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Abstract

An integration technique for difference schemes possessing Lie point symmetries is
proposed. The method consists of determining an invariant Lagrangian and using
a discrete version of Noether’s theorem to obtain first integrals. This lowers the
order of the invariant difference scheme.

1 Introduction

A recent article was devoted to a symmetry classification of second order difference
equations [1]. This was modeled on a paper by Sophus Lie, in which he provided a
symmetry classification of second order differential equations (ODEs) [2]. As a matter
of fact, the classification of difference schemes goes over into Lie’s classification of ODEs
in the continuous limit [1].

S. Lie showed that a second order ODE can be invariant under a group G, of dimen-
sion r = 0,1,2,3,0r 8 For r > 2 the equation can be integrated in quadratures. This
can be done by transforming the equation to one of the “canonical” forms, integrated
by Lie himself [2]. Virtually all standard methods of integrating second order ODEs
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analytically can be interpreted in this manner (though this is not mentioned in most
elementary textbooks).

The situation with difference equations is much less developed. This is not surpris-
ing, since applications of Lie group theory to difference equations are much more recent
[3,...,27]. Several different approaches are being pursued. One possibility is to consider
the difference equations on a fixed lattice [3,...,13] and consider only transformations
that do not act on the lattice. In order to obtain physically interesting symmetries in
this approach, it is necessary to go beyond point symmetries and to let the transforma-
tions act on more than one point of the lattice. Lie algebra contractions occur in the
continuous limit and some “generalized” symmetries may “contract” to point ones [10].

The second possibility is to consider group transformations acting both on the dif-
ference equations and on the lattice [1,17,...,27]. For ordinary difference equations this
is achieved by considering a difference scheme, consisting of two equations, one repre-
senting the actual difference equation, the other the lattice.

This is the approach that we will follow in the present article. More specifically, we
will consider the same three—point scheme as in our article [1]. The continuous limit of
the scheme, if it exists, will be a second order ODE.

Thus, we consider two variables, x and y, with x the independent one and y depen-
dent. The variable x runs through an infinite set of values {x = =y, k € Z} that are
not necessarily equally spaced and are not prescribed a priori. Instead, we give two
relations between any three neighboring points

F($a$—a$+,y,y—,y+):0, (11)

Nz,z_, x4, y,y—,y+) =0 (1.2)

and also specify some initial conditions like xg, x1, yo = y(z0), y1 = y(z1). In the
continuous limit Eq. (1.1) goes into an ODE, (1.2) into an identity (like 0 = 0), if the
continuous limit exists.

The group transformations considered in this approach are of the same type as for
ODEs. They are generated by a Lie algebra of vector fields of the form

) B
X =¢(, y)% + n(m,y)gy- (1.3)

The corresponding transformations are purely point ones, since the coefficients & and
1 depend only on (z,y), not on the shifted points (z4,yy) or (z—,y-).

The purpose of this article is to provide a Lagrange formalism and difference analog
of Noether’s theorem for second order difference schemes of the form (1.1) and (1.2),
admitting Lie point symmetry groups. The Lagrangians will be used to obtain first
integrals and to obtain exact analytic solutions of the difference schemes.
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2 Definitions and notations

We study the difference system (1.1) and (1.2). In general, we assume that these
equations can be solved to express x4 and y4 explicitly in terms of (x,y,z_,y_) and
also vice versa, i.e. (z_,y_) in terms of the other quantities. We also make use of the
following quantities

Y+ — Y Yy—Yy-

hy =z, —x, ho=x—xz_, yx:h—> Yz =
+

(Y2 — Ya), (2.1)

2

Yoz = h

i.e. the up and down spacings in x, the right and left discrete first derivatives and the
discrete second derivative, respectively. It is also convenient to use the following total
shift and discrete differentiation operators:
S —1
+h

hy

+h +h

Continuous first and second derivatives are denoted ¢y’ and y”, respectively.

