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Abstract

In this paper, we compare the degrees and the orders of approximation of vector and
matrix Padé approximants for series with matrix coefficients. It is shown that, in this
respect, vector Padé approximants have better properties. Then, matrix–vector Padé
approximants are defined and constructed. Finally, matrix Padé approximants are
related to the method of moments.

1 Introduction

Padé approximants are rational functions whose series expansion in ascending powers of
the variable matches a given series as far as possible, that is up to the sum of the degrees of
its numerator and its denominator inclusively. This characteristic property defines com-
pletely a Padé approximant. Padé–type approximants are also rational functions, with
an arbitrarily chosen denominator, and a numerator computed so that the power series
expansion of the approximant matches the original series as far as possible, that is up to
the degree of the numerator inclusively. Such approximants have received many impor-
tant applications in numerical analysis and in various branches of applied mathematics,
physics, chemistry, etc. They have been generalized to the case of series with nonscalar
coefficients. So, a power series with vector coefficients can be approximated by vector
Padé approximants and a series with matrix coefficients by matrix Padé approximants
(see, for example, [8, 9]). In the matrix case, if the columns of each matrix coefficient are
written one after the other into a vector, then vector Padé approximants can also be used.
The aim of this paper is to compare the efficiency of vector and matrix Padé approxi-
mants in the case of series with matrix coefficients from the point of view of the degrees
of the Padé approximant needed to achieve a certain order of approximation, and from
the point of view of the order of approximation obtained with certain degrees. We will
see that, with respect to these two criteria, vector Padé approximants are more efficient.
Then, we will define and construct matrix–vector Padé approximants. Finally, matrix
Padé approximants will be related to a generalization of the method of moments.
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Let us first give some properties that will be useful in the sequel. Matrices will be
designated by bold letters, while vectors will have an arrow above them.

Let A be a square n × n nonsingular matrix, we remind that

A−1 =
adj A
detA

where adj A is the adjunct matrix of A, that is the n × n matrix whose element (j, i) is
the determinant of the submatrix obtained by deleting the ith row and the jth column of
A, multiplied by (−1)i+j .

The characteristic polynomial of A, Pn(s) = det(sI −A), has degree n. Its zeros are
the eigenvalues of A. If we set Pn(s) = ansn + an−1s

n−1 + · · ·+ a0, with an = 1, then

adj (sI−A) = An−1 + (s + an−1)An−2 + · · ·+ (sn−1 + an−1s
n−2 + · · ·+ a1)I

= sn−1I+ sn−2(A+ an−1I) + · · ·+ (An−1 + an−1An−2 + · · ·+ a1I)

and we finally obtain

(sI−A)−1 =
Qn−1(s)

Pn(s)
=

Bn−1s
n−1 +Bn−2s

n−2 + · · ·+B0

det(sI−A)
(1.1)

where the Bi are n × n matrices.
The matrices Bi and the coefficients ai of Pn can be computed by the Leverrier–

Faddeev–Souriau formulae (which are not suitable for numerical computation when n
becomes large)

Bn−1 = I

Bn−i−1 = ABn−i + an−iI, i = 1, . . . , n − 1

with an−i = −tr(ABn−i)/i for i = 1, . . . , n − 1, where tr indicates the trace of a matrix,
that is the sum of its diagonal elements (on this topic, see, for example, [7, pp. 19–20]).

2 Vector and matrix Padé approximants

In this Section, we will give the definitions and some properties of vector and matrix
Padé–type and Padé approximants.

Let us consider a formal vector series

�G(s) =
∞∑
i=0

�Cis
i, �Ci ∈ R

d,

a vector polynomial �Qk+h−1 ∈ R
d of degree k + h − 1 ≥ 0 and a scalar polynomial Pk of

degree k. We assume that

�Qk+h−1(s)− �G(s)Pk(s) = O(sq).

