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Abstract

We review a new method for studying boundary value problems for evolution PDEs.
This method yields explicit results for a large class of evolution equations which in-
clude: (a) Linear equations with constant coefficients, (b) certain classes of linear
equations with variable coefficients, and (c) integrable nonlinear evolution equations.

1 Introduction

A new method for solving boundary value problems has been recently introduced by
the author [1]. The implementation of this method to linear elliptic PDEs in two space
variables is discussed in [2–4]. Here we concentrate on evolution equations in one and two
space variables, which will be denoted by x and by (x1, x2) respectively. We assume that
the space variables are on the half line. The case when x is on a finite segment is discussed
in [5, 6]. Moving boundary value problems are discussed in [7].

A. Linear PDEs
For linear evolution equations with constant coefficients in one space dimension this

method involves two novel steps: (a) Find an integral representation for the solution q(x, t)
in the complex k-plane in terms of certain transforms of the boundary values of q and its
derivatives (see for example (2.1)). (b) Analyze the global relation satisfied by these trans-
forms (see for example (2.10)) in order to express these transforms in terms of the given
boundary conditions. This analysis uses two facts: First, there exist certain transforma-
tions in the complex k-plane which leave the unknown transforms invariant (for example
k → ν(k) in § 2). Second, the analyticity properties of the integral representation men-
tioned in (a) above imply that some of the unknown transforms do not contribute to the
solution (such as the transforms c(νj(k), t), j = 1, 2 in § 2).

For linear evolution equations with constant coefficients in one space dimension the
simplest way of finding an integral representation for the solution q(x, t) is to deform the
Fourier transform representation from the real line to the complex k-plane [8].
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For linear evolution equations whose coefficients depend on the space variables, the two
steps (a) and (b) mentioned above continue to form the basis of the method. However, in
order to obtain an integral representation for q(x, t), one now makes crucial use of the com-
pleteness relation of the associated space dependent eigenfunctions (see equation (3.7)). It
is remarkable that even for this class of PDEs the global relation can be solved explicitly.
Thus such PDEs can be solved with the same level of efficiency as the corresponding PDEs
of constant coefficients.

For linear evolution equations with constant coefficients in two space variables the
method also uses the steps (a) and (b) mentioned earlier. However, one must now work
in the complex (k1, k2)-planes. Thus for step (a) one constructs an integral representation
of q(x1, x2, t) in the complex (k1, k2)-planes (see (4.3)). Similarly for step (b) one finds
appropriate invariant transformations in the complex k1-plane and the complex k2-plane,
see [8].

B. Integrable Nonlinear PDEs
Before discussing integrable nonlinear evolution equations in one space variable we first

make some relevant remarks for linear evolution equations in one space variable. For such
equations there exist at least three different ways of obtaining the integral representation
for q(x, t). Use: (1) The deformation of the Fourier transform mentioned earlier. (2) A re-
formulation of Green’s theorem [9]. (3) The spectral analysis of an associated 0-differential
form (the Lax pair approach) [1]. The starting point of all these approaches is the obser-
vation that two-dimensional linear PDEs with constant coefficients can be written as the
condition that an appropriate differential 1-form is closed. For example, for the equation

qt + qx + qxxx = 0, (1.1)

such a form is given by

W (x, t, k) = e−ikx+iw(k)t {q(x, t)dx−X(x, t, k)dt} , k ∈ C, (1.2)

where

w(k) = k − k3, X = qxx + ikqx + (1− k2)q. (1.3)

Indeed,

dW = e−ikx+iw(k)t(qt + qx + qxxx)dt ∧ dx,

thus dW = 0 iff equation (1.1) is valid.
Equation dW = 0 is equivalent to(

e−ikx+iw(k)tq
)

t
+

(
e−ikx+iw(k)tX

)
x
= 0, (1.4)

which is the starting point for the construction of the integral representation of q(x, t) via
the deformation of the Fourier transform. Also a slight generalization of W , namely

