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Abstract

We present an extension of a family of second-order integrable mappings to the case
where the variables do not commute. In every case we introduce a commutation
rule which is consistent with the mapping evolution. Through the proper ordering of
variables we ensure the existence of an invariant in the non-commuting case.

1 Introduction

Integrable equations involving non-commuting variables present a special interest, in par-
ticular in view of their applicability to quantum field theories. A large literature exists
concerning supersymmetric or just fermionic extensions of integrable evolution equations.
It is now clear that the special properties which characterise integrability can be extended
to the case where the dependent variable involves fermionic as well as bosonic components.

In the domain of discrete systems, curiously, there has not been much progress in
this direction. Few studies have been devoted to mappings involving non-commuting
variables. In [1] the quantum integrability of a familly of (classically) integrable lattices
has been related to the existence of a well-defined quantum Yang-Baxter structure, which
provides a complete set of commuting operators. A more direct approach to quantum
integrability has been used in [2] concerning a mapping of the QRT family. Starting
from a restricted parametrization of the latter and postulating that the mapping variables
(x, y) are operators satisfying canonical relations [x, y] = i�, it has been shown that it is
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possible to choose the right ordering so that the the classical invariant remains invariant
even in the quantum case. In [3] we have presented an approach towards a combination
of the two “quantisations”, in the sense of Novikov [4], deautonomisation and real space
quantisation. We have shown that the known Lax pairs of discrete Painlevé equations could
be transformed, through the appropriate reordering, so as to obtain the corresponding
discrete Painlevé equations from the compatibility conditions. Naturally in that work we
have also considered the question of the quantisation of autonomous mappings.

In the present work we will return to the question of the proper quantisation of inte-
grable second-order mappings. There are many reasons for this. First the number of cases
treated in [3] is rather limited: it corresponded to the knowledge of discrete Painlevé equa-
tions at the beginning of the 90’s which was, at best, fragmentary. Second, the treatment
presented in [3] focused on mappings which are “symmetric” in the QRT terminology.
However, for most cases, the natural form is an asymmetric one, so a way had to be found
allowing the natural treatment of these cases. This, of course, necessitated the extension
of the quantisation rules introduced in [3].

In what follows, we shall examine systematically the autonomous forms that were ob-
tained from the classification of discrete Painlevé equations and presented in [5]. We shall
introduce consistent quantification schemes and construct the corresponding invariants.
The main difficulty for the quantisation of discrete systems is the fact that most commu-
tation rules are incompatible with the evolutions induced by the mapping. By this we
mean that if we assume that the mapping variables obey some commutation rules at some
iteration, there is no guarantee whatsoever that at the next step the mapping variables
will obey the same commutation rule. In particular, the Heisenberg commutation relation
[x, y] = 1 (and the associated Weyl procedure) is not necessarily the proper commutation
rule for all the mappings we shall examine here (although it does work for a certain class).
On the other hand there is no deep physical reason (such as the Hamiltonian structure in
the case of the Heisenberg rule) why one should choose one rule over another. Thus we
are free to explore exotic commutation rules. In [3] we have introduced the relation

xy = qyx + λ(x + y) + ν (1.1)

which is an extension of the Weyl commutation rule xy = qyx. However this rule is geared
toward “symmetric” mappings where x and y play the same role. In what follows we shall
allow for a genuine asymmetry between x and y and thus work with

xy = qyx + λx + µy + ν (1.2)

In order to fix the notation in a more precise way we consider the iteration of the mapping
to form the sequence:

. . . , yn−2, xn−1, yn, xn+1, yn+2, . . .

i.e. the x variables are associated to indices of one parity while the y variables are related
to indices of the other parity. In that way we distinguish clearly the noncommuting
variables and work explicitly in a non “symmetric” frame. In the light of this notation
the commutation rules (1.2) is to be understood between yn and xn−1 (or xn+1).
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2 Non-commuting forms of QRT mappings

In what follows, we shall examine mappings which in the usual, commuting case, possess an
invariant of the form K(X,Y ). By this we mean that the equation K(X, yn) = K(xn−1, yn)
is satisfied, identically for X = xn−1 and also for X = xn+1 where xn+1 is related to yn,
xn−1 through the evolution of the mapping. (Similarly K(xn+1, Y ) = K(xn+1, yn) is
satisfied by both Y = yn and Y = yn+2). These are the properties we shall ensure in
the non-commuting case, through the proper choice of commutation rules, invariant and
mapping.

The family of mappings we are going to work with is the one introduced in [6] and which
came to be known as the QRT mapping. Their general expression in the commuting case
is:

xn+1 =
f1(yn) − xn−1f2(yn)
f2(yn) − xn−1f3(yn)

(2.1)

yn+2 =
g1(xn+1) − yng2(xn+1)
g2(xn+1) − yng3(xn+1)

where fi, gi are specific polynomials of degree not exceeding four, involving at maximum
8 nontrivial parameters. The invariant of the mapping (2.1) can be written as a rational
expression K(X,Y ) the numerator and denominator of which are biquadratic in X and Y
and invariance has to be understood as in the paragraph above.

The classification of the canonical forms of (2.1) was presented in [7]. It follows, in
some sense, the more general classification obtained [5] in the case of discrete Painlevé
equations (which are the nonautonomous extensions of the QRT mapping), based on affine
Weyl groups. However, in the autonomous case we shall consider here, the classification
of [7] is sufficient.