When acting on differential equations, the vector fields (1.3) must be prolonged to
act on derivatives. For difference schemes, the prolongation of a vector field acts on
variables at other points of the lattice. It is obtained by shifting the coefficients to the
corresponding points. For three point schemes we have

0 0 0 0
pr X =X+ f(ﬂc—ay—)ax—_ + §(x+,y+)$+n(x_,y_)ﬂ + 77(95+ay+)@- (2.2)

3 Lagrangian formulation for second order ODEs

It has been known since E. Noether’s fundamental work that conservation laws for
differential equations are connected with their symmetry properties [28,...,31]. For
convenience we present here some well-known results adapted to the case of second
order ODEs.

Let us consider the functional

L(y) = /IL(w,y,y’)dw, ICR, (3.1)

where L(x,y,y’) is called a first order Lagrangian. The functional (3.1) achieves its
extremal values when y(z) satisfies the Euler-Lagrange equation

SL_OL (0L _ 000
5y oy D(ay/>—0, D—(%—l—yay—ky 8y’+ , (3.2)
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where D is the total derivative operator. The equation (3.2) is an ODE that can be
rewritten as

y' = flz,y,y). (3.3)

Let us consider a Lie point transformation G generated by the vector field (1.3). The
group G is a “variational symmetry” of the functional £ if and only if the Lagrangian
satisfies

pr X(L)+ LD(&) =0, (3.4)

where prX is the first prolongation of the vector field X to y’. We will actually need a
weaker invariance condition than given by Eq. (3.4). The vector field X is an “infinites-
imal divergence symmetry” of the functional L(y) if there exists a function V (z,y) such
that [29]

pr X(L)+ LD(§) = D(V), V=V(z,y). (3.5)

The two important statements for us are:

1. If X is an infinitesimal divergence symmetry of the Lagrangian L, it generates a
symmetry group of the corresponding Euler-Lagrange equation. The symmetry group
of Eq. (3.2) can of course be larger than the one generated by symmetries of the
Lagrangian.

2. Noether’s theorem [28,...,31] can be based on the following Noether—type identity
[31], which holds for any vector field and any function L:

pr X(L) + LD(€) = (5 - a/)% DL+ (n— 5y’>§—§,>. (3.6)

It follows that if X is a divergence symmetry of L, i.e. (3.4) or (3.5) is satisfied,
then there exists a first integral

J=¢L+ (n— fy/)g—jl —V = const (3.7)

of the corresponding Euler-Lagrange equation.

The above considerations tell us how to obtain invariant ODEs and conservation laws
from divergence invariant Lagrangians. They do not tell us how to obtain invariant
Lagrangians for invariant equations. This amounts to “variational integration”, as
opposed to variational differentiation.

A procedure that we shall use below to find invariant Lagrangians for differential
equations can be summed up as follows.

1. Start from a given ODE y” = f(z,y,y’) and its symmetry algebra with basis

0 0
Xazfa(xay)a—x-F%(ﬂ?,y)a—y, a=1,..,k.
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Find the invariants of X, in the space {z,y,y’, A}, where A is the Lagrangian. The
appropriate prolongation in this case is

o .0 )

_ 8 1 _ /
PI‘X—f%‘FUa—y‘FC 8—y/_(D§)A8_A’ ¢ =D(n) —yD() (3.8)

and we require that L(x,y,y’) should satisfy
pr X(A — L)|a=r = 0. (3.9)

Each basis element X, provides us with an equation of the form

oL 0L 0L B
faa_x'f'naa_y"_gaa_y,_LD(fa) =0. (310)

Solve the partial differential equations (3.10). This will give with the general form
of an invariant Lagrangian. It may involve arbitrary functions of the invariants of X.

2. Request that the Euler equation (3.2) should coincide with the equation we
started from. This will further restrict the invariant Lagrangian and determine whether
one exists.

If this procedure does not yield a suitable Lagrangian, then step 1 can be weakened.
We can request that the Lagrangian be invariant under some subgroup of the symmetry
group of the given ODE, rather then the entire group. We then go through step 2, then
verify whether the obtained Lagrangian is divergence invariant under the entire group,
or at least a larger subgroup. In any case, each divergence symmetry of the Lagrangian
will provide a first integral of the ODE.

