), the discrete Painlevé equations yield a Painlevé equation, though some of the
discrete equations have limits to more than one Painlevé equation. The discrete Painlevé
equations share a variety of other properties in common with the Painlevé equations in-
cluding Lax pairs, bilinear representations, Bäcklund transformations and exact solutions
for certain parameter values, expressible in terms of rational functions or discrete special
functions (cf. [9, 17, 18, 28, 35, 41, 43, 46, 50] and the references therein).

The discrete Painlevé equations are in some respects much richer than the Painlevé
equations. For example, they have several solutions which have no continuum limit and
other properties which are lost in the continuum limit. Perhaps the most fundamental
difference is that there is a canonical form for each Painlevé equation which are unique up
to a Möbius transformation. However, for each Painlevé equation there is more than one
inequivalent discrete equation which has the Painlevé equation as its continuum limit.

There have been several studies of the derivation of discrete Painlevé equations from
Bäcklund transformations of the Painlevé equations. Fokas, Grammaticos and Ramani [15]
(see also [17, 18, 41]) used an approach which is based on the Schlesinger transformations
related to the associated isomonodromy problem for the Painlevé equation. Gromak and
Tsegel’nik [22, 48] also derived such difference equations, though these were not identified
as discrete Painlevé equations; recent studies include [7, 8, 44].

In this paper we are primarily interested in the derivation of an infinite sequence of
systems of discrete equations from Bäcklund transformations of the Painlevé equations
and the equations in the PII hierarchy. For completeness, we review the procedure for
the derivation of discrete Painlevé equations from Bäcklund transformations of the Pain-
levé equations in §2. In §3 we generalize this procedure and derive systems of discrete
equations from Bäcklund transformations of the equations in the PII hierarchy. In §4 we
derive the isomonodromy problems (Lax pairs) for these systems of discrete difference
equations, from the isomonodromy problems for the continuous Painlevé equations and in
§5 we discuss our results.

2 Deriving discrete equations from Bäcklund transforma-
tions for the continuous Painlevé equations

The general procedure for deriving discrete Painlevé equations from Bäcklund transfor-
mations for the Painlevé equations is as follows. Suppose there are two Bäcklund trans-
formations for a Painlevé equation in the form

w±(z; α±) = T ±(w(z; α)) = F±(w(z; α), w′(z; α), z, α), (2.1)

where w(z; α) and w±(z; α±) are solutions of the associated Painlevé equation correspond-
ing to the parameters α = (α1, α2, . . . , αm) and α± = (α±

1 , α±
2 , . . . , α±

m), respectively.
Eliminating w′(z; α) in (2.1) yields an algebraic relation, which is a recurrence relation,
between three solutions w+(z; α+), w(z; α) and w−(z; α−) of the Painlevé equation. This
algebraic relation can be thought of as a nonlinear superposition principle for solutions
of the Painlevé equation, as an alternate form of the Bäcklund transformations or as a
discrete equation of Painlevé type. The continuous variable z enters as a parameter and
the independent variable of the discrete equation comes from the parameters α.
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In order to do this consistently for a given Painlevé equation, we require two Bäcklund
transformations T ± such that T + = (T −)−1, i.e. they are inverse transformations, and so
the solutions and parameters are linked as follows

{w−(z; α−), α−}
T +

−−−−→←−−−−
T − {w(z; α), α}

T +

−−−−→←−−−−
T − {w+(z; α+), α+}

Hence setting w(z; α) = xn, w±(z; α±) = xn±1, with α = an and α± = an±1, then we
obtain the chain

{xn−1, an−1}
T +

−−−−→←−−−−
T − {xn, an}

T +

−−−−→←−−−−
T − {xn+1, an+1}.

We illustrate this procedure using the second Painlevé equation (PII) as an example (see
also [15]).