I) We start with the mapping:

xn+1 + xn−1 = F (yn) (2.2)

The commutation relation we are going to use in this case is

ynxn−1 = xn−1yn + k (2.3)

where a priori k may be a function of yn only. Using (2.2) it is straightforward to check
that ynxn+1 + ynxn−1 = xn+1yn + xn−1yn or

xn+1yn = ynxn+1 + k (2.4)

Guided by the commutative case and the results of [2], we introduce the invariant:

K(X,Y ) = X2f(Y ) + f(Y )X2 + Xg(Y ) + g(Y )X + 2h(Y ) (2.5)

and require that the equation K(X, yn) = K(xn−1, yn) be satisfied not only by X = xn−1

but also for X = xn+1 for xn+1 defined by (2.2) for some F (yn) (which is to be related to
f , g and h). We use the notation K = K(xn−1, yn) and K̂ = K(xn+1, yn). We have

K = xn−1(xn−1f + g) + (fxn−1 + g)xn−1 + 2h (2.6a)
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K̂ = xn+1(xn+1f + g) + (fxn+1 + g)xn+1 + 2h (2.6b)

Let us show that if F = −gf−1, i.e. xn+1 = −xn−1 − gf−1 then we indeed have the
conservation K̂ = K. The essential ingredient we need in the proof is the commutation
rule between xn±1 and a function of yn. Using (2.3-4) and the fact that k commutes with
yn (this is of course crucial) one can easily show that for any function j(yn)

j(yn)xn±1 = xn±1j(yn) ∓ kj′(yn) (2.7)

where the prime denotes the derivation with respect to the argument. So

K − 2h = xn−1(−xn+1f) + (−fxn+1)xn−1 =

= xn−1(−fxn+1 − kf ′) + (−xn+1f + kf ′)xn−1

= −xn−1fxn+1 − xn+1fxn−1 + kf ′xn−1 − xn−1kf
′ =

= −xn−1fxn+1 − xn+1fxn−1 + k(kf ′)′

Following the same steps we find that:

K̂ − 2h = xn+1(−xn−1f) + (−fxn−1)xn+1 = −xn+1fxn−1 − xn−1fxn+1 + k(kf ′)′

So the quantities K and K̂ indeed coincide. Note that one should be very careful when
commuting k with the x variables since it is not assumed that k is a c-number, but only
that it is a function of yn. Thus the mapping (2.2) possesses the invariant (2.5) in the
sense explained at the beginning of this section, provided F = −gf−1.

We must now complement (2.2) with an equation relating yn, xn+1 and yn+2. The
simplest choice would be to write an equation of the same form, namely

yn+2 + yn = G(xn+1) (2.8)

Following the same reasoning as above we see that this will be compatible with the commu-
tation rule (2.4) if k commutes with xn+1. But in this case k must indeed be a c-number,
since it must already commute with yn. Then using (2.4) and (2.8) we find

yn+2xn+1 = xn+1yn+2 + k (2.9)

So equation (2.3) will indeed be valid for all n and thus also (2.4). Moreover we need K̂
to be of the form

K̂ = φ(xn+1)y2
n+2 + y2

n+2φ(xn+1) + ψ(xn+1)yn+2 + yn+2ψ(xn+1) + 2ω(xn+1) (2.10)

We can retrace the steps of the above reasoning and show that if G = −ψφ−1 then
K(xn+1, yn+2) = K(xn+1, yn). Equation (2.10) is indeed a rewriting of (2.5) provided f ,
g and h are quadratic in yn and then φ, ψ and ω are also quadratic in xn+1. In fact K
can be explicitly written:

K(X,Y ) = α(X2Y 2 + Y 2X2) + β(X2Y + Y X2) + 2γX2

+δ(XY 2 + Y 2X) + ε(XY + Y X) + 2ζX + 2κY 2 + 2λY + 2µ (2.11)
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This result was already obtained in [2]. Note that if δ = β, κ = γ and λ = ζ then K is in
fact symmetric in X and Y . Then as functions of their argument, φ = f , ψ = g, ω = h
and G = F . This is the so-called “symmetric” QRT case and there would be no point
giving different names x and y to odd- and even-numbered variables. The commutation
rule (2.4) is just (2.3) written at n + 1 and similarly (2.8) is just (2.2) at n + 1.

II) Next we examine the mapping:

yn+2yn = G(xn+1) (2.12)

This mapping is compatible with more than one instance of the rule (1.1). Indeed, both:

xn+1yn = ynxn+1 + νyn (2.13)

and
xn+1yn = qynxn+1 (2.14)

lead to consistent rules for the commutation of yn+2 with xn+1. Indeed combining (2.12)
with (2.13) we get

yn+2xn+1 = xn+1yn+2 + νyn+2 (2.15)

while (2.12) and (2.14) lead to

yn+2xn+1 = qxn+1yn+2 (2.16)

Both cases can be represented by the shorthand

xn+1yn = ynx̃n+1, yn+2xn+1 = x̃n+1yn+2 (2.17)

with x̃n+1 being xn+1 + ν in the first case and qxn+1 in the second one. In both cases
x̃n+1 is just a function of xn+1 and commutes with it.