For ODEs the Lagrangian formalism is not the only integration method. The ex-
istence of a one-parameter symmetry group provides a reduction to a first-order ODE
directly. The existence of a two-parameter symmetry group makes it possible to inte-
grate in quadratures. An invariant Lagrangian provides an alternative. Indeed, assume
that we know two first integrals

flz,y,y) =4, flz.yy) =B, (3.11)
then we eliminate ¢’ from these two equations and obtain the general solution

y=F(z,A,B), (3.12)
of the corresponding ODE (3.3) by purely algebraic manipulations. It is this method of

invariant Lagrangians that generalizes to difference equations and is particularly useful
when direct methods fail.
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4 Lagrangian formalism for second order difference equa-
tions

The variational formulation of discrete equations and a discrete analog of Noether’s
theorem are much more recent [19,25,26,27]. Here we briefly overview the results that
we shall need below.

Let us consider a finite difference functional

Ly =Y L(z,xq,y,y1)hy, (4.1)
0

defined on some one—dimensional lattice €2 with step hy that generally can depend on
the solution

h+ = So(x7y7$7ay7’y+)' (42)

The functional (4.1) must be considered together with the lattice (4.2). On different
lattices it can have different continuous limits and in this limit the lattice equation
itself vanishes (turns into an identity like 0 = 0)

In the continuous case, a Lagrangian L provides an equation (the Euler-Lagrange
equation) that inherits all the symmetries of L. In the discrete case we wish the La-
grangian L to provide two equations: the entire difference system (1.1),(1.2). The three-
point difference system should inherit the symmetries of the two-point Lagrangian.

Let us again consider a Lie group of point transformations, generated by a Lie
algebra of vector fields X, of the form (1.3). The infinitesimal invariance condition of
the functional (4.1) on the lattice (4.2) is given by two equations:

oc oL oL . oC -
€%+5 E‘Fna—y‘Fﬁ @ﬂLﬁBL(ﬁ) =0,
(4.3)
S (&) — &= X(p),
+h
where
EF =¢(ay,yr), 0 =nlag, yg). (4.4)

Now let us consider a vector field (1.3) with given coefficients &(x,y) and n(z,y).
It has been shown [19,25,27], that a stationary value of the difference functional (4.1)
along the flow generated by this vector field is given by the quasi-extremal equations:

5L oL

i = = 4.

which are explicitly dependent on the coefficients of the generator .
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If we have a Lie algebra of vector fields of dimension 2 or more, then a stationary
value of the difference functional (4.1) along the entire flow will be achieved on the
intersection of all quasi-extremals. This intersection of quasi-extremals is given by the
two equations:

oL 8£ oL~

oL oL oL~
=h +h — =0 4.7
where L~ = § (L’) These equations do not depend on coefficients of generators. In
—h

the continuous limit both of these equations reduce to the continuous Euler-Lagrange
equation (3.2).

On the other hand, equations (4.6) and (4.7) can be interpreted as a three-point
difference scheme of the form (1.1),(1.2). For instance, given two points (z,y) and
(z_,y-), we can calculate (x4,y+). In the continuous limit both of these equations
will provide the same second-order differential equation.

It has been shown elsewhere [19,25,27], that if the functional (4.1) is invariant under
some group G, then the intersection (4.6) and (4.7) of the quasi-extremal equations is
also invariant with respect to G,.. As in the continuous case, the intersection equations
can be invariant with respect to a larger group than the corresponding Lagrangian.

A useful operator identity, valid for any Lagrangian L£(x,z4,y,y+) and any vector
field X is (]19,25)):

oL oL oL oL
58 +£+—+ — 4+t ==+ LD

8y Y+ +h
8£ h 85’ _ oL h_0L™
(e 0e) (G ) s

oL~ oL~
+D <h_n— + h_ 5— +§£>.
+h Jy

From Eq. (4.8) we obtain the following discrete analog of Noether’s theorem.