W̃ (x, t, k1, k2) = e−ik1x−ik2t{q(x, t)dx−X(x, t, k1)dt},



Ehrenpreis Type Representations and Their Riemann–Hilbert Nonlinearisation 49

is the basic object used in the construction involving the reformulation of Green’s theorem.
Finally equation (1.2) is the starting point of the Lax pair approach: If equation (1.1) is
valid in a simply connected domain Ω then W is exact, i.e. there exists a 0-form such that
W = dM ; letting M = µ exp[−ikx+ iw(k)t] we find

d
[
e−ikx+iw(k)tµ(x, t, k)

]
= W (x, t, k), k ∈ C, (x, t) ∈ Ω. (1.5)

This equation implies that equation (1.1) is equivalent to the compatibility condition of
the following Lax pair,

µx − ikµ = q, µt + iw(k)µ = −X. (1.6)

Among the three approaches mentioned above, it is only the third one, i.e. the Lax
pair approach, which can be generalized to integrable nonlinear equations [10]. This
implies that the two basic steps (a) and (b) of the new method can be “nonlinearized” as
follows: (a) The integral representation of q(x, t) involves the eigenfunction µ(x, t, k) of the
associated Lax pair. This function can not be written down explicitly but satisfies a matrix
Riemann–Hilbert problem. The main simplifying feature of this Riemann–Hilbert problem
is that it involves explicit x and t dependence of the form exp[−ikx+ iw(k)t] where w(k)
is the dispersion relation of the linearized equation. (b) The analysis of the global relation
can be used to express the relevant transforms (which are now called spectral functions) in
terms of the boundary conditions. But these formulas are not in general explicit but they
involve the solution of a nonlinear Volterra integral equation [11]. However, for certain
classes of boundary conditions, called linearisable boundary conditions, boundary value
problems can be solved with the same level of efficiency as the associated initial value
problems.

C. Outline of the paper
In Section § 2 we solve a boundary value problem for equation (1.1) and we also briefly

discuss the implications of this new method for the analysis of general (i.e. non integrable)
nonlinear evolution equations. In § 3–5 we solve boundary value problems for the following
equations: the time-dependent Schrödinger equation with a space-dependent potential

iqt + qxx +
2p2

(cosh px)2
q = 0, p > 0, (1.7)

the equation

qt = qx1x1 + qx2x2 + qx1 + qx2 , (1.8)

and the defocusing nonlinear Schrödinger equation

iqt + qxx − 2|q|2q = 0. (1.9)

For the analysis of equation (1.1) we assume that the initial and the boundary conditions
belong to appropriate Sobolev spaces. For the analysis of the other equations we assume
that the initial and the boundary conditions are Schwartz functions; however similar results
are valid for a less restrictive class of functions.

For linear PDEs the integral representations obtained by the new method are consistent
with the Euler–Ehrenpreis–Palamodov representations [12–15]. For nonlinear PDEs the
relevant integral representations can be thought as the proper nonlinear analogues of these
fundamental representations.
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2 Linear equations with constant coefficients
in one dimension

Theorem 2.1. Let q(x, t) satisfy

qt + qx + qxxx = 0, 0 < x <∞, 0 < t < T,

q(x, 0) = q0(x) ∈ H2(R+), q(0, t) = g0(t) ∈ H1([0, T ]), q0(0) = g0(0),

where T is a positive constant. The unique solution of this IBV problem is given by

q(x, t) =
1
2π

∫ ∞

−∞
eikx−iw(k)tq̂0(k)dk +

1
2π

∫
∂D+

eikx−iw(k)tĝ(k, t)dk, (2.1)

where ω(k) = k3 − k, the curve ∂D+ is defined by

∂D+ : Imw(k) = 0, Im k > 0, (2.2)

and the spectral function q̂(k, t) = {q̂0(k), ĝ(k, t)}, is defined as follows:

q̂0(k) =
∫ ∞

0
e−ikxq0(x)dx, Im k ≥ 0, (2.3)

ĝ(k, t) = (1− 3k2)ĝ0(k, t) +
ν1 − k

ν2 − ν1
q̂0(ν2) +

k − ν2

ν2 − ν1
q̂0(ν1), (2.4)

ĝ0(k, t) =
∫ t

0
eiw(k)τg0(τ)dτ, (2.5)

ν1(k), ν2(k) are the two nontrivial roots of w(k) = w(ν(k)).