Example 2.1. PII

Suppose that w(z; α) is a solution of PII

w′′ = 2w3 + zw + α, (2.2)

where α is a constant. It is well known that (cf. [14, 37])

w(z; α + 1) = T +(w(z; α)) = −w(z; α) − 2α + 1
2w2(z; α) + 2w′(z; α) + z

, (2.3)

w(z; α − 1) = T −(w(z; α)) = −w(z; α) − 2α − 1
2w2(z; α) − 2w′(z; α) + z

, (2.4)

provided that α �= −1
2 in (2.3) and α �= 1

2 in (2.4), are also solutions of PII (2.2) for the
parameters α + 1 and α − 1, respectively. In the cases α = j + 1

2 , with j ∈ Z, PII admits
special solutions expressed in terms of Airy functions. Eliminating w′(z; α) from (2.3) and
(2.4) yields

2α + 1
w(z; α + 1) + w(z; α)

+
2α − 1

w(z; α) + w(z; α − 1)
+ 4w2(z; α) + 2z = 0. (2.5)

Now if we set

an+1 = α + 1, an = α, an−1 = α − 1, (2.6)

then solving these difference equations yields α = an = n + κ− 1
2 , where κ is an arbitrary

constant (the factor 1
2 is for convenience); since T + and T − are inverse transformations

then (2.6) have a common solution. Next setting wm = w(z; am), in (2.5) gives the
equation

n + κ

wn+1 + wn
+

n − 1 + κ

wn + wn−1
+ 2w2

n + z = 0, (2.7)

where z is a parameter, which is called alt-dPI, an alternative form of dPI [15]. We note
that the difference equation (2.7) appears in [26] — see equation (5.3).



16 P A Clarkson, A N W Hone and N Joshi

Thus solutions of PII (2.2) satisfy both a differential equation, namely PII itself, and a
difference equation, namely alt-dPI (2.7), which is completely analogous to the situation
for Bessel functions (cf. [7, 8]). We remark that in PII (2.2), α is a fixed parameter and z
varies whilst in alt-dPI (2.7), z is fixed and α = n + κ − 1

2 varies.

Example 2.2. PII and P34

In this example we derive a system of discrete equations. Suppose w(z; α) and q(z; α)
are respective solutions of PII (2.2) and P34

qq′′ = 1
2(q′)2 − 2q3 − zq2 − 1

8(2α + 1)2, (2.8)

with α a parameter. The equation P34 (2.8) is so-called since it is equivalent to equation
XXXIV of Chapter 14 in Ince [25]. It is well known (cf. [14]) that solutions of PII (2.2)
and P34 (2.8) are related through the following invertible transformation

w(z; α) = B(q(z; α)) = [2q′(z; α) + 2α + 1]/[4q(z; α)], (2.9)

q(z; α) = B−1(w(z; α)) = −w2(z; α) − w′(z; α) − 1
2z, (2.10)

since eliminating q(z; α) in (2.9,2.10) yields (2.2) and eliminating w(z; α) yields (2.8). The
Bäcklund transformation for PII is (2.3) and for P34 is

q(z; α + 1) = Q+(q(z; α)) = −q(z; α) − z − 1
2

[
(q′(z; α) − α − 1

2)/q(z; α)
]2

. (2.11)

Eliminating w′(z; α) between (2.10) and (2.3), yields

w(z; α + 1) = −w(z; α) + (α + 1
2)/q(z; α), (2.12)

whilst eliminating q′(z; α) between (2.9) and (2.11) yields

q(z; α + 1) = −q(z; α) − z − 2
[
w(z; α) − (α + 1

2)/q(z; α)
]2

. (2.13)

Note that although it appears as though we have only used one Bäcklund transforma-
tion, i.e. (2.3), to obtain equation (2.12), in fact, it arises from the composition of two
transformations, namely (2.3) and the transformation (2.10), which plays the role of a sec-
ond Bäcklund transformation. Analogously the transformation (2.9), plays the role of the
second Bäcklund transformation in the derivation of (2.13). As in the previous example,
solving the difference equations for the parameter relations yields α = an = n + κ − 1

2 .
Thus if we set wm = w(z; am) and qm = q(z; am) in (2.12) and (2.13) then we obtain the
discrete system

wn+1 = −wn + (n + κ)/qn, (2.14a)

qn+1 = −qn − z − 2 [wn − (n + κ)/qn]2 , (2.14b)

with z a parameter.

