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Abstract

It is shown that solutions to the intermediate surface diffusion flow are real analytic
in space and time, provided the initial surface is real diffeomorphic to a Euclidean
sphere.

1 Introduction and main result

Of concern is the following nonlocal geometric evolution problem. Given a compact closed
orientable immersed M hypersurface of Rm+1, find a family M = {M(t) ; t ≥ 0} of
surfaces such that

V (t) = ∆M(t)(δ − µ∆M(t))
−1HM(t) on M(t) for t > 0,

M(0) = M at t = 0. (1.1)

Here V is the normal velocity of M and ∆M(t) and HM(t) stand for the Laplace-Beltrami
operator and the mean curvature of M(t). Furthermore, δ and µ are positive constants.
The evolution equation (1.1) does not depend on the local choice of orientation. However,
if M(t) encloses a domain Ω(t) (which is the physical relevant case), we always choose the
orientation such that V (t) is positive if Ω(t) grows and such that H(t) is positive if M(t)
is convex with respect to Ω(t). We mention that in the plane case sometimes the opposite
orientation is used.

Equation (1.1) is called intermediate surface diffusion flow and was first proposed by
J W Cahn and J E Taylor [8] to describe a geometric growth law for a moving interface
where surface diffusion is the only transport mechanism and the reduction of total sur-
face energy is the only driving force for surface motion, cf. [8, 22]. In this framework,
the constants 1/δ and 1/µ are called the diffusion coefficient and the mobility constant,
respectively. Formally, as δ → 0 and µ→ 0 the evolution law (1.1) connects the averaged
mean curvarutre flow V = HM(t) − HM(t), where HM(t) is the spatial average of HM(t),
and the surface diffusion flow V (t) = ∆M(t)HM(t), see [8, 14]. This explains the name
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of (1.1). For the case µ = 1 and δ → 0 it is rigorously shown in [10] that the solutions
to (1.1) converge in C1,2+α to the corresponding solution of the averaged mean curvature
flow. The limit µ→ 0 is still open.

The first mathematical results for (1.1) was presented by C M Elliott and H Garcke [9].
They prove both global existence and stabilty results for plane curves when M is close to
a circle. These results were extended in [14] to the multi-dimensional case. More precisely,
writing hs for the little Hölder spaces of order s > 0, see Section 2, we have

Theorem 1.1. (i) LetM be a surface of class h2+β with β ∈ (0, 1). Then the intermediate
surface diffusion flow (1.1) possesses a unique classical solution M = {M(t) ; t ∈ [0, t+)},
where t+ := t+(M) > 0 is the maximal existence time. The mapping [t 	→M(t)] is smooth
on (0, t+) with respect to the C∞-topology and continuous on [0, t+) with respect to the
h2+β-topolgy.

(ii) Let S be a fixed Euclidean sphere and let S denote the set of all spheres which are
sufficiently C2+β-close to S Then S attracts at an exponential rate all solutions which are
C2+β-close to S. In particular, all solutions starting from such a neighbourhood exists
globally and converge exponentially fast to some sphere as t → ∞. The convergence is in
the Ck-topology for any fixed k ∈ N.

The purpose of this paper is to extend the existence and uniqueness part of Theorem 1.1
to h1+α initial data and to show that the solutions to (1.1) are actually real analytic,
provided M is chosen suitably. More precisely, we shall prove the following result:

Theorem 1.2. (i) Let Σ be a smooth compact closed immersed oriented hypersurface
of Rm+1 and assume that M is the graph over Σ of a h1+α-function with α ∈ (1/2, 1).
Then (1.1) possesses a unique solution {M(t); t ∈ [0, t+)} in

C([0, t+), h1+α(Σ)) ∩ C1([0, t+), hα−1(Σ)).

The mapping [(t,M) 	→M(t)] is a continuous semiflow on an open subset of h1+α(Σ).
(ii) Assume that Σ is real analytically diffeomorphic to the Euclidean sphere Sm. Then

⋃
t∈(0,t+)

({t} ×M(t)
)

is a real analytic manifold.

Theorem 1.2 is obtained by applying a recent result on the smoothing property of
abstract fully nonlinear parabolic evolution equations on symmetric spaces, cf. [15]. We
present this general framework in Section 4. It is based on the concept of continuous
maximal regularity which will be introduced in Section 2. In Section 3 we provide a suitable
parametrization of a tubular neighbourhood R of Σ which allows to translate (1.1) in R
into a nonlinear nonlocal parabolic evolution equation on the reference manifold Σ.