Next we introduce the invariant (obtained from the commutative case of QRT mapping
with the appropriate ordering):

K(X,Y ) = Y f(X) + f(X)Y + 2g(X) + Y −1h(X) + h(X)Y −1 (2.18)

This assumes of course that Y is invertible. We have so far never specified what space of
noncommuting objects we are dealing with, whether they are operators, whether divisors
of zero exist, and so on. At this point we assume that the generic object is invertible and
we are not going to worry about the possibility of Y reaching a singular, noninvertible
value (not any more than the exceptional occurence of a zero in the commutative case).
We shall show that the conservation law K(xn+1, Y ) = K(xn+1, yn) is satisfied, identically
by Y = yn, but also by Y = yn+2 for yn+2 satisfying (2.12) for the appropriate value of
G expressed in terms of f , g and h. In order to prove this we shall use the following
properties, which are consequences of (2.17):

j(xn+1)yn = ynj(x̃n+1), yn+2j(xn+1) = j(x̃n+1)yn+2 (2.19a)

j(x̃n+1)y−1
n = y−1

n j(xn+1), y−1
n+2j(x̃n+1) = j(xn+1)y−1

n+2 (2.19b)

for any function j. Using (2.19) we can rewrite K(xn+1, yn) as

K(xn+1, yn) = yn(f(xn+1) + f(x̃n+1)) + 2g(xn+1) + (h(x̃n+1) + h(xn+1))y−1
n (2.20)
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while K(xn+1, yn+2) can be rewritten as:

K(xn+1, yn+2) = (f(x̃n+1) + f(xn+1))yn+2 + 2g(xn+1) + y−1
n+2(h(xn+1) + h(x̃n+1)) (2.21)

These two quantities will coincide if (2.12) is satisfied with

G(xn+1) = (h(x̃n+1) + h(xn+1))(f(xn+1) + f(x̃n+1))−1 (2.22)

Up to this point the precise form of f , g and h (and thus of G) has not been fixed. The
choice will depend on the equation for xn−1, yn and xn+1 that we wish to use. The simplest
case would be to consider an equation similar to (2.12)

xn+1xn−1 = F (yn) (2.23)

The commutation rule (2.13) is not compatible with this choice but we can use (2.14) and
then from (2.14) and (2.23) we deduce

ynxn−1 = qxn−1yn (2.24)

which means that (2.16) (and thus also (2.14)) will be satisfied for all n. We can reproduce
the above steps provided K of (2.18) can be rewritten as:

K(X,Y ) = Xφ(Y ) + φ(Y )X + 2ψ(Y ) + X−1ω(Y ) + ω(Y )X−1 (2.25)

This means that f , g and h are linear in X and X−1 and thus φ, ψ and ω are similarly
linear in Y and Y −1. In fact we have:

K(X,Y ) = α(XY + Y X) + 2βX + γ(XY −1 + Y −1X) + 2δY
+2ε + 2ζY −1 + κ(X−1Y + Y X−1) + 2λX−1 + µ(X−1Y −1 + Y −1X−1) (2.26)

Again, if δ = β, κ = γ and λ = ζ, K is symmetric in X and Y . We have φ = f , ψ = g,
ω = h, G = F and odd- and even-numbered variables should really have the same name.

Another possibility, however, does exist. The commutation rule (2.13) is of the form
(2.4) with the choice k(yn) = νyn. We saw above that (2.4) is compatible with (2.2)
provided the commutation rule (2.3) holds. But again, (2.13) implies (2.15) if (2.12)
holds, and note that (2.15) is nothing but (2.3) written at n + 2. So it follows that one
can use commutation rules (2.3) and (2.4) for all n with the proper choice k(yn) = νyn,
and this will be compatible with the coupling of (2.2)

xn+1 + xn−1 = F (yn)

with (2.12)
yn+2yn = G(xn+1).

In this case the situation is strongly asymmetric between the x’s and the y’s, the former
satisfying an additive equation, the latter a multiplicative one [8]. Moreover the commu-
tation rule treats the variables in a different way. The constant K(X,Y ) must be of the
form (2.5) and also of the form (2.18). This is realised by:

K(X,Y ) = α(X2Y + Y X2) + 2βX2 + γ(X2Y −1 + Y −1X2)
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+δ(XY + Y X) + 2εX + ζ(XY −1 + Y −1X) + 2κY + 2λ + 2µY −1 (2.27)

The invariance of K under the evolution is a consequence, separately, of the arguments
we used in subsections I and II with the appropriate choices for F in (2.2) and G in (2.12)
in terms of the parameters of (2.27) and ν.

III) In this subsection we shall we examine mappings of the form:

(xn+1 + yn)(xn−1 + yn) = F (yn) (2.28)

The commutation rule we shall introduce here is

ynxn−1 = xn−1yn + ν(xn−1 + yn) (2.29)

Starting from this relation and using the mapping (2.28) we can show that

xn+1yn = ynxn+1 + ν(xn+1 + yn) (2.30)

Assuming that at even steps we have the same form as (2.28)

(xn+1 + yn+2)(xn+1 + yn) = G(xn+1) (2.31)

the commutation rules (2.29) and (2.30) will hold for all n’s. We can show that (2.28-31)
are indeed consistent with some invariant, for appropriate values of F and G. We start
from:

K(X,Y ) = X2(X + Y )−1f(Y ) + f(Y )(X + Y )−1X2 + X(X + Y )−1g(Y )+

g(Y )(X + Y )−1X + (X + Y )−1h(Y ) + h(Y )(X + Y )−1 (2.32)

In order to show the invariance of (2.32) under the evolution, which means K(xn+1, yn) =
K(xn−1, yn) (and K(xn+1, yn+2) = K(xn+1, yn)) we have to write K(xn−1, yn) as

K(xn−1, yn) = (xn−1 + yn)P (yn) + Q(yn) + R(yn)(xn−1 + yn)−1 (2.33)

The method is elementary. Wherever we have xn−1 in K we write it as wn − yn (i.e.
wn = xn−1+yn) so everything can be written in terms of wn and yn. Now the commutation
rule of yn with wn is quite simple. From (2.29) it follows that:

ynwn = wnyn + νwn = wnỹn (2.34)

where ỹn ≡ yn + ν. So it follows that for any function j:

j(yn)wn = wnj(ỹn) (2.35)