The integer q is called the order of approximation. If q = k + h, �Qk+h−1(s)/Pk(s) is
called a vector Padé–type approximant (of dimension d to be more precise) of �G and it is
denoted by (k + h − 1/k) �G. The construction of this approximant needs the knowledge
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of �C0, . . . , �Ck+h−1. By a convenient choice of Pk, an order q = k + h + α, where α is the
integer part of k/d, can be obtained. The approximants are then denoted [k + h − 1/k]�G
and called vector Padé approximants (of dimension d). Assuming for simplicity that k/d
is an integer (otherwise, vector approximants with an order of approximation q + 1 for
the first components and q for the others can be defined), their computation needs the
knowledge of �C0, . . . , �Ck+h+α−1. So, the number of coefficients required is always equal to
the order of approximation. This kind of vector Padé–type and Padé approximants was
introduced by van Iseghem [18] (see [8, pp. 169–176] and [9, pp. 81–85] for a survey).
Vector Padé approximants are built from formal vector orthogonal polynomials [19].

Let us now consider a formal matrix series

G(s) =
∞∑
i=0

Cis
i, Ci ∈ R

p×m

and the matrix polynomials Qk+h−1 ∈ R
p×m of degree k + h − 1 ≥ 0 and Pk of degree k.

We assume that these polynomials satisfy one of the following relations

Qk+h−1(s)−G(s)Pk(s) = O(sq), Pk ∈ R
m×m

Qk+h−1(s)−Pk(s)G(s) = O(sq), Pk ∈ R
p×p

where the integer q is the order of approximation. The left matrix Padé–type approximants
Qk+h−1(s)[Pk(s)]−1 ofG and the right matrix Padé–type approximants [Pk(s)]−1Qk+h−1(s)
correspond, respectively, to q = k + h in these relations. They both need the knowledge
of C0, . . . ,Ck+h−1. Usually, the left approximants and the right ones are not identical. In
the sequel, we will only use the left approximants and denote them by (k + h − 1/k)G.
Square matrix Padé–type approximants were introduced by Draux [10] (see also [8, pp.
176–180]).

The polynomialPk can be chosen in order to obtain an improved order of approximation
q > k + h. Indeed, let us set

Pk(s) = A0 + · · ·+Ak−1s
k−1 +Aksk, Ak = I.

Thus, the order of approximation will be q = k+ h+ β if the matrices Ai ∈ R
m×m satisfy

Ck+h+iA0 + · · ·+Ch+iAk = 0, i = 0, . . . , β − 1.

Each of these matrix equations is equivalent to pm scalar equations with km2 unknowns.
Thus, β must be an integer satisfying βpm = km2, that is

βp = km. (2.1)

In this case, the approximants are called matrix Padé approximants and they are denoted
by [k+h−1/k]G. They need the knowledge of C0, . . . ,Ck+h+β−1. We see that the number
of coefficients used in matrix approximants is again equal to the order of approximation.
When p = m, the left and right matrix Padé approximants are identical. Results on matrix
Padé approximants can be found in [1, pp. 429–466]. It is well–known that matrix Padé
approximants are related to formal matrix orthogonal polynomials [10, 11, 17].
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We have [Pk(s)]−1 = adj Pk(s)/detPk(s). But detPk(s) is a polynomial of degree
km in s and each element of adj Pk(s) is a polynomial of degree k(m − 1) in s. Since
each element of Qk+h−1 is a polynomial of degree k + h − 1, then Qk+h−1(s) adj Pk(s)
has degree k(m − 1) + k + h − 1 = km + h − 1. Thus Qk+h−1(s)[Pk(s)]−1 is a rational
function in s with a matrix numerator of degree km + h − 1 and a scalar denominator of
degree km.

Vector approximants can be used for treating the matrix case by forming vectors of
dimension d = pm where the columns of the matrices Ci arranged consecutively. Thus,
in the vector case, we will take k = αd = αpm, where α is an integer.

Vector and matrix approximants can be compared according to two different criteria:
both with numerator (and denominator) polynomials of the same degree or achieving the
same order of approximation (that is, using the same number of coefficients of the series
G).