2 Continuous maximal regularity

In this section we briefly introduce the notion of maximal regularity in the sense of
Da Prato–Grisvard. For this let E0 and E1 be Banach spaces such that E1 is conti-
nuously injected and dense in E0. Let H(E1, E0) denote the subset of all A ∈ L(E1, E0)
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such that −A, considered as a, in general, unbounded operator in E0, generates a strongly
continuous analytic semigroup on E0. Let B ⊂ E1 be open and assume that

P ∈ Cω(B,E0) with ∂P (v) ∈ H(E1, E0), v ∈ B (2.1)

where ∂P (v)h := d
dεP (v + εh)|ε=0 denotes the Fréchet derivative of P at v ∈ B.

Given T > 0, set

E0 := C([0, T ], E0), E1 := C([0, T ], E1) ∩ C1([0, T ], E0),

and let γ : E0 → E0, u 	→ u(0) denote the trace operator in E0. We assume that (E0,E1)
is a pair of maximal regularity for ∂P (v), this means we assume that

(
d

dt
+ ∂P (v), γ

)
∈ Isom(E1,E0 × E1), v ∈ B. (2.2)

We are now ready to formulate the following existence and uniqueness result:

Theorem 2.1. Assume that (2.1) and (2.2) hold true. Then, given any u0 ∈ B and
f ∈ Cω(R+, E0), there exist t+ := t+(u0) > 0 and a unique maximal solution

u := u(·, u0) ∈ C([0, t+), B) ∩ C1([0, t+), E0) (2.3)

of the initial value problem

d

dt
u+ P (u) = f, u(0) = u0. (2.4)

Remarks 2.2. a) Theorem 2.1 essentially goes back to Da Prato and Grisvard [7]. For
some refinements and generalizations see also [4].

b) Observe that assumption (2.2) and Theorem 2.1 coincide in the linear case, i.e., if
B = E1 and P ∈ L(E1, E0). Nevertheless, it is not at all clear whether or not property (2.2)
can be verified if E1 �= E0. In fact, it follows from a result of Baillon [6] that, in case E1 �=
E0, property (2.3) can only be expected if E0 contains an isomorphic copy of the sequence
space c0. In particular, (2.3) will never be true in reflexive Banach spaces. However, in [7]
the continuous interpolation functor (·, ·)0θ,∞ was introduced, an interpolation method
producing non-reflexive Banach spaces for which condition (2.2) can be verified.

c) Let us briefly introduce an important scale of Banach spaces, which may be realized
as continuous interpolation spaces. Given s ∈ R, define the little Hölder to be

bucs(Rm) := closure of BUC∞(Rm) in Bs
∞,∞(Rm),

where Bs∞,∞(Rm) stands for the Besov spaces as defined in [23]. Note that the spaces
Bs∞,∞(Rm) coincides with the ususal Hölder spaces BUCs(Rm), provided s > 0 is not an
integer, see Theorem 2.5.7 and Remark 2.2.2.3 in [23]. Then it is shown in [19], Theorem
1.2.17 that

(BUC(Rm), BUCn(Rm))0θ,∞ = bucθn(Rm)

for all n ∈ N and θ ∈ (0, 1) such that θn �∈ N.
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d) Assume that M is a smooth Riemannian manifold with bounded curvature and
positive radius of injectivity. Then Lemma 2.26 in [5] ensures the existence of a uniformly
locally finite covering of geodesic balls M(pj , δ) with pj ∈M , j ∈ N and δ > 0. As before
the spaces bucs(M) are defined to be the closure of BUC∞(M) in BUCs(M). Again we
have that

(BUC(M), BUCn(M))0θ,∞ = bucθn(M)

for all n ∈ N and θ ∈ (0, 1) such that θn �∈ N, cf. the proof of Corollary 1.2.19 in [19]. For
simplicity we write hs(M) = bucs(M) for s ∈ R if M is compact.

e) A further scale of Banach spaces for which maximal regularity can be verified are the
so called little Nikol’skii spaces. They can be realized as continuous interpolation spaces
of Bessel potential spaces, cf. [7], Section 6 and [21], Section 6.

f) Consider again the “linear” case B = E1 and P ∈ L(E1, E0) and suppose in addition
that f ≡ 0. Then problem (2.4) has for each u0 ∈ E1 a unique solution in the class E1 (for
any T > 0, of course), provided −P generates a strongly continuous semigroup, which does
not need to be analytic. However, it is shown in [7] that the semigroup is automatically
analytic if condition (2.2) is supposed to hold, see also Proposition III.3.1.1 in [2].