Theorem 1. ([19,25]) Let the Lagrangian L be invariant under a Lie group G, of
dimension v > 2. Let the quasi-extremal equations (4.6), (4.7) be satisfied. Then each
basis element X, of the Lie algebra generating the group G will provide us with a first
integral for the intersection of the quasi-extremal equations (4.6) and (4.7), namely

oL~ oL~

Io=h- naa +h_ ga +§a*c_a 1<a<r (4.9)
Y Ox
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Similarly as in the continuous case, the invariance condition for the Lagrangian can
be weakened and the result of Theorem 1 strengthened [19,25]. Indeed, let there exist
a function V' = V(z,y) such that the discrete Lagrangian satisfies

prX(L)+LD(&) = D(V), (4.10)
+h +h

i.e. the Lagrangian is divergence invariant under X, rather than invariant. Then the

symmetry X generates a first integral for the system (4.6), (4.7) given by

oL~ oL~ ..
I=hong +hg50 +E£7=V. (4.11)

Eq. (4.11) is a discrete analog of Eq. (3.7) for ODEs. The condition (4.10) should hold
on the solutions of the quasi-extremal equations (4.6) and (4.7).

Let us compare the situation for second order ODEs and for three point difference
schemes. For a second order ODE a Lagrangian that is divergence invariant under a
two—dimensional symmetry group provides two integrals of motion. From them we can
eliminate the remaining first derivative and obtain the general solution, depending on
two arbitrary constants (the two first integrals). Moreover, we do not really need a
Lagrangian. Once we have a two dimensional symmetry algebra, we can integrate in
quadratures.

For three-point difference schemes we have two equations to solve, namely the system
(1.1),(1.2). Equivalently, we have a set of points (z,, y,), labeled by an integer n. Any
3 neighboring points are related by two equations that we can write e.g. as

Yn+1 = Fl(xna Yn, J:n—layn—l)v I+l = FQ(xm Yn, xn—lvyn—l)‘ (4'12)

Alternatively, the system could be solved for x,,_1, yn—1.

Given some starting values (xo, Yo, 1, Y1), we can solve (4.12) for (zp, yn) with n > 2,
and n < —1. The solution will depend on four constants K;,7 = 1,...,4 and can be
written as

Yn = Yn(Tn, K1, K2, K3, Ky4), (4.13)

In =$n<K1,K2,K3,K4). (414)

A one-parameter symmetry group of the Lagrangian £ will provide us with one first
integral, i.e. an equation of the form

f(xnuyna$n+17yn+l) =1. (415)

compatible with the system (4.12). We can solve (4.15) for e.g. y,+1, substitute into
(4.12) and thus simplify this system.

A two-dimensional symmetry group will provide two first integrals of the form (4.15).
We can solve for z,,+1 and y,,+1. Then system (4.12) is reduced to a two-point difference
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scheme. Quite often it is possible to obtain ad hoc integration methods that allow one
to integrate a two-point difference scheme explicitly.

A three-dimensional symmetry group provides three equations of the type (4.15).
From them we can express x,_1,yn—1 and ¥y, in terms of x,. This provides us with
the solution (4.13) and a two-point difference equation relating z,4+1 and z,. If this
equation can be solved, we have a complete solution of the problem. Finally, if we
have four first integrals, then we get the general solution of (4.12) by purely algebraic
manipulations.

An alternative method can be proposed when the Lagrangian is invariant with re-
spect to a two-dimensional Lie group. We can then require that the two quasi-extremal
equations (4.6) and (4.7) be satisfied simultaneously. Moreover, the discrete Lagrangian
corresponding to a given continuous one is not unique and it is possible to introduce a
family of Lagrangians:

Ei :Ei($a$+73/7y+704i7/6i)7 = 172737"' (416)
depending on parameters «;, §;, all satisfying
lim(x+,y+)—>(x,y)£i($7 I+7 Y, y+7 a4, ﬂl) = L(fL‘, Y, y/)

for the same continuous Lagrangian L(z,y,1’).