Let us begin by comparing approximants having the same degrees. Taking k = αp in the
matrix case, the vector approximants (αpm+ h− 1/αpm)�G and the matrix approximants
(αp + h − 1/αp)G both have a numerator of degree αpm + h − 1 and a denominator of
degree αpm. The order of approximation of the Padé–type approximants is αpm + h in
the vector case and only αp + h in the matrix case. For Padé approximants, this order is
αpm+ α+ h in the vector case and αp+ β + h = α(p+m) + h in the matrix case. Thus,
matrix Padé approximants have an order of approximation strictly smaller than the order
of the vector Padé approximants if m and p are both strictly greater than 1. The order is
the same if and only if p or m is equal to 1. This remark explains the results on the order
of approximation given in Section 3 which are exactly recovered.

Let us now compare these approximants when they have the same order of approxima-
tion. In the Padé–type case, the vector and the matrix approximants (αpm+h− 1/αpm)
both have the order αpm + h but the matrix approximants have a numerator of degree
αpm2 + h − 1 and a denominator of degree αpm2. In the Padé case, assuming that
k̂ = αp(pm+ 1)/(m+ p) is an integer, the vector approximants [αpm+ h− 1/αpm]�G and
the matrix approximants [k̂+h−1/k̂]G both have the order of approximation α(pm+1)+h.
However, the matrix approximants have a numerator of degree k̂m + h − 1 and a denom-
inator of degree k̂m > αpm.

Thus, in all cases, matrix Padé–type and Padé approximants have less interesting prop-
erties than the corresponding vector approximants since, with the same degrees, a lower
order of approximation is obtained and, for achieving the same order of approximation,
higher degrees have to be used.

3 Matrix–vector Padé approximants

As explained in Section 2, the matrix Padé approximant [k − 1/k]G is the product of a
matrix polynomial of degree k − 1 by the inverse of a second matrix polynomial of degree
k with coefficients of dimension m×m. So, the denominator of [k−1/k]G is a polynomial
of degree km, and it is the denominator of each entry of the numerator.

The generalization of scalar Padé approximants which allows to construct directly sev-
eral approximants with the same denominator is that of vector Padé approximants. The
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power series expansion of a vector Padé approximant in ascending powers of s agrees with
the series �G as far as possible. So, we will make use of vector Padé approximants. How-
ever, since our problem is formulated in term of matrices, it seems that we first have to
transform it into a vector form by using vectors of dimension d = pm containing each
column (or row) of the corresponding matrices consecutively. However, such a transfor-
mation is not necessary since the vectors involved will only be multiplied by scalars, an
operation equivalent to the multiplication of the corresponding matrices by the scalar.
Although they will appear in the sequel under a matrix form, these approximants are still
the vector Padé approximants of Section 2 since they approximate simultaneously several
series by rational functions with the same denominator, which is the property character-
izing these approximants. To distinguish them, they will be called matrix–vector Padé
(–type) approximants, and usual roman letters will be used.

The matrix power series G will be approximated by the rational function

Rk(s) =
k−1∑
i=0

Ais
i/

k∑
i=0

bis
i

where Ai ∈ R
p×m and bi ∈ R. The matrices Ai and the coefficients bi are chosen so that

k−1∑
i=0

Ais
i −

( ∞∑
i=0

Cis
i

)(
k∑

i=0

bis
i

)
= O(sq)

where q ∈ N is the order of approximation.
Identifying the coefficients in both sides we see that, if the matrices Ai satisfy

A0 = b0C0

A1 = b0C1 + b1C0
...

Ak−1 = b0Ck−1 + · · ·+ bk−1C0,

(3.1)

then the preceding approximation property holds with q = k.
Since a rational function is defined apart from a multiplying factor, we will take b0 = 1.

If the matrix coefficients Ai are given by (3.1), Rk is the vector Padé–type approximant
(k−1/k) �G(s) and, for any choice of b1, . . . , bk (that is, for any choice of the denominator),
we have

(k − 1/k) �G(s) =
�G(s) +O(sk).

The denominator Pk of (k − 1/k) �G has to be an approximation (in a certain sense) of
the characteristic polynomial Pn of the matrix A (this point will be discussed in Section
4). For this purpose and for increasing the order q of approximation of the vector Padé–
type approximant (k − 1/k) �G from k to k + α, as explained in Section 2, the following
additional block equations must be satisfied

0 = b0Ck + · · ·+ bkC0

0 = b0Ck+1 + · · ·+ bkC1
...