This allows us to move functions of yn left and right of wn (or w−1
n ) with just redefinition

of the arguments of the functions. The terms involving h lead only to w−1
n , those involving

g lead to w−1
n terms and wn-independent terms (coming, respectively from −yn and wn

in the expansion of xn), while the f terms contribute wn terms in addition to w−1
n terms

and wn-independent terms. Because of (2.35) we are always allowed to bring functions
of yn to the side we prefer, at the price of redefining the arguments, so we can indeed
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write K(xn−1, yn) as (2.33). Consider now the commutation rule (2.30) of yn with xn+1.
Defining vn = xn+1 + yn we see that

vnyn = ynvn + νvn = ỹnvn. (2.36)

For any function j we have
vnj(yn) = j(ỹn)vn, (2.37)

so commuting vn from left to right of a function of yn has the same effect as commuting
wn from right to left. So it follows that if we start from K(xn+1, yn), write xn+1 = vn−yn

and do exactly the same manipulations but in the opposite direction we will find

K(xn+1, yn) = P (yn)(xn+1 + yn) + Q(yn) + (xn+1 + yn)−1R(yn) (2.38)

where P , Q and R are expressed in terms yn, ỹn and of f , g, h at various arguments
(yn, ỹn, etc.) but these expressions, however complicated, will be exactly the same as
those in (2.33). It follows that if we choose (xn+1 + yn) = P (yn)−1R(yn)(xn−1 + yn)−1

the first term in the r.h.s of (2.38) coincides with the last one in (2.33) and conversely, so
K(xn+1, yn) and K(xn−1, yn) indeed coincide. So with the choice F (yn) = P (yn)−1R(yn),
the mapping (2.28) leaves K invariant. In order to be able to do the same manipulation
at even steps, we must be able to rewrite K(xn+1, yn) in similar form as (2.32) in terms
of y2

n, yn and functions of xn+1. For this it is necessary and sufficient that f , g and h
be functions of degree in yn not higher than two. The very same steps lead to equation
(2.31). The expression of K must be

K(X,Y ) = α(X2W−1Y 2 + Y 2W−1X2) + β(X2W−1Y + Y W−1X2)

+γ(X2W−1 + W−1X2) + δ(XW−1Y 2 + Y 2W−1X) + ε(XW−1Y + Y W−1X)

+ζ(XW−1 + W−1X) + κ(W−1Y 2 + Y 2W−1) + λ

(W−1Y + Y W−1) + 2µW−1 (2.39)

with W = X +Y . As previously, the choices δ = β, κ = γ and λ = ζ lead to K symmetric
in X and Y and variables with even and odd indices should have the same name.

IV) Here we consider the mapping

(xn+1yn − 1)(ynxn−1 − 1) = F (yn) (2.40)

and we will not keep any suspense but give directly the equation at even n’s:

(yn+2xn+1 − 1)(xn+1yn − 1) = G(xn+1) (2.41)

These two equations are compatible with the commutation rule

ynxn−1 = qxn−1yn + (1 − q) (2.42)

i.e.
ynxn−1 − 1 = q(xn−1yn − 1) (2.43)
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Calling wn the quantity (ynxn−1 − 1) one has wnyn = qynwn. Using this relation in
combination with (2.40) it is easy to show that ynvn = qvnyn, where vn = (xn+1yn − 1)
and thus

xn+1yn − 1 = q(ynxn+1 − 1) (2.44)

Using the latter with (2.42) one shows that (2.43) is satisfied at all n’s and thus so is
(2.44). The invariant will be:

K(X,Y ) = X2(Y X − 1)−1f(Y ) + f(Y )(XY − 1)−1X2

+X(Y X − 1)−1g(Y ) + g(Y )(XY − 1)−1X+

(Y X − 1)−1h(Y ) + h(Y )(XY − 1)−1 (2.45)

We start from K(xn−1, yn) and rewrite it into a more convenient form. When xn−1 is on
the left of w−1

n ≡ (ynxn−1 − 1)−1 we write it as yn(wn + 1)−1, while when it is on the
right of (xn−1yn − 1)−1 we use the form (xn−1yn − 1 + 1)y−1

n which thanks to (2.43) can
also be written in terms of wn. Because one has wnj(yn) = j(qyn)wn for any function j,
one can move wn at will to the left or to the right of functions of yn by taking proper
care of the arguments. Just as in the previous case, the h terms give w−1

n terms, the g
terms give these and also wn-independent terms while the f terms lead, in addition, to
terms proportional to wn. We may move the wn’s to the side we want and thus write
K(xn−1, yn) as:

K(xn−1, yn) = wnP (yn) + Q(yn) + R(yn)w−1
n (2.46)

Now, because of (2.44), any operation we do with xn+1 (and vn) going from left to right,
say, will give exactly the same terms as those coming from xn−1 (and wn) going from right
to left. However complicated P , Q and R are in terms of f , g and h we will recover exactly

K(xn+1, yn) = P (yn)vn + Q(yn) + v−1
n R(yn) (2.47)

So K will indeed be an invariant if vn = P (yn)−1R(yn)w−1
n which is exactly (2.40) with

F = P−1Q.
In order to find (2.41), we need to be able to rewrite K(xn+1, yn) in a form similar to

(2.45) in terms of y2
n, yn and functions of xn+1. This can be realised if f , g and h are also

quadratic in yn. The expression of K is quite similar to (2.39) but one must remember
that instead of a single W−1 the object in “sandwich” between Xa and Y b is (Y X − 1)−1

while it becomes (XY − 1)−1 between Y b and Xa (even if a and/or b vanish, so the last
term is µ((Y X−1)−1 +(XY −1)−1)). Again a symmetric case is obtained if δ = β, κ = γ
and λ = ζ.