Thus we have generalized the procedure outlined above and obtained the discrete system
(2.14). This system includes the discrete equations arising from the Bäcklund transforma-
tions of PII and P34, i.e. (2.7) and (2.15), respectively.
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Now consider the discrete system (2.14). Eliminating qn yields alt-dPI (2.7), whilst
eliminating wn yields the second-order second-degree discrete equation

(qn+1 − qn−1)2q4
n + 4(n + κ)2(qn+1 + 2qn + qn−1 + 2z) q2

n + 4(n + κ)4 = 0. (2.15)

It is straightforward to generate this discrete equation from the Bäcklund transformation
(2.11) of P34 together with the associated inverse transformation

Q−(q(z; α)) = q(z; α − 1) = −q(z; α) − 1
2

{
[q′(z; α) + α + 1

2 ]/q(z; α)
}2

.

which is easily obtained from the Bäcklund transformation (2.11) and the discrete sym-
metry q(z;−α − 1

2) = q(z; α + 1
2). Note that the second-order second-degree discrete

equation (2.15) appears not to be integrable, since the latest point, qn+1, on an orbit is
multivalued as a function of the earlier points qn and qn−1. However, it is a consequence
of equations (2.14) which do provide single-valued definitions of the pair (wn+1, qn+1).
Equations (2.14) form an integrable system because their Lax pairs can be deduced from
Schlesinger transformations of the Lax pairs for the corresponding ordinary differential
equations (see §4.)

3 Discrete systems associated with the PII hierarchy

3.1 The PII hierarchy

The Korteweg-de Vries (KdV) hierarchy can be written as

ut2n+1 + ∂xLn+1 [u] = 0, n = 0, 1, 2, . . . , (3.1)

where ∂x = ∂/∂x, and the sequence Ln satisfies the Lenard recursion relation [34]

∂xLn+1 =
(
∂3

x + 4u∂x + 2ux

)
Ln.

Beginning with L0 [u] = 1
2 , this then gives

L1 [u] = u, L2 [u] = uxx + 3u2, L3 [u] = uxxxx + 10uuxx + 5u2
x + 10u3,

and so on. The modified Korteweg-de Vries (mKdV) hierarchy is obtained from the KdV
hierarchy (3.1) via the Miura map u = vx − v2, and can be written as

vt2n+1 + ∂x (∂x + 2v)Ln

[
vx − v2

]
= 0, n = 0, 1, 2, . . . (3.2)

A PII hierarchy [3, 13] is obtained from this equation via the similarity reduction

v(x, t2n+1) =
w(z)

[(2n + 1)t2n+1]1/(2n+1)
, z =

x

[(2n + 1)t2n+1]1/(2n+1)
,

which gives the 2nth order equation P[n]
II(

d
dz

+ 2w

)
Ln

[
w′ − w2

]
− wz − α = 0, n = 1, 2, 3, . . . (3.3)

where we have excluded the trivial case n = 0 from consideration. We note that the PII

hierarchy has the discrete symmetry (w, α) → (−w,−α), inherited from the associated
discrete symmetry v → −v of the mKdV hierarchy.
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• Since L1 [u] = u the first member of the PII hierarchy is PII (2.2)

• Since L2 [u] = uxx + 3u2, the second member of the PII hierarchy is the fourth order
equation (P[2]

II )

w′′′′ = 10w2w′′ + 10w
(
w′)2 − 6w5 + zw + α. (3.4)

• Since L3 [u] = uxxxx + 10uuxx + 5u2
x + 10u3, the third member of the PII hierarchy

is the sixth order equation (P[3]
II )

w′′′′′′ = 14w2w′′′′ + 56ww′w′′′ + 42w
(
w′′)2 − 70

[
w4 −

(
w′)2

]
w′′

−140w3
(
w′)2 + 20w7 + zw + α. (3.5)

We remark that there is much current interest in the properties of solutions of the PII

hierarchy – see, for example, [5, 27, 29, 30, 31, 32, 36, 39].

3.2 Bäcklund transformations for the PII hierarchy

The Bäcklund transformation for the PII hierarchy is

T ±
n (wα) = wα±1 = −wα +

2α ± 1
2Ln [∓w′

α − w2
α] − z

, (3.6)

where wα ≡ w(z; α) and wα±1 ≡ w(z; wα±1) (see, for example, [3, 6] for derivation and
further details).