0 = b0Ck+α−1 + · · ·+ bkCα−1.

(3.2)
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Each of these matrix equations corresponds, in fact, to pm scalar equations. So, in general,
the system (3.2) has a solution only if k ≥ pm. The maximum possible value for the integer
α is α = �k/pm	. If k is such that (α − 1)pm < k < αpm, that is if k = (α − 1)pm + δ
with 0 < δ < pm, only δ equations will be selected among the last block equation in (3.2).
When these conditions are satisfied, (k − 1/k)G becomes the vector Padé approximant
[k − 1/k] �G of �G. The order of approximation is q = k + �k/pm	 and that of the equations
selected in the last block of (3.2) is q + 1.

These remarks confirm the considerations on the degrees of the approximants and their
orders of approximation given in Section 2. Indeed, when k = αpm, the conclusions of
this Section are recovered. It follows that Padé approximants for matrix series can be con-
structed by means of vector approximants. The algebraic aspects of matrix orthogonality
for vector polynomials was already discussed in [17].

4 The generalized method of moments

As explained in [3], the method of moments of Vorobyev [20, pp. 14–23] is related to
continued fractions and Padé approximants [20, pp. 54–60] and it falls into the framework
of Galerkin’s method. It is also related to Lanczos’ methods for the biorthogonalization of
two sets of vectors [15] and for the solution of a system of linear equations [16]; on these
topics, see [2, pp. 79–81], [3, 6], and [4, pp. 154–164]. We will now generalize the method
of moments to the matrix case and relate it to Padé–type and Padé approximants. A first
account of this procedure was given in Vorobyev [20, pp. 128–134] where it was called the
generalized method of moments. The results given below extend those of [6].

Let vi ∈ R
n×m and wi ∈ R

n×p. We denote by Er the subspace of n × m matrices of
the form v = v0a0 + · · · + vr−1ar−1 where ai ∈ R

m×m. Similarly, let Fl be the subspace
consisting of n × p matrices w = w0b0 + · · ·+wl−1bl−1 with bi ∈ R

p×p. The columns of
all matrices vi are assumed to be linearly independent and a similar assumption for the
columns of the matrices wi.

Let Hk ∈ R
n×n be the matrix representing the projection onto Er orthogonally to Fl,

which means that ∀v ∈ R
n×m, Hkv ∈ Er and v −Hkv ⊥ Fl. The generalized method of

moments consists in constructing a linear operator Ak on Er such that

vi = Akvi−1, i = 0, . . . , r − 1
Hkvr = Akvr−1.

Thus, vi = Ai
kv0 for i = 0, . . . , r − 1. The meaning of the subscript k will be explained

below.
These conditions define completely Ak which is represented by a n×n matrix. Indeed,

for all v ∈ Er, we have v = v0a0 + · · · + vr−1ar−1, where ai ∈ R
m×m. Thus Akv =

v1a0 + · · · + vr−1ar−2 + Hkvrar−1 ∈ Er. Since Hkvr ∈ Er, we can write Hkvr =
−v0h0 − · · · − vr−1hr−1, with hi ∈ R

m×m, and vr −Hkvr = v0h0 + · · ·+ vr−1hr−1 + vr.
The condition vr −Hkvr ⊥ Fl gives

wT
i v0h0 + · · ·+wT

i vr−1hr−1 +wT
i vr = 0, i = 0, . . . , l − 1. (4.1)
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Since wT
i vj ∈ R

p×m and hi ∈ R
m×m, this is a system of lpm equations in rm2 un-

knowns. Thus, in the sequel, we will assume that

rm = lp. (4.2)

We set k = rm = lp. This condition is equivalent to the condition that Er and Fl,
considered as the subspaces spanned by the columns (which are vectors in R

n) of the
matrices vi and wi respectively, have the same dimension k. So, we must have k ≤ n. The
knowledge of k is sufficient to recover the integers r and l. This is the reason why k is
used as a subscript in some places instead of the two subscripts r and l. Let Vk, resp.
Wk, be the n × k matrix [v0, . . . ,vr−1], resp. [w0, . . . ,wl−1]. Then

Hk = Vk(WT
k Vk)−1WT

k .