Let us take three different Lagrangians in the family (4.16), corresponding to con-
stants «aq, 01, a9, B2 and ag, 83. Each of them leads to the two first integrals and two
quasi-extremals. In examples considered below we will show that it is possible to
fine-tune the constants «;, 3; in such a manner as to get a system of three invariant
equations (quasi-extremals) of the form (1.1),(1.2) and three first integrals, yielding a
set of solutions to two of the quasi-extremal equations. It is these two equations that
will constitute the invariant difference system.

We described a procedure for obtaining invariant Lagrangians for given second-order
differential equations. For difference equations our starting point will be a discretization
of the continuous Lagrangian. This is obviously not unique and we shall make use of the
inherent arbitrariness. Once an invariant difference Lagrangian with correct continuous
limit is chosen we construct the invariant difference scheme in the algorithmic manner
described above.

5 Example of the integration procedure

In this section we present an example of a difference scheme with a three—dimensional
symmetry algebra and a set of Lagrangians, all invariant under a two—dimensional
subgroup of the symmetry group. Three different Lagrangians are used jointly to
integrate the difference scheme analytically.
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The Lie algebra

0 0 0 0
X1 = — = — Xs=2x— — 5.1
=g Y=g Nemagttug (1)
corresponds to the invariant equation
y" = exp(—y). (5.2)

The equation can be obtained from the Lagrangian
L =exp(y) +v, (5.3)
which admits operators X7 and Xo:

X1L+ LD(&) = 0;

XoL + LD(&) =1 = D(x);

not however operator Xs.

It is possible to show that there is no Lagrangian which admits all three operators
as divergence symmetries. Meanwhile, two different variational symmetries give two
functionally independent first integrals that are sufficient to integrate a second order
ODE.

Two first integrals given by the operators X; and Xo

exp(y)(1—¢) +y=4%  exp(y) —z =B
where A? and BY are arbitrary constants, permit us to integrate the equation:

y = (z + B%)(In(x + B°) — 1) + A°. (5.4)

Invariant difference model and Lagrange-type integrability.

Let us construct an integrable difference scheme, which can be represented by means

of the following difference invariants for the operators (5.1):
h 1
h_i_, Yz — Yz, h__eXp (yi‘)

Let us choose three different difference Lagrangians in the following form:
Li=ajexp (yz) + vy + (1 —v)y+, i=1,2,3,

where a; and ~; are constants, which will be determined later. For these Lagrangians
we have:

X1L;+L;D(&) =0,
+h

XoLi+LiD(&)=1= D(x),
Th Th
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for any «;,;, i=1,2,3.

We will use different coefficients «;,; (this means different approximations of the
continuous Lagrangian) for variations along different orbits of the group of translations
along x and y. The third invariant Lagrangian will be used to derive an invariant mesh.
In fact we will use some small invariant deviation of the Lagrangian

L3 = L1+ 01exp (yz) + 02y — 2y,

where 6; and d tend to zero together with spacings h™ and h™.
The variations of £; yield in general six quasi-extremal equations. We choose three
of them, namely:

0L -
5y1 t o (exp (yo) —exp (yz)) = nh" + (L —m)h™,

5.5)
5L (
5ot 020D () (v — 1) — a2 exp (us) (v — 1)

=72y + (1 —72)ys —ry- — (1 -1y
The two first equations approximate the corresponding continuous Euler’s equation,
and the third equation generates a mesh:

0Ls . ag (exp (yz) — exp (yz)) = 13h™ + (1 —3)h ™. (5.6)

oy
Due to the invariance of the Lagrangian with respect to the operators X; and Xa,
the difference analog of Noether’s identity yields the following first integrals

apexp (yz) = ¢ +y1ht + Bh,
(5.7)
a2exp (yz) (Yo — 1) =y + (1 — v2)h Ty, + A",

(a1 — a3)exp (yz) = (11 — 13)h" + (B" — By), (5.8)

where we wrote the third integral for the difference between the first and third quasi-
extremal equations.