• For n = 1, (3.6) gives the Bäcklund transformations of PII given by (2.3) and (2.4)

• For n = 2, (3.6) gives the Bäcklund transformations of P[2]
II

T ±
2 (wα) = wα±1 = −wα ∓ 2α ± 1

2w′′′
α ± 4wαw′′

α ∓ 2(w′
α)2 − 12w2

αw′
α ∓ 6w4

α ± z
, (3.7)

which appears in [19, 24].

• For n = 3, (3.6) gives the Bäcklund transformations of P[3]
II

T ±
3 (wα) = wα±1 = −wα ∓ (2α ± 1)/F±

3 , (3.8)

where

F±
3 ≡ 2w′′′′′

α ∓ 4wαw′′′′
α − (20w2

α ∓ 4w′
α)w′′′

α ± 2(w′′
α)2 − 40wα(2w′

α ± w3
α)w′′

α

− 20(w′
α)3 ∓ 20w2

α(w′
α)2 + 60w4

αw′
α ± 20w6

α ± z.
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3.3 Derivation of a hierarchy of discrete systems

Here we derive a hierarchy of discrete systems associated with the PII hierarchy (3.3)
from the Bäcklund transformation (3.6). The basic idea is to let wα = w(z; α), pα = w′

α,
qα = w′′

α, rα = w′′
α and so on, in (3.6) so that the Bäcklund transformation T +

n has the
form

wα+1 + wα =
2α + 1

2Ln [−pα − w2
α] − z

≡ Φn(α, wα, pα, qα, rα, . . .), (3.9)

where wα+1 ≡ w(z; α + 1). Then successively differentiating this yields

pα+1 + pα =
dΦn

dz

∣∣∣∣
P

[n]
II

, qα+1 + qα =
d2Φn

dz2

∣∣∣∣
P

[n]
II

, rα+1 + rα =
d3Φn

dz3

∣∣∣∣
P

[n]
II

,

and so on. Thus we obtain a discrete system of the form

wα+1 + wα = f(wα), (3.10)

where wα = (wα, pα, qα, rα, . . .) and f = (f1, f2, . . . , fn), with fm = dm−1Φn/dzm−1
∣∣
P

[n]
II

.

We now illustrate this procedure using the first three members of the PII hierarchy.

Example 3.1. Suppose that w ≡ w(z; α) is a solution of PII. Then w(z; α + 1) defined
by (2.3) is also a solution of PII. Letting p(z; α) = w′(z; α) yields

w(z; α + 1) = −w(z; α) − 2α + 1
2w2(z; α) + 2p(z; α) + z

, (3.11)

and so differentiating this gives

p(z; α+1) = −p(z; α)+
2(2α + 1)w(z; α)

2w2(z; α) + 2p(z; α) + z
+

(
2α + 1

2w2(z; α) + 2p(z; α) + z

)2

. (3.12)

Thus setting wβ = w(z; β) and pβ = p(z; β) yields the discrete system

wα+1 + wα = Φ1, (3.13a)

pα+1 + pα = Φ2
1 − 2wαΦ1, (3.13b)

where

Φ1(wα, pα, z) = − 2α + 1
2w2

α + 2pα + z
. (3.14)

Example 3.2. The second member of the PII hierarchy, i.e. P[2]
II , is the fourth order

equation (3.4). Thus letting wα = w(z; α), pα = w′
α, qα = w′′

α and rα = w′′
α, then the

Bäcklund transformation (3.7) becomes

wα+1 + wα =
2α + 1

6w4
α + 12w2

αpα − 4wαqα + 2p2
α − 2rα − z

. (3.15)
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Differentiating this successively gives the fourth-order discrete system

wα+1 + wα = Φ2, (3.16a)

pα+1 + pα = Φ2
2 − 2wαΦ2, (3.16b)

qα+1 + qα = 2Φ3
2 − 6wαΦ2

2 + (2w2
α − pα)Φ2, (3.16c)

rα+1 + rα = 6Φ4
2 − 24wαΦ3

2 + 4(7w2
α − 2pα)Φ2

2 − 2(4w3
α − 6wαpα + qα)Φ2, (3.16d)

where

Φ2(wα, pα, qα, rα, z) ≡ 2α + 1
6w4

α + 12w2
αpα − 4wαqα + 2p2

α − 2rα − z
. (3.17)

Example 3.3. The third member of the PII hierarchy, i.e. P[3]
II , is the sixth order equation