We have H2
k = Hk which shows that Hk is an oblique projection. The projection is

orthogonal if and only if Vk = Wk. On projections, see, for example, [4, pp. 18–23].

We assume that the system (4.1) is nonsingular and we consider the matrix polynomial

Pr(t) = h0 + · · ·+ tr−1hr−1 + trIm

where Im is the m × m identity matrix. Thus Pr(M) ∈ R
m×m if M ∈ R

m×m and
Pr(t) = Pr(tIm) ∈ R

m×m. We will make use of the notation

Pr(M) ◦ v = vh0 + · · ·+Mr−1vhr−1 +Mrv

where M ∈ R
n×n and v ∈ R

n×m. So, (Pr(M) ◦ v) ∈ R
n×m (on matrix polynomials,

see [13]). Such polynomials were already used in the multiparameter Lanczos method [5],
where they were related to formal vector orthogonality, and in the block Lanczos method
[12], where they were related to formal matrix orthogonality.

We have

Pr(Ak) ◦ v0 = v0h0 + · · ·+Ar−1
k v0hr−1 +Ar

kv0

= v0h0 + · · ·+ vr−1hr−1 +Hkvr = 0.

It follows that Pr(Ak) ◦ vi = 0 for i = 0, . . . , r − 1. Indeed, from what precedes,

Ai
k(Pr(Ak) ◦ v0) = 0

= Ai
kv0h0 + · · ·+Ai

kA
r−1
k v0hr−1 +Ai

kA
r
kv0 (4.3)

= vih0 + · · ·+Ar−1
k vihr−1 +Ar

kvi

= Pr(Ak) ◦ vi, i = 0, . . . , r − 1

since vi = Ai
kv0 for i = 0, . . . , r − 1. Therefore, by linear combination, ∀v ∈ Er, we have

Pr(Ak)◦v = 0. In particular, if v is a matrix whose columns are eigenvectors of Ak, then
Pr(Ak) ◦ v = vPr(Λ) = 0, where Λ is the m × m diagonal matrix of the corresponding
eigenvalues.

Now, we consider the n × n systems of linear equations with m right hand sides

sx = Ax+ v0 and sxk = Akxk + v0
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where s is a parameter, and x and xk belong to R
n×m. We set z = s−1. Since, formally,

(In − zA)−1 = In + zA+ z2A2 + · · · and a similar expression for (In − zAk)−1, then

x = z(v0 + zAv0 + z2A2v0 + · · · ) and xk = z(v0 + zAkv0 + z2A2
kv0 + · · · ).

Setting di = yTAi
kv0, where y ∈ R

n×p, we have from (4.3)

dih0 + · · ·+ di+r−1hr−1 + di+r = 0, i = 0, 1, . . . (4.4)

This result shows that, formally, d0 + d1z + d2z
2 + · · · = Q̃r−1(z)[P̃r(z)]−1, where Q̃r−1

is a polynomial of degree r − 1 in z and P̃r a polynomial of degree r in z. Moreover,
from (4.4), we see that P̃r(z) = zrPr(z−1), where Pr is the polynomial obtained by the
generalized method of moments. If we set Q̃r−1(z) = e0z

r−1 + · · ·+ er−1, then

er−1 = d0

er−2 = d1 + d0hr−1

...
e0 = dr−1 + dr−2hr−1 + · · ·+ d0h1.

We set gk(z) = yTxk = z(d0+d1z+d2z
2+· · · ) and g(z) = yTx = z(c0+c1z+c2z

2+· · · )
with ci = yTAiv0. If ∀i,vi = Aiv0, then di = ci for i = 0, . . . , r − 1 since vi = Ai

kv0 for
i = 0, . . . , r − 1. So, we see that

gk(z) = g(z) +O(zr)

which shows that gk is the (r − 1/r)g matrix Padé–type approximant of g.
It must be remarked that

gk(s−1) = s−1Q̃r−1(s−1)[P̃r(s−1)]−1

= Qr−1(s)[Pr(s)]−1

with Qr−1(s) = sr−1Q̃r−1(s−1). As already explained in Section 2, this result does not
mean that gk is the quotient of a polynomial of degree r − 1 by a polynomial of degree
r. In fact Qr−1(s)[Pr(s)]−1 is a rational function in s with a matrix numerator of degree
mr − 1 and a scalar denominator of degree mr (a result which can be seen directly from
the equation satisfied by xk).