The rigorous investigation of the above IBV problem involves the following steps,
see [16] for details.

Step 1. Assuming existence: (a) construct the integral representations for q(x, t) and for
q̂(k, t); (b) find the global relation.

(a) It is shown in [8] that q(x, t) is given by equation (2.1) where q̂0(k) is defined by
equation (2.3), while ĝ(k, t) is defined by

ĝ(k, t) = (1− k2)ĝ0(k, t) + ikĝ1(k, t) + ĝ2(k, t), (2.6)

ĝj(k, t) =
∫ t

0
eiw(k)τgj(τ)dτ, j = 0, 1, 2, k ∈ C, (2.7)

and

gj(τ) = ∂j
xq(0, τ), j = 0, 1, 2. (2.8)

(b) The equation∮
∂Ω
W (x, t, k) = 0,
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where W is defined by equation (1.2) and ∂Ω is the boundary of the domain {0 < x <
∞, 0 < τ < t} yields, see Figure 2.1,

q̂0(k) + ĝ(k, t) = eiw(k)tc(k, t), (2.9)

where

c(k, t) =
∫ ∞

0
e−ikxq(x, t)dx, Im k ≤ 0.

Ω

x

t

τ

Figure 2.1

Step 2. Assuming the validity of the global relation, prove existence: Namely assume
that there exist functions q0(x), {gj(t)}2

0, such that the functions q̂0(k) and ĝ(k, t) defined
by equations (2.3), (2.6), (2.7), satisfy equation (2.9), where c(k) is some function holo-
morphic for Im k < 0 and of O(1/k) as k → ∞. Then prove that if q(x, t) is defined by
equation (2.1), (a) q(x, t) solves equation (1.1); (b) q(x, 0) = q0(x); (c) ∂

j
xq(0, t) = gj(t),

j = 0, 1, 2.
The proof of (a) is a direct consequence of the exponential dependence of (x, t). The

proof of (b) follows from the fact that exp(−iw(k)t)ĝ(k, t) is analytic and bounded in D+,

D+ = {k ∈ C, Imw(k) > 0, Im k > 0}.
The proof of (c) is based on the global relation and on appropriate contour deformations.

Step 3. Given boundary conditions, analyze the global relation.
Using the definition of ĝ(k, t), the global relation (2.9) becomes

q̂0(k) + (1− k2)ĝ0(k, t) + ikĝ1(k, t) + ĝ2(k, t) = eiw(k)tc(k, t), Im k ≤ 0. (2.10)

The crucial observation is that ĝj(k, t), j = 0, 1, 2, depend on k only through w(k). Thus
these functions are invariant if k → ν(k), where ν(k) is defined by

w(k) = w(ν(k)).

This equation has two nontrivial roots: If ν1(k) ∈ D1 then k ∈ D+, and if ν2(k) ∈ D2,
then k ∈ D+. Thus evaluating equation (2.10) at ν1(k) and ν2(k) we find

q̂0(νj(k)) + (1− ν2
j (k))ĝ0(k, t) + iνj(k)ĝ1(k, t) + ĝ2(k, t)

= eiw(k)tc(νj(k), t), j = 1, 2, k ∈ D+.
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Figure 2.2

Solving these two equations for ĝ1(k, t), ĝ2(k, t) and substituting the resulting expres-
sions in equation (2.6) we find that ĝ(k, t) is given by equation (2.4) plus an additional
term involving eiw(k)t multiplied by a certain combination of c(ν1(k), t) and c(ν2(k), t).
However, this additional term does not contribute to q(x, t). Indeed, exp[ikx], as well as
c(νj(k), t), are bounded and analytic for k ∈ D+, thus Cauchy’s theorem implies that this
additional term vanishes.