3 Non-commuting forms of mappings equivalent to QRT

So far we have considered QRT forms (2.1) in which the l.h.s. was given in polynomial
form. Here we shall extend our treatment to the case where the l.h.s. of the mapping is
rational [9].

I) Consider the mapping

(xn+1 + yn + Z)(xn−1 + yn + Z)
(xn+1 + yn)(xn−1 + yn)

= F (yn) (3.1a)
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(xn+1 + yn+2 + Z)(xn+1 + yn + Z)
(xn+1 + yn+2)(xn+1 + yn)

= G(xn+1) (3.1b)

for commuting variables, where Z is a constant. There are different ways to write it if the
variables do not commute. We choose:

(xn+1 + yn + Z)(xn+1 + yn)−1(xn−1 + yn + Z)(xn−1 + yn)−1 = F (yn) (3.2a)

(xn+1 + yn+2 + Z)(xn+1 + yn+2)−1(xn+1 + yn + Z)(xn+1 + yn)−1 = G(xn+1) (3.2b)

It is not easy at first sight to find a consistent commutation rule, unless one notices that one
can rewrite (3.1) in terms of four variables by introducing wn = (xn−1+yn+Z)(xn−1+yn)−1

and vn+1 = (xn+1 + yn + Z)(xn+1 + yn)−1. We find that (3.2) and the definitions of wn

and vn+1 give the system:
yn + xn−1 = Z(wn − 1)−1 (3.3a)

vn+1wn = F (yn) (3.3b)

xn+1 + yn = Z(vn+1 − 1)−1 (3.3c)

wn+2vn+1 = G(xn+1) (3.3d)

The sequence of variables is now

. . . , yn−2, vn−1, xn−1, wn, yn, vn+1, xn+1, wn+2, yn+2, . . . (3.4)

Because of the form of the left-hand sides one can find consistent commutation rules
between any two consecutive variables of the above sequence. Since we have an alternance
of additive and multiplicative equations, we look at a rule similar to (2.13) rather than
(2.14). More precisely we take

ynwn = wnyn + νwn ≡ wnỹn (3.5)

which implies, on the one hand

wnxn−1 = xn−1wn + νwn (3.6)

because of (3.3a), and also

vn+1yn = ỹnvn+1 = ynvn+1 + νvn+1 (3.7)

because of (3.3b). Using (3.3c) we further find xn+1vn+1 = vn+1x̃n+1 where x̃n+1 =
xn+1 + ν, and finally (3.3d) leads to wn+2xn+1 = x̃n+1wn+2 which is just (3.6) written
two units further. This means that all these commutation rules are valid for all n’s.
There is no simple relation expressing directly the commutation of xn−1, say, and yn.
On the other hand, since separately equations (3.3) are not of QRT type, we do not
expect invariants involving two consecutive variables in (3.4). Invariance must still be
understood, as throughout the paper, as under the incrementation of the index of either x
or y by two units. It turns out, however, that using usual QRT invariants K(X,Y ) with the
appropriate ordering, but using the intermediate variables to write them in an appropriate
way, we can show the invariance under (3.2). Namely, inspired by the commutative case,
we define:

K(X,Y ) = X2U−1f(Y ) + f(Y )U−1X2 + XU−1g(Y )+
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g(Y )U−1X + U−1h(Y ) + h(Y )U−1 (3.8)

with U = (X + Y + Z)(X + Y ). Note that, whatever the commutations of X and Y are,
X + Y commutes with any function of itself. It follows that one can write:

U−1 = Z−1((X + Y )−1 − (X + Y + Z)−1) =

Z−2((X + Y + Z)(X + Y )−1 − (X + Y )(X + Y + Z)−1)

The last term in (2.45) shows that the terms coming from h in K(xn−1, yn) (resp. in
K(xn+1, yn)) can be written in terms of only yn and wn (resp. only yn and vn+1). Moreover
using the middle expression in (2.45) we can easily show that it is also true for the g terms.
Indeed

XU−1 = Z−1((X + Y − Y )(X + Y )−1 − (X + Y + Z − Y − Z)(X + Y + Z)−1)

= Z−1((Y + Z)(X + Y + Z)−1 − Y (X + Y )−1)

= Z−2((Y + Z)(1 − (X + Y )(X + Y + Z)−1) − Y ((X + Y + Z)(X + Y )−1 − 1)) (3.9)

Only y’s and w or v enter in these expression and the same is true, with a different ordering,
for U−1X. We will now proceed to show that that this is still the case for X2U−1 (and,
similarly for U−1X2). To compute X2U−1 we first note that in the last term of (3.9) it is
possible to move the functions of Y to the right of the relevant object which are wn, w−1

n

or vn+1, v−1
n+1 depending on whether we work on K(xn−1, yn) or K(xn+1, yn). Because of

(3.5) and (3.7) we have

XU−1 = Z−2(Y + Z − (X + Y )(X + Y + Z)−1(Y + Z ± ν)−
(X + Y + Z)(X + Y )−1(Y ∓ ν) + Y )) (3.10)

with the upper sign for xn+1 and the lower one for xn−1 But this can be rewritten as