Let P and Q be two m × m matrix polynomials related by

sIm −P(t) = (s − t)Q(t). (4.5)

Then, the equation
sxk = P(Ak) ◦ xk +Q(Ak) ◦ v0

has the same solution as sxk = Akxk + v0 since

(sIm −P(Ak)) ◦ xk = Q(Ak) ◦ v0 = Q(Ak) ◦ ((sIn −Ak)xk).

Since, from (4.5), the polynomial P must satisfy P(s) = sIm if t = s, let us take

P(t) = sPr(t)[Pr(s)]−1.
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But, Pr(s)Pr(t) = Pr(t)Pr(s) and, multiplying on the left and on the right by the inverse
of Pr(s), we see that Pr(t) commutes with it. Then

xk = s−1s[Pr(s)]−1(Pr(Ak) ◦ xk) + s−1Q(Ak) ◦ v0

= s−1Q(Ak) ◦ v0

since xk ∈ Er and ∀v ∈ Er,Pr(Ak) ◦ v = 0.
Thus gk(s−1) = s−1yT (Q(Ak) ◦ v0). But, from (4.5),

Pr(s)−Pr(t)
s − t

= s−1Q(t)Pr(s).

Using the expression of Pr, we get

Pr(s)−Pr(t)
s − t

= (h1 + h2t + · · ·+ hr−1t
r−2 + tr−1)

+ s(h2 + · · ·+ hr−1t
r−3 + tr−2) + · · ·+ sr−2(hr−1 + t) + sr−1.

It follows

yT (sIn −Ak)−1[(Pr(sIn)−Pr(Ak)) ◦ v0]
= (d0h1 + · · ·+ dr−2hr−1 + dr−1) + · · ·+ d0s

r−1 = Qr−1(s)

and we finally recover
gk(s−1) = Qr−1(s)[Pr(s)]−1.

The nonsingularity of the matrix Pr(s) remains to be discussed. Let λi, i = 1, . . . , m,
be an eigenvalue of Ak such that its associated eigenvector belongs to Er. So, setting
Λ = diag (λ1, . . . , λm), we have Akv = vΛ with v = v0a0 + · · · + vr−1ar−1 ∈ Er with
ai ∈ R

m×m and

Akv = Akv0a0 + · · ·+Akvr−2ar−2 +Akvr−1ar−1

= v1a0 + · · ·+ vr−1ar−2 +Hkvrar−1

= v1a0 + · · ·+ vr−1ar−2 + (−v0h0 − · · · − vr−1hr−1)ar−1

= −v0h0ar−1 + v1(a0 − h1ar−1) + · · ·+ vr−1(ar−2 − hr−1ar−1)
= v0a0Λ+ · · ·+ vr−1ar−1Λ.

Thus

−h0ar−1 = a0Λ

ai − hi+1ar−1 = ai+1Λ, i = 0, . . . , r − 2

which shows that a0, . . . ,ar−1 are solution of the system
−Λ 0 0 · · · 0 −h0

Im −Λ 0 · · · 0 −h1
...

...
...

...
...

0 0 0 · · · Im −hr−1 −Λ




a0

a1
...

ar−1

 = 0.
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Since the solution of this system is not identically zero, then λi, i = 1, . . . , m, must also
be a zero of the determinant of this matrix. This matrix is called the companion matrix of
Pr and its determinant is equal to detPr(λ); see [13, pp. 13–14] or [14, pp. 490–493]. So,
detPr(s) �= 0 if and only if s is not an eigenvalue of Ak whose corresponding eigenvector
belongs to Er.

We will now choose the matrices wi in order to improve the order of approximation.
We have Pr(A) ◦ v0 −Pr(Ak) ◦ v0 = vr −Hkvr. Thus

wT
i [Pr(A) ◦ v0 −Pr(Ak) ◦ v0] = 0, i = 0, . . . , l − 1.