(3.5) associated Bäcklund transformation (3.8). Thus letting wα = w(z; α), pα = w′
α,

qα = w′′
α, rα = w′′′

α , sα = w′′′′
α and tα = w′′′′′

α then the Bäcklund transformation (3.8)
becomes

wα+1 + wα = Φ3(wα, pα, qα, rα, sα, tα, z) ≡ −(2α + 1)/F3, (3.18a)

where

F3 ≡ 20w6
α + 60pαw4

α − 40w3
αqα − 20(p2

α + rα)w2
α + 4(sα − 20pαqα)wα

−20p3
α − 4pαrα + 2q2

α + 2tα + z. (3.18b)

Differentiating this successively gives the sixth-order discrete system

wα+1 + wα = Φ3 (3.19a)

pα+1 + pα = Φ2
3 − 2wαΦ3 (3.19b)

qα+1 + qα = 2Φ3
3 − 6wαΦ2

3 + (2w2
α − pα)Φ3 (3.19c)

rα+1 + rα = 6Φ4
3 − 24wαΦ3

3 + 4(7w2
α − 2pα)Φ2

3 − 2(4w3
α − 6wαpα + qα)Φ3 (3.19d)

sα+1 + sα = 24Φ5
3 − 120wαΦ4

3 + 40(5w2
α − pα)Φ3

3 − 10(12w3
α − 10wαpα + qα)Φ2

3

+2(8w4
α − 24w2

αpα + 8wαqα + 6p2
α − rα)Φ3 (3.19e)

tα+1 + tα = 120Φ6
3 − 720wαΦ5

3 + 120(13w2
α − 2pα)Φ4

3 − 60(24w3
α − 14wαpα + qα)Φ3

3

+4(124w4
α − 202w2

αpα + 39wαqα + 28p2
α − 3rα)Φ2

3

−2
[
16w5

α − 80pαw3
α + 40qαw2

α + 10(6p2
α − rα)wα − 20pαqα + sα

]
Φ3.

(3.19f)

In these examples we note that the similarity in the expressions for wa+1, pα+1, qα+1,
etc. in terms of the quantity Φn. This is clarified through the following theorem.

Theorem 3.4. When restricted to solutions of P[n]
II , Φn as defined by (3.9), satisfies the

Riccati equation

Φ′
n = Φ2

n − 2wαΦn. (3.20)

where wα ≡ w(z; α) is a solution of P[n]
II (3.3).
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Proof. From the definition of Φn through equation (3.9) and using the fact that w′
α = pα

Φ′
n = − 2α + 1

{2Ln [−w′
α − w2

α] − z}2

{
2

d
dz

(
Ln

[
−w′

α − w2
α

])
− 1

}

= − 2α + 1
{2Ln [−w′

α − w2
α] − z}2

{
2wα

(
2Ln

[
−w′

α − w2
α

]
− z

)
− (2α + 1)

}

= Φ2
n − 2wαΦn,

as required, since from equation (3.3) and the discrete symmetry (wα, α) → (−w−α,−α)

d
dz

(
Ln

[
−w′

α − w2
α

])
= 2wαLn

[
−w′

α − w2
α

]
− zwα − α.

Successively differentiating (3.20) gives

Φ′′
n = 2Φ3

n − 6wαΦ2
n + (4w2

α − pα)Φn, (3.21)

Φ′′′
n = 6Φ4

n − 24wαΦ3
n + (28w2

α − 8pα)Φ2
n − (8w3

α − 12wαpα + 2qα)Φn, (3.22)

and so on, where pα = w′
α and qα = w′′

α. We remark that setting Φn(z) = −ϕ′
n(z)/ϕn(z)

in (3.20) yields the linear homogeneous equation

ϕ′′
n + 2wαϕ′

n = 0, (3.23)

where wα = w(z; α) is a solution of P[n]
II (3.3). Also setting Φn(z) = wα − ψ′

n(z)/ψn(z) in
(3.20) yields the linear homogeneous Schrödinger equation

ψ′′
n = [w′

α + w2
α]ψn = −Vαψn, (3.24)

where Vα satisfies (4.1) below, which is the nth equation in the P34 hierarchy. Further
setting Φn(z) = 1/Ψn(z) in (3.20) yields the Bernoulli-type equation

Ψ′
n = 2wαΨn − 1. (3.25)

3.4 Confinement

Consider the difference equation

xn+1 = H (xn) (3.26)

with xn ∈ C
k+1, where H is rational in its arguments. The following definition of singu-

larity confinement is the one given in [10, 11].