XU−1 = Z−2((1 − (X + Y )(X + Y + Z)−1)(Y + Z ± ν)−
((X + Y + Z)(X + Y )−1 − 1)(Y ∓ ν)))

= Z−1((X + Y + Z)−1(Y + Z ± ν) − (X + Y )−1(Y ∓ ν)) (3.11)

The functions of Y on the right do not pose any problem, they just combine with f . The
crucial point is that now, in computing X2U−1, we need only to compute X(X + Y )−1

and X(X + Y + Z)−1. So the same manipulations as in (3.9) will allow to write these
quantities in terms of wn, w−1

n and functions of yn only (resp. vn+1, v−1
n+1 and functions

of yn only). Since everything will be similar for U−1X2, we see that all the terms in K
can be written in that form. Then using the commutation rules it is possible to write
K(xn−1, yn) as:

K(xn−1, yn) = wnP (yn) + Q(yn) + R(yn)w−1
n (3.12)

where P , Q and R are very complicated functions of f , g and h. But comparing (3.5) and
(3.7) we see that everything done with vn+1, moving left to right has precisely the same
effect as moving wn from right to left and conversely. So starting from K(xn+1, yn) and
redoing the same manipulations, but in the opposite direction we find that:

K(xn+1, yn) = P (yn)vn+1 + Q(yn) + v−1
n+1R(yn) (3.13)
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with the very same functions P , Q and R. So if vn+1wn = P (yn)−1R(yn), (3.12) and
(3.13) show that K is conserved. This is precisely equation (3.2a) with F = P−1R. In
order to find (3.2b) we must be able to rewrite K(xn+1, yn) as an expression quadratic in
yn. This means that f , g and h are quadratic and the form of K is just the same as (2.39)
with U = (X + Y + Z)(X + Y ) replacing W .

II) We now turn to the the mapping

(xn+1yn − Z)(xn+1yn − 1)−1(ynxn−1 − Z)(ynxn−1 − 1)−1 = F (yn) (3.14a)

(yn+2xn+1 − Z)(yn+2xn+1 − 1)−1(xn+1yn − Z)(xn+1yn − 1)−1 = G(xn+1) (3.14b)

We use the same sequence of variables (3.4), and (3.14ab) are just as (3.3a,c) but here wn

and vn+1 are determined by

wn = (ynxn−1 − Z)(ynxn−1 − 1)−1 (3.15a)

vn+1 = (xn+1yn − Z)(xn+1yn − 1)−1 (3.15b)

So
ynxn−1 = 1 + (1 − Z)(wn − 1)−1 (3.16a)

xn+1yn = 1 + (1 − Z)(vn+1 − 1)−1 (3.16b)

Since all four equations of the system at hand, namely (3.16a), (3.3b), (3.16b), (3.3d) are
multiplicative, the commutation rules we have to use are not (3.5-7) but

wnxn−1 = qxn−1wn (3.17a)

ynwn = qwnyn (3.17b)

vn+1yn = qynvn+1 (3.17c)

xn+1vn+1 = qvn+1xn+1 (3.17d)

Then (3.3d) leads to wn+2xn+1 = qxn+1wn+2, which is just (3.17a) written two units
further. Again, this shows the commutation rules (3.17) are valid for all n’s.

The next step is the derivation of the invariant K(X,Y ). In the commutative case
the denominator would be (XY − Z)(XY − 1). Here it is not sufficient to consider an
appropriate ordering. It turns out that the correct quantity that has to replace W−1 in
(2.39) (which can be written in a form similar to (2.32)) is not the natural inverse of some
quantity U as in the previous case, but rather the quantity:

S = (XY − 1)−1(XY − Z)−1 + (Y X − 1)−1(Y X − 1)−1 − (q − 1)2

q(Z − 1)2
(3.18)

which (up to a trivial factor 2) goes over, when q = 1, to the quantity that appears in
the commutative case. Remarkably, S is already invariant under the exchange of X and
Y and is the same whether sandwiched between Xa and Y b or between Y b and Xa in the
analogue of (2.39).

The idea is again to write K(xn−1, yn) in terms of wn, w−1
n and functions of yn only.

The first step is to note that

(xn−1yn − Z)(xn−1yn − 1)−1 =
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xn−1(ynxn−1 − Z)(ynxn−1 − 1)−1x−1
n−1 = xn−1wnx

−1
n−1 (3.19)

and from (3.17a)
(xn−1yn − Z)(xn−1yn − 1)−1 = q−1wn (3.20)

so the quantity in the l.h.s. can be expressed in terms of wn. Next we rewrite S in two
different ways:

S =
q + 1

q(Z − 1)2
(q(XY − Z)−1 − (XY − 1)−1) =

q + 1
q(Z − 1)2

((Y X − Z)−1 − q(Y X − 1)−1) (3.21)

Using 1 = (Z − 1)−1((Y X − 1) − (Y X − Z)) we see that S(xn−1, yn) can be written as
a linear combination of wn, w−1

n and constants. So the h terms in K(xn−1, yn) will give
terms containing only wn, w−1

n and functions of yn. Similarly we write X as Y −1(Z −
1)−1(Z(Y X − 1) − (Y X − Z)). Multiplying this expression for xn−1 on the right by the
last expression for S(xn−1, yn) we see that xn−1S(xn−1, yn)g(yn) will also be expressed by
wn, w−1

n and functions of yn. For g(yn)S(xn−1, yn)xn−1 we use the other expression of
S and a different rewriting of X. So far only the fact that S can be expressed as a sum
of pure denominators was used, the exact expression was not crucial. For the quantity
X2Sf(yn) it becomes delicate. We have