Now our task is to develop the intersection of the quasi-extremals (5.5),(5.6), or,
equivalently, the intersection of the first integrals (5.7),(5.8) (i.e. to search for the
needed constants). The compatibility of (5.7),(5.8) yields the value of the constants
«;, i, which can be the following:

o =1, ag =In(1+¢)e !,
(5.9)
=1 y=1-(10+ee?In(l+e)+e L.
Bt=mp, “B-®B_ ¢ (5.10)

-7 l+e¢
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Thus, the mesh equation is:

\o_ cepl)

5.11
14+¢ ( )

With the obtained constants the equations (5.5),(5.6) can be integrated by means
of first integrals. The general solution is:

y = (m+Bh) In (m+Bh) — (14 ) (x + B") + Ah. (5.12)

This solution is considered on the mesh (5.11), which is equivalent (on the solution
(5.12)) to

hy =e(xz+ B"). (5.13)
The last one is linear and can easily be integrated for the whole set of mesh points:
Ty, = (14 &)"(xo + B") - B", (5.14)

where n = 0,1, 2, ..., and z¢ is any starting point.
So, as an invariant difference approximation of (5.2) we can consider the following:

1

o (exp (y2) — exp (yz)) = 1
- (5.15)

hy exp(—yz) = h—exp(—yz).

Notice, that the last equation on the solution (5.12) again can be rewritten as some
exponential mesh (q-mesh):

hy =(1+¢)h™. (5.16)
This scheme is invariant with respect to all symmetries (5.1) and possesses the integrals:

exp (yz) == + ht + Bh,

In(1+¢) (5.17)
———exp(y) (o — 1) =y + (1 +e)e 2 In(1+¢) — e HhTy, + A,
(1%5) exp (yz) = h'. (5.18)

The solution (5.12),(5.14) depends on the four constants e, A" B" xy. All these
constants can be obtained from initial conditions (zo, yo,x1,y1) for the system (5.15).

Notice that the invariant mesh was developed without additional symmetry of the
Lagrange function, but by means of a small invariant perturbation of an invariant
Lagrangian.
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6 Concluding remarks

We constructed variational discrete models which approximate the equations from Lie’s
classification of second order ODEs. The variational formulation makes it possible to
use Noether’s theorem. With the help of symmetries one can find first integrals which
can be used to reduce the order of the discrete model. We observed the following
possibilities for order reduction corresponding to the different number of variational
symmetries:

1. For one symmetry we can get only one first integral with the help of the La-
grangian approach. It holds on the extremal equation (4.5) considered on some invari-
ant mesh. In this case there is no need to consider the intersection of the quasi-extremal
equations.

2. Two symmetries provide us with two functionally independent first integrals I,
15, which hold on the intersection of the quasi-extremals. These first integrals reduce
the system to the form

F(37737+7y7y+711712) = 07

Q(l‘,l‘_,_,y, Y+, -[17 -[2) =0.

3. Three symmetries let us find three independent first integrals Iy, I, I3. It is
possible to reduce the system of the quasi-extremal equation to a mapping of the from

vy = f(x,I1,12,13) or yy =gy, 11,12, 1I3)

with an equation H (z,y, I, I3, I3) = 0 connecting = and y. If the mapping is integrable,
we can write out the general solution of the discrete model (4.6), (4.7) in the form

z; = X (i, %0, Yo, T1, Y1), yi = Y (4,20, Y0, 71, Y1),
satisfying the initial conditions

X(0,20,y0,21,91) = w0, Y (0,20,%0,71,Y1) = Yo,

X(1,z0,y0,21,91) = w1, Y(1, 20,90, %1,Y1) = 1.

The approach can be extended in many directions. It is possible to extend the
presented framework to the case of several dependent variables and higher order ODEs.
Discrete models which do not have a continuous limit, but can be presented as quasi-
extremal equations for an appropriate discrete Lagrangian, are also covered by the
discrete Lagrangian formalism. A complete study of the Lagrangian formalism for
second order difference schemes will be published elsewhere [32].
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