Definition 3.5. Equation (3.26) is called admissible if H has some movable singular point
xn ∈ C

k+1. An admissible equation is said to have the singularity confinement property if
the following conditions hold.

1. The maps xn �→ xn+1 and xn �→ xn−1 induced by equation (3.26) are both well
posed, i.e. unique and a continuous function of the pre-image, at the ordinary points
of H in C

k+1.
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2. If the movable singular point of H is isolated.

It is proved in [10, 11] that if a difference equation arises as a consistent composition of
Bäcklund transformations of an ordinary differential equation with the Painlevé property,
then it must have the singularity confinement property. This leads to the following result.

Theorem 3.6. For each integer n ≥ 1, the system (3.10) has the singularity confinement
property.

4 Isomonodromy problems

Here we obtain the isomonodromy problems for the discrete difference equations, from the
isomonodromy problems for the (continuous) Painlevé equations. Making the similarity
reduction

u(x, t2n+1) =
V (z)

[(2n + 1)t2n+1]2/(2n+1)
, z =

x

[(2n + 1)t2n+1]1/(2n+1)
,

in the KdV hierarchy (3.1), and integrating once yields

(2Ln [Vα] − z)
d2

dz2
(Ln [Vα]) −

[
d
dz

(Ln [Vα])
]2

+
d
dz

(Ln [Vα])

+ (2Ln [Vα] − z)2 Vα − (α + 1
2)2 = 0. (4.1)

which is known as the P34 hierarchy (see [6, 24] for further details).
Using the method of Flaschka and Newell [13] it is straightforward to derive the isomon-

odromy problems for each member of the P34 hierarchy (4.1), through a similarity reduc-
tion of the Lax pair for the nth member in the KdV hierarchy. The nth term in the
sequence of isomonodromy problems has the form

∂Ψα

∂z
=

(
0 1

ζ − Vα 0

)
Ψα, ζ

∂Ψα

∂ζ
= Gn[Vα; ζ]Ψα. (4.2)

For each n, the matrix Gn is a polynomial of degree n + 1 in the spectral parameter ζ
whose coefficients are polynomials in Vα and its derivatives. Written as a scalar equation,
the z part of (4.2) becomes a Schrödinger equation with potential Vα and eigenvalue ζ.

Similarly, applying the Flaschka-Newell method to the Lax pair of each equation in the
mKdV hierarchy the isomonodromy problems for the PII hierarchy (3.3) given by

∂Ξα

∂z
=

(
−λ wα

wα λ

)
Ξα, λ

∂Ξα

∂λ
= Jn[wα, α; λ]Ξα. (4.3)

The matrix Jn is a polynomial in wα and its derivatives, and a polynomial in λ of degree
2n + 1 [23]; details for the cases n = 1 and n = 2 are given below. We note that for each
n, the z evolution is an isomonodromic deformation of the second equation in (4.3), which
has a regular singular point at λ = 0 and an irregular singular point at λ = ∞ whose
order increases with n.
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The Lax pairs (4.2) and (4.3) are related by the gauge transformation

Ξα = g(wα; λ)Ψα, g(wα; λ) =
1√
2λ

(
−wα − λ 1
wα − λ −1

)
, (4.4)

with ζ = λ2, which is the analogue of the Miura map that relates the mKdV and KdV
linear problems. The dependent variables are related by the correspondence

Vα = −w′
α − w2

α, wα =
1

2Ln [Vα] − z

{
d
dz

(
Ln [Vα] − 1

2z
)

+ α + 1
2

}
. (4.5)

In the framework of the first linear problem (4.2), the Bäcklund transformation for
the PII hierarchy (3.6) is equivalent to a Darboux transformation for the corresponding
Schrödinger spectral problem. More precisely, Vα is given in terms of two solutions at
adjacent parameter values by the formula

Vα = −w′
α − w2

α = w′
α+1 − w2

α+1. (4.6)