xn−1S(xn−1, yn) =
q + 1

q(Z − 1)3
y−1

n (Z(ynxn−1 − 1)−

(ynxn−1 − Z))((ynxn−1 − Z)−1 − q(ynxn−1 − 1)−1) =

q + 1
q(Z − 1)3

y−1
n (Zw−1

n − 1 − qZ + qwn) =
q + 1

q(Z − 1)3
(qZw−1

n − 1 − qZ + wn)y−1
n (3.22)

where we have used (3.17) to commute yn and wn. Because the wn independent part is
exactly −1−qZ we can regroup the terms between parentheses as qZ(w−1

n −1)+(wn−1) and
each term is a pure denominator. (A similar phenomenon helped us already in the previous
case, when ν terms coming from commuting yn did combine to cancel each other). Next,
multiplying again from the left by xn−1 written in terms of (ynxn−1−Z) and (ynxn−1−1)
we recover expressions of wn, w−1

n and functions of yn only. That would not have been
true had a different constant term been present in the right hand side of (3.22) and this
is why we need the additive term in S. The same manipulation must be done, using the
other expression for S and X, for the f(yn)S(xn−1, yn)xn−1 term. It turns out that the
very same cancellation happens and only wn, w−1

n and functions of yn appear. Since we
know how to commute wn with any function j of yn, through j(yn)wn = wnj(qyn), we can
finally write K(xn−1, yn) as

K(xn−1, yn) = wnP (yn) + Q(yn) + R(yn)w−1
n (3.23)

where P , Q and R are complicated functions of f , g and h. Again, everything done with
vn+1, moving from left to right has precisely the same effect as moving wn from right to
left and conversely. So manipulating K(xn+1, yn) in the opposite direction we get:

K(xn+1, yn) = P (yn)vn+1 + Q(yn) + v−1
n+1R(yn) (3.24)
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Again, if vn+1wn = P (yn)−1R(yn), K is conserved and the mapping is just (3.14a) with
F = P−1R. Since we started from the analogue of (2.39) it follows that the derivation of
(3.14b) goes along the very same lines.

III) The last system we will consider is

(xn+1 + yn)−1 + (xn−1 + yn)−1 = F (yn) (3.25a)

(xn+1 + yn+2)−1 + (xn+1 + yn)−1 = G(xn+1) (3.25b)

In the commutative (nonautonomous) case, this is one of the possible forms for the discrete
equation which is the nonlinear contiguity of the Painlevé VI equation [10,11].

Defining wn = (xn−1 + yn)−1 and vn+1 = (xn+1 + yn)−1, the system (3.25) augmented
by the definitions of wn and vn+1 leads to:

yn + xn−1 = w−1
n (3.26a)

vn+1 + wn = F (yn) (3.26b)

xn+1 + yn = v−1
n+1 (3.26c)

wn+2 + vn+1 = G(xn+1) (3.26d)

still following the sequence of variables (3.4). Since all equations are of the additive type,
the commutation relations are just

wnxn−1 = xn−1wn + ν (3.27a)

ynwn = wnyn + ν (3.27b)

vn+1yn = ynvn+1 + ν (3.27c)

xn+1vn+1 = vn+1xn+1 + ν (3.27d)

and from (3.27d) one gets wn+2xn+1 = xn+1wn+2 + ν, i.e. (3.27a) at n + 2. Here the
invariant K is very similar to (2.32) (or (2.39)) with (X + Y )−2 replacing (X + Y )−1

everywhere. As in the first case of this section we will replace X in the equivalent of
(2.32) by (X + Y ) − Y . But contrary to that cases where the known commutation rules
did not apply directly to the “sandwiched” object U−1 or S and manipulations were needed
just to reconstruct an object we knew how to commute, in the present case, the object
are just w2

n (or v2
n+1) and the commutation is immediate. Therefore it is obvious that

K(xn−1, yn) can be written as:

K(xn−1, yn) = P (yn)w2
n + Q(yn)wn + R(yn) (3.28)

Powers of wn less than 2 come, both from the w−1
n in the expression of xn−1 = w−1

n − yn,
(coming with the f and g terms in the analogue of (2.32)), and from commutations of
wn with functions of yn, to bring everything on the side we want. Now we use again the
argument that anything done with wn from left to right is identical to the same operation
vn+1 from right to left. So we have:

K(xn+1, yn) = v2
n+1P (yn) + vn+1Q(yn) + R(yn) (3.29)
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with exactly the same P , Q, R. Thus using a consequence of (3.27b), analogous to (2.7):

K(xn−1, yn) −R = (Pwn + Q)wn = (wnP + νP ′ + Q)wn =

(wn + (νP ′ + Q)P−1)Pwn (3.30)

where the prime denotes the derivative with respect to yn and we have dropped the explicit
yn dependence. Using a similar consequence of (3.24c) we get

K(xn+1, yn) −R = vn+1(vn+1P + Q) = vn+1(Pvn+1 + νP ′ + Q) =

vn+1P (vn+1 + (νP ′ + Q)P−1) (3.31)

These two expressions coincide if we take wn + vn+1 +(νP ′ +Q)P−1=0, i.e. F = −(νP ′ +
Q)P−1 in (3.25a). Since K is also quadratic in Y , (3.25b) follows from the same arguments.

4 On the integrability of mappings with non-commuting
variables

In the previous sections we have examined a family of second-order mappings of QRT
type and have shown that it was possible to introduce consistent commutation rules and
ensure the conservation of an invariant. But what does this means as far as integrability
is concerned? In the classical, commutative, case the existence of the invariant has as
consequence that the mapping is solvable in terms of elliptic functions. This solution
exists at the commutative limit of the mapping presented here, but the solution in the
general non-commutative case is not known.