Remark 2.1. Let ĝ(k) be defined by equation (2.4) where ĝ0(k, t) is replaced by

ĝ0(k) =
∫ T

0
eiw(k)τg0(τ)dτ.

It is straightforward to show that q(x, t) is also given by an expression similar to the rhs
of equation (2.1) where ĝ(k, t) is replaced by ĝ(k).

This alternative representation is very convenient for computing the asymptotic proper-
ties of q(x, t). These include the long time asymptotics [17] as well as the small dispersion
limit.

Remark 2.2. Suppose that q(x, t) satisfies the forced version of equation (1.1), i.e.

qt + qx + qxxx = f(x, t), 0 < x <∞, 0 < t < T,

q(x, 0) = q0(x), 0 < x <∞; q(0, t) = g0(t), 0 < t < T,

q0(0) = g0(0),

where f(x, t) is a given function with appropriate smoothness and decay. Then

q(x, t) = q̃(x, t) + F (x, t),
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where

F (x, t) =
1
2π

∫ ∞

−∞
dkeikx−iw(k)t

(∫ t

0
dτ

∫ ∞

0
dξe−ikξ+iw(k)τf(ξ, τ)

)

and q̃(x, t) solves equation (1.1) with

q̃(x, 0) = q0(x), 0 < x <∞; q̃(0, t) = g0(t) − F (0, t).

Nonlinear PDEs can be considered as forced linear PDEs. By using the explicit formulas
for forced linear PDEs derived by the new method, it should be possible to study the well-
posedness of a large class of nonlinear PDEs. At least this should yield existence for small
time, or for boundary conditions which have small norms in an appropriate functional
space.

3 Linear equations with variable coefficients

Theorem 3.1. Let q(x, t) satisfy

iqt + qxx +
2p2

(cosh px)2
q = 0, 0 < x <∞, 0 < t < T, (3.1)

q(x, 0) = q0(x) ∈ S(R+), q(0, t) = g0(t) ∈ C1[0, T ], (3.2)

where p is a positive constant and S denotes the space of Schwartz functions. The unique
solution of this IBV problem is given by

q(x, t) =
1
2π

∫ ∞

−∞
dke−ik2tψ(x, k)ρ0(k) +

1
2π
eip2tϕ(x)C0

+
1
2π

∫
∂D+

dkψ(x, k)

{
2(k + ip)e−ik2tĝ0(k, t)

− 1
k − ip

[
(k + ip)e−ik2tρ0(−k) − i

√
p

π
eip2tC0

] }
, (3.3)

where ∂D+ is the oriented boundary of the first quadrant of the complex k-plane, see
Figure 3.1, and

ψ(x, k) =
k + ip tanh px

k + ip
eikx, ϕ(x) =

√
πp

cosh px
, k ∈ C; (3.4)

q̂0(k) =
∫ ∞

0
dxe−ikxq0(x), Im k ≤ 0; ĝ0(k, t) =

∫ t

0
dτeik2τg0(τ), (3.5)

ρ0(k) =
∫ ∞

0
dxq0(x)ψ(x, k̄), Im k ≤ 0; C0 =

∫ ∞

0
dxq0(x)ϕ(x). (3.6)

The derivation of this result makes crucial use of the completeness relation [18]

2πδ(x− x′) =
∫ ∞

−∞
dkψ(x, k)ψ(x, k) + ϕ(x)ϕ(x). (3.7)
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kI

kR

Figure 3.1. The contour ∂D+ for equation (3.1)