Applying the Bäcklund transformation to the solution Vα of the P34 hierarchy is equivalent
to the Darboux transformation that produces a new potential

Vα+1 = −w′
α+1 − w2

α+1. (4.7)

At the level of the z part of the linear problem (4.2) Ψα is mapped as

Ψα+1 = MΨα, M = κ(ζ)
(

wα+1 1
w2

α+1 + ζ wα+1

)
. (4.8)

The Darboux matrix M is a central object in the theory of the dressing chain for Schrödinger
operators [2, 45], and κ must be independent of z. Under this transformation, the new
eigenfunction satisfies

∂Ψα+1

∂z
=

(
0 1

ζ − Vα+1 0

)
Ψα+1, ζ

∂Ψα+1

∂ζ
= Gn[Vα+1, α + 1; ζ]Ψα+1. (4.9)

To obtain the correct transformation of the ζ part of the Lax pair (4.2) it turns out
that the determinant of the Darboux matrix M must also be independent of ζ, so that
κ(ζ) = ±i/

√
ζ for M ∈ SL(2).

It is now straightforward to obtain the discrete Lax pair for the sequence of difference
equations derived from the Bäcklund transformation of each member in the PII hierarchy.
The gauge transformation

Ξα+1 = g(wα+1; λ)Ψα+1, (4.10)

relates the eigenfunction in (4.9) to the eigenfunction Ξα+1 in the Lax pair (4.3) for PII

with wα replaced by wα+1. Combining (4.4) and (4.8) with the gauge (4.10) gives the
transformation between the eigenfunctions in the PII Lax pair which takes the same form
for any n, i.e.

Ξα+1 = NΞα, (4.11a)
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where

N ≡ g(wα+1; λ)Mg−1(wα; λ) =
κ

2

(
wα+1 + wα − 2λ wα+1 + wα

wα+1 + wα wα+1 + wα + 2λ

)
. (4.11b)

Then the discrete isomonodromic Lax pair for the nth system of difference equations is
just

Ξα+1 = Nn Ξα, λ
∂Ξα

∂λ
= Jn[wα, α; λ]Ξα, (4.12a)

where

Nn =
i

2λ

(
Φn − 2λ Φn

Φn Φn + 2λ

)
(4.12b)

and Jn[wα, α; λ] is as in (4.3) above, with κ = i/λ so that Nn ∈ SL(2).
For each n, the system of discrete difference equations in the variables w = wα, p =

pα, q = qα, r = rα, . . . is then equivalent to the compatibility condition

∂Nn

∂λ
+ Nn Jn[wα, α; λ] − Jn[wα+1, α + 1; λ]Nn = 0 (4.13)

for the discrete Lax pair (4.12a). In the case n = 1, the matrix J1 is

J1[wα, α; λ] =
(

4λ2 − 2w2
α − z −4λwα + 2pα − α/λ

−4λwα − 2pα − α/λ −4λ2 + 2w2
α + z

)
(4.14)

In the case n = 2, the matrix J2 is

J2[wα, α; λ] =
(

A2 B2 − C2

B2 + C2 −A2

)
, (4.15)

with

A2 = 16λ4 − 8w2
αλ2 − 4wαqα + 2p2

α + 6w4
α − z,

B2 = −16wαλ3 − 4(qα − 2w3
α)λ − α/λ,

C2 = −8pαλ2 − 2r + 12w2
αpα.

The matrix elements of N2 in (4.12a) are given in terms of the quantity Φ2 in equation
(3.17).

5 Discussion

We have illustrated that there is a close relationship between the Bäcklund transformations
and the solution hierarchies for the Painlevé and discrete Painlevé equations. Hierarchies
of solutions of Painlevé equations satisfy both a differential equation and a difference
equation. Using Bäcklund transformations of Painlevé equations one can derive vari-
ous difference equations, including discrete Painlevé equations, second-degree difference
equations and systems of difference equations. Gromak [20], see also [12, 33], derived a
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fourth-order difference equation relating five solutions of P[2]
II (3.4), with parameter values

wα−1, wα, wα+1, wα+2 and wα+3, which is equivalent to the system (3.16).
Hierarchies of rational and one-parameter families of exact solutions of PII, PIII and