But Pr(Ak) ◦ v0 = 0 and it follows

wT
i (Pr(A) ◦ v0) = 0, i = 0, . . . , l − 1.

Let us consider the choice wi = (AT )iy. Then

wT
i (Pr(A) ◦ v0) = yTAi(Pr(A) ◦ v0) = yT (Pr(A) ◦ vi) = 0, i = 0, . . . , l − 1

that is

0 = yTvih0 + · · ·+ yTAr−1vihr−1 + yTArvi

= cih0 + · · ·+ ci+r−1hr−1 + cr+i, i = 0, . . . , l − 1 (4.6)

since ci+j = yTAjvi. Subtracting (4.6) from (4.4), we obtain

(ci − di)h0 + · · ·+ (ci+r−1 − di+r−1)hr−1 + ci+r − di+r = 0, i = 0, . . . , l − 1.

When i = 0, this relation shows that dr = cr since di = ci for i = 0, . . . , r−1. When i = 1,
it leads to dr+1 = cr+1, and so on. Thus, it follows that dr+i = cr+i for i = 0, . . . , l − 1
and, finally, we have di = ci, i = 0, . . . , r + l − 1 and

gk(z) = g(z) +O(zr+l).

The condition (2.1) becomes (after replacing k by r) βp = rm and, comparing with
(4.2), we see that β = l. Thus, gk is the [r − 1/r]g matrix Padé approximant of g. More-
over, the relation (4.6) shows the well–known connection with formal matrix orthogonal
polynomials [10].

Let us give an expression for Ak. Let v = v0c0 + · · ·+ vr−1cr−1 ∈ Er. Then

Av = Av0c0 + · · ·+Avr−1cr−1

= Av0c0 + · · ·+Ar−1v0cr−2 +Arv0cr−1

= Akv0c0 + · · ·+Ar−1
k v0cr−2 +Arv0cr−1.

It follows, since Hkvi = vi for i = 0, . . . , r − 1,

HkAv = Akv0c0 + · · ·+Ar−1
k v0cr−2 +Hkvrcr−1

= Akv0c0 + · · ·+Ar−1
k v0cr−2 +Ar

kv0cr−1

= Ak(v0c0 + · · ·+ vr−1cr−1) = Akv
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which shows that Ak = HkA on Er. Since Hkv ∈ Er if v ∈ Er, the domain of Ak can be
extended to the whole space by setting

Ak = HkAHk.

We set Vr = [v0, . . . ,vr−1] and Wl = [w0, . . . ,wl−1]. By condition (4.2), these two
matrices have the same dimension. We assume that WT

l Vr = I, which does not restrict
the generality. We have Hk = VrWT

l and Ak = VrWT
l AVrWT

l = VrJkWT
l with

Jk = WT
l AV r. It also holds Ai

k = VrJi
kW

T
l and we have

gk(s) = yTVr(sI− Jk)−1WT
l v0.

These results generalize those given in [2, pp. 75–78]. The case of systems of the form
Ax = v0 and Akxk = v0 can be considered in a similar way; see [6].
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algebra, in Mathematical Theory of Networks and Systems, Beer Sheva, Israel, June 20–
24, 1983, P A Fuhrmann ed., Lecture Notes in Control and Information Sciences, vol. 58,
Springer–Verlag, Berlin, 1984, 278–292.

[11] Duran A J, van Assche W, Orthogonal matrix polynomials and higher recurrence relations,
Linear Algebra Appl. 219 (1995) 261–280.

[12] El Guennouni A, Mise en Œuvre et Variantes par Bloc des Méthodes de Type Lanczos, Thèse,
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[18] van Iseghem J, Vector Padé approximants, in Numerical Mathematics and Applications, R.
Vichnevetsky and J. Vignes eds., North–Holland, Amsterdam, 1985, 73–77.

[19] van Iseghem J, Vector orthogonal relations, vector QD–algorithm, J. Comput. Appl. Math.
19 (1987) 141–150.

[20] Vorobyev Yu V, Method of Moments in Applied Mathematics, Gordon and Breach, New York,
1965.