4 Linear equations with constant coefficients
in two space dimensions

Theorem 4.1. Let q(x1, x2, t) satisfy

qt = qx1x1 + qx2x2 + qx1 + qx2 , 0 < xj <∞, j = 1, 2, 0 < t < T, (4.1)
q(x1, x2, 0) = q0(x1, x2), 0 < xj <∞, j = 1, 2,

q(0, x2, t) = g
(1)
0 (x2, t), 0 < x2 <∞, 0 < t < T,

q(x1, 0, t) = g
(2)
0 (x1, t), 0 < x1 <∞, 0 < t < T, (4.2)

where q0, g
(1)
0 , g(2)

0 are given Schwartz functions, which are compatible at x1 = t = 0 and
at x2 = t = 0, i.e. q0(0, x2) = g

(1)
0 (x2, 0) and q0(x1, 0) = g

(2)
0 (x1, 0). The solution of this

IBV problem is given by

q(x, t) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e

ikx−w(k)tq̂0(k)

+
1

(2π)2

∫
∂D

(1)
+

dk1

∫
∂D

(2)
+

dk2e
ikx−w(k)tĝ(k)

+
1

(2π)2

∫ ∞

−∞
dk2

∫
∂D

(1)
+

dk1e
ikx−w(k)tĝ(1)(k, t)

+
1

(2π)2

∫ ∞

−∞
dk1

∫
∂D

(2)
+

dk2e
ikx−w(k)tĝ(2)(k, t), (4.3)

where

x = (x1, x2), k = (k1, k2), xk = x1k1 + x2k2,

w(k) = w1(k1) + w2(k2), wj(k) = k2 − ik, j = 1, 2,

∂D
(j)
+ is the oriented curve, see Figure 4.1, defined by

Rewj(k) = 0, Im k > 0,
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and the functions ĝ(1), ĝ(2), ĝ are defined as follows:

ĝ(1)(k, t) = −q̂0(i− k1, k2)− (2ik1 + 1)ĝ(1)
0 (k, t),

ĝ(2)(k, t) = −q̂0(k1, i− k2)− (2ik2 + 1)ĝ(2)
0 (k, t),

ĝ(k) = q̂0(i− k1, i− k2), (4.4)

where

q̂0(k1, k2) =
∫ ∞

0
dx1

∫ ∞

0
dx2e

−ikxq0(x1, x2),

ĝ
(1)
0 (k, t) =

∫ t

0
dτ

∫ ∞

0
dx2e

−ik2x2+w(k)τg
(1)
0 (x2, τ),

ĝ
(2)
0 (k, t) =

∫ t

0
dτ

∫ ∞

0
dx1e

−ik1x1+w(k)τg
(2)
0 (x1, τ). (4.5)

1

k I

k R

Figure 4.1. The contour ∂D+ for equation (4.1)

5 Integrable nonlinear equations

In what follows we discuss the three steps (analogues to the three steps presented in § 2)
needed for the analysis of the defocusing NLS equation on the half line:

iqt + qxx − 2|q|2q = 0, 0 < x <∞, 0 < t < T, (5.1)

q(x, 0) = q0(x) ∈ S(R+), q(0, t) = g0(t) ∈ C1(0, T ), q0(0) = g0(0), (5.2)

where T is a given positive constant.
It is more convenient to work with the analogue of ĝ(k) instead of ĝ(k, t), see Re-

mark 2.1.

Step 1. Assuming existence: (a) Construct the integral representations of q(x, t) and of
the spectral function q̂(k); the former involves the formulation of a RH problem and the
latter involves the solution of certain linear Volterra integral equations. (b) Derive the
global relation satisfied by q̂(k).

If A is a 2× 2 matrix, define σ̂3A by [σ3, A], σ3 = diag(1,−1); then it follows that

eσ̂3A = eσ3Ae−σ3 .
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Step 1 is based on the fact that the defocusing NLS equation (5.1) is equivalent to

d
[
e(ikx+2ik2t)σ̂3µ(x, t, k)

]
= W (x, t, k), k ∈ C, (5.3)

where µ is a 2 × 2 matrix, and the differential 1-form W is defined by

W = e(ikx+2ik2t)σ̂3

(
Q(x, t)µ(x, t, k)dx+ Q̃(x, t, k)µ(x, t, k)dt

)
, (5.4)

Q(x, t) =


 0 q(x, t)

q̄(x, t) 0


 , (5.5a)

Q̃(x, t, k) = 2kQ− iQxσ3 − i|q|2σ3. (5.5b)

The derivation of (a) involves the spectral analysis of equation (5.3).