It would thus be interesting to examine the mappings obtained here with other methods
which have proven useful for the investigation of integrability in the commutative case. As
such we choose singularity confinement [12] and algebraic entropy [13] (which is related
to the degree growth of the iterates). We choose a simple mapping belonging to the first
case (2.2,2.8) treated here:

xn+1 + xn−1 = a + bnx
−1
n − cn(a− xn)−1 (4.1)

where xn, xn±1 obey a Heisenberg commutation relation, a, bn, cn are c-numbers and
moreover a is taken to be n-idependent. We shall start with initial conditions xn−1 = p,
xn = q, with [p, q] = k, and investigate the singularity properties of the mapping when q
happens to go through a non-invertible value. Iterating we find: xn+1 = uq−1 with u =
−pq+aq+bn−cn(a−q)−1q, and xn+2 = a−qv with v = 1−bn+1u

−1 +cn+1(aq−u)−1. We
see readily that when q becomes non-invertible, xn+1 would be singular, and so would (a−
xn+2)−1 = v−1q−1. Then xn+3 contains several singular contributions. In fact we can write
xn+3 = a+Rq−1 where R = bn+2u

−1 − cn+2v
−1 is regular when q becomes non-invertible.

Moreover a detailed calculation shows that, under the condition bn+1 − bn = cn+2 − cn+1,
R can be written R = Sq with S regular when q non-invertible, so xn+3 is well-defined.
This cancellation of the singular factor q−1 is tantamount to singularity confinement in
the commutative case. The same holds true when one examines the singularity where a−q
becomes noninvertible. The cancellation then requires bn+2 − bn+1 = cn+1 − cn. So for
cancellation in both cases we need

cn+2 − cn+1 − cn + cn−1 = 0



164 A Ramani, T Tamizhmani, B Grammaticos, K M Tamizhmani

and
bn = cn−1 + cst

We have thus cn = αn + β + γ(−1)n (and bn = αn + δ − γ(−1)n). (This even-odd
dependence is exactly what would reduce (4.1) to the system (2.2-2.8) in the autonomous
case α = 0, by calling y’s the x’s at even indices). Thus the singularity that develops
when q or a− q are non-invertible is confined. Moreover as in the commutative case this
cancellation of the denominator is sufficient in order to curb the degree growth of (4.1)
from exponential to polynomial. Thus the mapping has zero algebraic entropy. As a
matter of fact the deautonominized symmetric form of (4.1) i.e. γ = 0, was examined in
[3], where we have presented its Lax pair in the case where xn, xn±1 do not commute but
rather obey a Heisenberg commutation rule. We have shown there that with:

Ln =




λ1 xn 1 0
0 λ2 c− xn−1 1
h 0 λ3 c− xn

hxn−1 h 0 λ4




(4.2)

Mn =




(λ1 − λ2)x−1
n 1 0 0

0 0 1 0
0 0 (λ3 − λ4)(c− xn)−1 1
h 0 0 0




where λ1 = cnst., λ3 = cnst., λ2 = n−1
2 and λ4 = n

2 , the compatibility condition hdMn
dh =

Ln+1Mn −MnLn leads to

xn+1 + xn−1 = c + (λ1 − λ2)x−1
n − (λ3 − λ4)(c− xn)−1 (4.3)

(note that equation 26 of [3] contained a small sign mistake). Eq. (4.3) is the extension
of the discrete Painlevé II equation to the case of non-commuting variables. Thus the
mapping (4.1) does satisfy several integrability criteria, and it is reasonable to surmise
that it is indeed integrable. While such a detailed analysis is not in principle impossible
(at least at the singularity confinement and algebraic entropy level) for the remaining
cases treated in this paper, it is exceeedingly lengthy and will not be attempted here. We
expect that, in parallel to the commuting case, the mappings examined here will satisfy
the two basic integrability requirements.

Several questions remain open at this point. Once a Lax pair for non-commuting
variables is obtained, how does one proceed to the actual integration of the mapping?
As a matter of fact this question has been barely touched upon even in the commuting
case. Restricting ourselves to the autonomous case, and assuming that the evidence on
the integrability of the mapping is convincing, one can still wonder about the integrability
of the correspondence defined by the conservation of the invariant K. In the commutative
case it was shown in [14] that the growth of the number of images of a given point is
linear in the number of iterations rather than exponential. From that low growth the
integrability of the correspondence was assumed, long before its explicit integration in
the general asymmetric case [7,15]. However adapting this proof to the non-commuting
case does not seem possible. Indeed the number of solutions of an equation of degree
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two in a noncommutative variable may well be larger than two. This does not even
take into consideration the possibility of zero divisors in the, so far indeterminate, space
of objects we are considering. (In the field of quaternions, for instance, the equation
(X − i)(X − j)(X − k)− (X − k)(X − i)(X − j) = 0 is not an identity, is of second degree
in X and has at least four solutions, namely i, j, k and 0). Since there may be more
than two solutions to the equation K(X, yn) = K(xn−1, yn) the fact that the two known
solutions form a sub-tree of linear, rather than exponential growth, gives no indication on
the growth of the full tree of all solutions. Thus the question of the integrability of the
correspondence defined by the conservation of Kremains unanswered. However, even if it
turned out to be nonintegrable, this would not be in contradiction with the (surmised)
integrability of the mappings we derived here. It would just mean that the correspondence,
retaining only the value of K, does not capture enough of the information present in the
mapping to be integrable itself.
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