PIV are well-known, as remarked above. Since there is an explicit relationship between PII,
PIII, PIV and some discrete Painlevé equations, then these solution hierarchies also satisfy
difference equations as well as ordinary differential equations. This is entirely analogous to
the situation for the classical special functions. This is further evidence that the Painlevé
equations may be thought of as nonlinear special functions and that there is a fundamental
relationship between special functions, Painlevé equations and discrete Painlevé equations
(see also [46]).
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vol. 28, Studies in Math., de Gruyter, Berlin, New York 2002.
[22] Gromak V I and Tsegel’nik V V, Diff. Eqns., 30 (1994), 1037–1043; Diff. Eqns., 32 (1996),

1024–1029.
[23] Hone A N W, Integrable systems and their finite-dimensional reductions, PhD thesis, Uni-

versity of Edinburgh (1996).
[24] Hone A N W, Physica, D118 (1998), 1–16.
[25] Ince E L, Ordinary Differential Equations, Dover, New York 1956.
[26] Jimbo M and Miwa T, Physica, D2 (1981), 407–448.
[27] Joshi N and Mazzocco M, Nonlinearity, 16 (2003), 427–439.
[28] Joshi N, Ramani A and Grammaticos B, Phys. Lett., A249 (1998), 59–62.
[29] Kudryashov N A, Phys. Lett., A224 (1997), 353–360.; J. Phys. A: Math. Gen., 32 (1999),

999–1013; Phys. Lett., A252 (1999), 173–179; Phys. Lett., A273 (2000), 194–202.
[30] Kudryashov N A and Pickering A, J. Phys. A: Math. Gen., 31 (1998), 9505–9518.
[31] Kudryashov N A and Pickering A, in SIDE III — Symmetries and Integrability of Difference

Equations, D. Levi and O. Ragnisco, Editors, 2000, CRM Proc. Lect. Notes Series, vol. 25,
Amer. Math. Soc., Providence, RI, 245–253.

[32] Kudryashov N A and Soukharev M B, Phys. Lett., A237 (1998), 206–216.
[33] Kudryashov N A and Soukharev M B, ANZIAM J., 44 (2002), 149–160.
[34] Lax P D, SIAM Rev., 18 (1976), 351–375.
[35] Levi D and Ragnisco O (Editors), Symmetries and Integrability of Difference Equations, CRM

Proc. Lect. Notes Series, vol. 25, Amer. Math. Soc., Providence, RI 2000.
[36] Li Y and He Y, J. Math. Phys., 43 (2002), 1106–1115.
[37] Lukashevich N A, Diff. Eqns., 6 (1971), 853–854.
[38] Milne A E, Clarkson P A and Bassom A P, Stud. Appl. Math., 98 (1997), 139–194.
[39] Mugan U and Jrad F, J. Nonl. Math. Phys., 9 (2002), 282–310.
[40] Murata Y, Funkcial. Ekvac., 28 (1985), 1–32; Nagoya Math. J., 139 (1995), 37–65.
[41] Nijhoff F W, Satsuma J, Kajiwara K, Grammaticos B and Ramani A, Inverse Problems, 12

(1996), 697–716.
[42] Okamoto K, Ann. Mat. Pura Appl., 146 (1987), 337–381; Japan. J. Math., 13 (1987), 47–76;

Math. Ann., 275 (1986), 221–255; Funkcial. Ekvac., 30 (1987), 305–332.
[43] Ramani A and Grammaticos B, Physica, A228 (1996), 160–171.
[44] Ramani A, Ohta Y and Grammaticos B, Nonlinearity, 13 (2000), 1073–1085.
[45] Shabat A B and Veselov A P, Funct. Anal. Appl., 27 (1993), 1–21.
[46] Tamizhmani K M, Ramani A, Grammaticos B and Kajiwara K, J. Phys. A: Math. Gen., 31

(1998), 5799–5810.
[47] Tamizhmani T, Tamizhmani K M, Grammaticos B and Ramani A, J. Phys. A: Math. Gen.,

32 (1999), 4553–4562.
[48] Tsegel’nik V V, Theo. Math. Phys., 102 (1995), 265–266; Diff. Eqns., 32 (1996), 1433–

1435.
[49] Winternitz P and Levi D (Editors), Painlevé Transcendents, their Asymptotics and Physical
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