T
(x,t)

µ
3

T (x,t)

µ
1 2

µ

T
(x,t)

Figure 5.1

A solution of equation (5.3) is

µj(x, t, k) = I + e−(ikx+2ik2t)σ̂3

∫ (x,t)

(xj ,tj)
W (ξ, τ, k), (5.6)

where I is the 2×2 identity matrix and (xj , tj) are the three corners depicted in Figures 5.1.
These matrices are simply related by the matrix analogues of q̂0(k) = µ3(0, 0, k) and of
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ĝ(k) = (e2ik2T σ̂3µ2(0, T, k))−1. Due to certain symmetries these matrices have the form

q̂0(k) =


 a(k̄) b(k)

b(k̄) a(k)


 , ĝ(k) =


 A(k̄) B(k)

B(k̄) A(k)


 . (5.7)

The matrices µ3(x, 0, k) and µ2(0, t, k) satisfy linear integral equations, thus {a(k), b(k),
A(k), B(k)} cannot be written in closed form. The matrices µj have certain analyticity
properties which can be used to define a RH problem. This RH problem, in contrast to
the case of linear PDEs, is not a scalar RH problem, thus it cannot be solved in closed
form.

Using
∫
∂ΩW = 0, with µ = µ3 in the definition of W , it is straightforward to derive

the global relation satisfied by the spectral function.

Step 2. Existence under the assumption that the spectral functions satisfy the global
relation.

Given q0(x) ∈ S(R+), the space of Schwartz functions on the positive real axis, de-
fine {a(k), b(k)}. Assume that there exist smooth functions g0(t) and g1(t) such that if
{A(k), B(k)} are defined in terms of them, then {a(k), b(k), A(k), B(k)} satisfy the global
relation. Define q(x, t) through the solution of the RH problem formulated in Step 1.
Then prove that: (a) q(x, t) is defined for all 0 < x <∞, 0 < t < T ; (b) q(x, t) solves the
NLS; (c) q(x, 0) = q0(x), 0 < x <∞ and q(0, t) = g0(t), qx(0, t) = g1(t), 0 < t < T .

We give the definitions of {a(k), b(k), A(k), B(k)} and the main theorem.

Definition of a(k), b(k). Let q0(x) ∈ S(R+). The map

S : {q0(k)} → {a(k), b(k)} (5.8)

is defined as follows:(
b(k)
a(k)

)
= ϕ(0, k), (5.9)

where the vector-valued function ϕ(x, k) is defined in terms of q0(x) by

∂xϕ(x, k) + 2ik


 1 0

0 0


ϕ(x, k)

=


 0 q0(x)

q̄0(x) 0


ϕ(x, k), 0 < x <∞, Im k ≥ 0,

lim
x→∞ϕ(x, k) =

(
0
1

)
. (5.10)

Definition of A(k), B(k). Let {g0(t), g1(t)} be smooth functions for 0 < t < T . The
map

S̃ : {g0(t), g1(t)} → {A(k), B(k)} (5.11)
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is defined as follows(
−e−4ik2TB(k)

A(k̄)

)
= Φ(T, k), (5.12)

where the vector-valued function Φ(t, k) is defined by

∂tΦ(t, k) + 4ik2


 1 0

0 0


Φ(t, k) = Q̃(t, k)Φ(t, k), 0 < t < T, k ∈ C,

Φ(0, k) =
(

0
1

)
, (5.13)

and Q̃(t, k) is given by:

Q̃(t, k) = 2k


 0 g0(t)

ḡ0(t) 0


 − i


 0 g1(t)

ḡ1(t) 0


σ3 − i|g0(t)|2σ3.

Theorem 5.1. Given q0(x) ∈ S(R+) define {a(k), b(k)} according to the definition (5.9).
Suppose that there exist smooth functions {g0(t), g1(t)} satisfying g0(0) = q0(0), g1(0) =
∂xq(0), such that the functions {A(k), B(k)} which are defined from {gl(t)}1

0 according to
definition (5.12) satisfy the global relation

a(k)B(k) − b(k)A(k) = e4ik2T c(k), Im k ≥ 0, (5.14)

where c(k) is analytic and bounded for Im k > 0 and is of O(1/k), k → ∞.
Define M(x, t, k) as the solution of the following 2 × 2 matrix RH problem:

(a) M is holomorphic for k in C\L, where L is the union of the real and of the imaginary
axes of the complex k-plane.

(b)

M(x, t, k) = I +O(1/k), k → ∞,

(c)

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ L,

where J is defined in terms of a, b, A,B by (see Figure 5.2)

J1 =


 1 0

Γ(k)e2iθ 1


 , J3 =


 1 −Γ(k̄)e−2iθ

0 1


 ,

J4 =


 1 −γ(k)e−2iθ

γ̄(k)e2iθ 1− |γ(k)|2


 ,
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where

γ(k) =
b(k)
a(k)

, k ∈ R; Γ(k) =
1

a(k)
[
a(k)A(k̄)

B(k̄)
− b(k)

] ;

θ(x, t, k) = kx+ 2k2t.

+-

-+

J
1

J  =J  J  J2       3  4  1
-1

J
4

J3

Figure 5.2

Then M(x, t, k) exists and is unique.
Define q(x, t) by

q(x, t) = 2i lim
k→∞

(kM(x, t, k))12.

Then q(x, t) solves the NLS equation with

q(x, 0) = q0(x), q(0, t) = g0(t), qx(0, t) = g1(t).

Step 3. Analyze the Global Relation.
The global relation together with the definition of {A(k), B(k)} yield a nonlinear

Volterra integral equation for g1(t) in terms of g0(t) and q0(t). It is shown in [11] that this
nonlinear equation has a global solution.

We recall that the analogous step for linear evolution equations was solved by algebraic
manipulations. This was based on the invariance of the global relation under k → ν(k).
Unfortunately, the global relation now involves Φ(t, k) which in general breaks this in-
variance. However, for a particular class of boundary conditions this invariance survives.
This is precisely the class of “linearizable problems”, namely a class of problems for which
{A(k), B(k)} can be explicitly written in terms of {a(k), b(k)}.

Some linearizable cases are given below: Recall that the basic RH problem has a jump
matrix which is uniquely defined in terms of the scalar functions a(k), b(k), and Γ(k),
where Γ(k) involves a(k), b(k), and B(k)/A(k). The basic RH problems for the KdV with
dominant surface tension and for the sine Gordon have a similar form [10].

In [10] the following concrete linearizable cases are solved.
NLS:

qx(0, t) − χq(0, t) = 0, χ = const, χ ≥ 0.

sG:

q(0, t) = χ, χ = const.
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KdV:

q(0, t) = χ, qxx(0, t) = χ+ 3χ2, χ = const.

For each of these cases, B/A, and hence Γ(k), can be explicitly given in terms of a(k), b(k):

NLS :
B(k)
A(k)

= −2k + iχ

2k − iχ

b(−k)
a(−k) ,

KdV, sG :
B(k)
A(k)

=
f(k)b(ν(k)) − a(ν(k))
f(k)a(ν(k)) − b(ν(k))

,

where for the sG,

ν(k) =
1
k
, f(k) = i

k2 + 1
k2 − 1

sinχ
cosχ− 1

,

while for the KdV,

ν2 + kν + k2 +
1
4

= 0, f(k) =
ν + k

ν − k

(
1− 4νk

χ

)
.

We emphasize that since {a(k), b(k)} are determined in terms of the initial conditions and
since B(k)/A(k) and therefore Γ(k) is explicitly written in terms of {a(k), b(k)}, it follows
that linearizable initial boundary value problems on the half line are solved as effectively
as initial value problems on the line.

Acknowledgments

This work was partially supported by the EPSRC. I am deeply grateful to several of my
colleagues who have contributed substantially to this new method, in particular, A R Its,
B Pelloni, L Y Sung and A Kapaev.

References

[1] Fokas A S, Two Dimensional Linear PDEs in a Convex Polygon, Proc. R. Soc. Lond. A457
(2001), 371–393.

[2] Ben-Avraham D, Fokas A S, The Modified Helmholtz Equation in a Triangular Domain and
an Application to Diffusion-Limited Coalescence, Phys. Rev. E 36 (2001), 01614-1–016114-6.

[3] Fokas A S and Kapaev A A, On a Transform Method for the Laplace Equation in a Polygon,
IMA J. Appl. Maths. 68 (2003), to appear.

[4] Crowdy D and Fokas A S, Explicit Integral Solutions for the Plane Elastostatic Semi-Strip,
Preprint, 2002.

[5] Fokas A S and Pelloni B, Two-Point Boundary Value Problems for Linear Evolution Equa-
tions, Math. Proc. Camb. Phil. Soc. 131 (2001) 1–23.

[6] Pelloni B, Well-Posed Boundary Value Problems for Linear Evolution Equations on a Finite
Interval, Proc. Camb. Phil. Soc. (2003), to appear.



Ehrenpreis Type Representations and Their Riemann–Hilbert Nonlinearisation 61

[7] Fokas A S and Pelloni B, Method for Solving Moving Boundary Value Problems for Linear
Evolution Equations, Phys. Rev. Lett. 84 (2000), 4785–4789; Integrable Evolution Equations
in Time Dependent Domains, Inverse Problems 17 (2001), 919–935.

[8] Fokas A S, A New Transform Method for Evolution Equations, IMA J. App. Math. 67 (2003),
559–590.

[9] Fokas A S and Zyskin M, The Fundamental Differential Form and Boundary Value Problems,
Quart. J. Mech. Appl. Math. 55 (2002), 457–479.

[10] Fokas A S, Nonlinear Integrable Evolution Equations on the Half-Line, Comm. Math. Phys.
230 (2002), 1–39.

[11] Fokas A S, Its A R and Sung L Y, The Nonlinear Schrödinger Equation on the Half Line,
Preprint, 2001.

[12] Ehrenpreis L, Fourier Analysis in Several Complex Variables, Wiley-Interscience Publishers,
New York – London – Sydney, 1970.

[13] Palamodov V P, Linear Differential Operators with Constant Coefficients, Springer-Verlag,
1970.

[14] Henkin G, Method of Integral Representations in Complex Analysis, Encyclopedia of Mathe-
matical Sciences, Vol. 7: Several Complex Variables, Springer-Verlag, 1990.

[15] Berndtsson B and Passare M, Integral Formulas and an Explicit Version of the Fundamental
Principle, J. Funct. Anal. 84 (1989) 358–372;
Yger A, Formules de Division at Prolongement Meromorphe, Lecture Notes in Math.,
Vol. 1295, Springer-Verlag, Berlin, 1987;
Rigat S, Version explicite du principe fondamental d’Ehrenpreis–Malgrange–Palamodov dans
le cas non homogène, J. Math. Pures Appl. 76 (1997), 777–799.

[16] Fokas A S and Sung L Y, Initial Boundary Value Problems for Linear Evolution Equations
on the Half Line, Preprint, 2001.

[17] Fokas A S and Schultz P, The Long Time Asymptotics of Moving Boundary Problems Using
an Ehrenpreis-Type Representation and its Riemann–Hilbert Nonlinearization, Comm. Pure
Appl. Math. 56 (2003), 517–548.

[18] Fokas A S, Boundary Value Problems for Linear PDEs with Variable Coefficients, Proc. R.
Soc. Lond. A, to appear.