g) A well-known characterization of generators of analytic semigroups yields that A ∈
L(E1, E0) belongs to H(E1, E0) if there are positive constants κ and ω such that [Reλ ≥
ω] ⊂ ρ(−A) and

|λ| ‖(λ+A)−1‖L(E0) ≤ κ, Reλ ≥ ω.

h) Finally, we mention that Theorem 2.1 remains true under a much weaker regularity
assumption for P . Indeed, it suffices to assume that P is continuously Fréchet differen-
tiable. Under these regularity assumption it can also be shown that the mapping

⋃
x∈B

(
[0, t+(x))× {x}) → B, (t, x) 	→ u(t, x)

is a semiflow on B, provided f does not depend on t. However, since we are looking for
possible smoothing properties of solutions, we presuppose analyticity of P from the very
beginning.

3 Parametrization

We parametrize (1.1) in a neighbourhood of an analytic compact closed immersed oriented
hypersurface Σ in Rm+1. To make this precise, let ν denote the unit outer normal field
on Σ. Moreover, given a > 0, choose a localization system {(Ul, ϕl); l = 1, . . . , n} for Σ
such that Σ = ∪n

l=1Ul and

ϕl : (−a, a)m → Ul, l ∈ {1, . . . , n},

is an analytic parametrization of Ul. Shrinking a > 0 if necessary, we may assume that

Xl : Ul × (−a, a) → Rm+1, Xl(s, r) := s+ rν(s)
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is a smooth diffeomorphism onto its image Rl := im(Xl), i.e.

Xl ∈ Diff ω(Ul × (−a, a),Rl).

The inverse of Xl can be decomposed in the following way. Writing Sl ∈ Cω(Rl, Ul) and
Λl ∈ Cω(Rl, (−a, a)) for the metric projection of Rl onto Ul and for the signed distance
function with respect to Ul, respectively, we have X−1

l = (Sl,Λl). In particular, observe
that R := ∪n

l=1Rl consists of those points in Rm+1 with distance less than a to Σ.
We now fix α > 1/2, let

W (Σ) := Wa(Σ) := {ρ ∈ h1+α(Σ) ; ‖ρ‖C1(Σ) < a/2},

and define

Mρ :=
n⋃

l=1

{Xl(s, ρ(s)) ; s ∈ Ul}

for ρ ∈ W (Σ). Then Mρ is a compact closed oriented immersed hypersurface in Rm+1 of
class h1+α, which can be seen as a graph in normal direction over Σ. Of course, ρ measures
the signed distance of Σ to Mρ. For convenience let us also introduce the mapping

θρ : Σ →Mρ, s 	→ Xl(s, ρ(s)) for s ∈ Ul.

Then θρ is a well-defined global diffeomorphism of class h1+α from Σ onto Mρ. By means
of this diffeomorphism we can pull back the Euclidean metric on Mρ to Σ, producing
in that way a Riemannian manifold which we denote in the following by Σ(ρ). We now
consider a family of hypersurfaces in R. More precisely, let T > 0 be given, and define
I := [0, T ], as well as

W (ΣT ) := Wa(ΣT ) := {ρ ∈ C(I, h1+α(Σ)) ; ‖ρ‖C(I,C1(Σ)) < a/2}.

Then, given ρ ∈W (ΣT ), we transform the evolution equation (1.1) for the family {Mρ(t);
t ∈ [0, T ]} into an evolution equation on Σ. For this we first calculate the normal velocity
of [t 	→Mρ(t)]. We have, cf. [11],

V (t, s) = ∂tρ(t, s)
/
|∇xΦρ(x, t)|x=θρ(t)(s) for (t, s) ∈ I × Σ,

where we used the function

Φρ : R× [0, T ] → R, (x, t) 	→ Λ(x) − ρ(t, S(x))

to represent Mρ(t) as the 0−level set of Φρ(·, t), i.e. Mρ(t) = Φ−1(·, t)(0). To shorten our
notation, let

L(ρ)(t, s) := |∇xΦρ(x, t)|x=θρ(t)(s), (t, s) ∈ I × Σ.

Moreover, we write K(ρ) := θ∗ρH and ∆ρ for the mean curvature and Laplace–Beltrami
operator of Σ(ρ), respectively. Here, θ∗ρ denotes the pull-back operator induced by the
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diffeomorphism θρ, i.e. θ∗ρf = f ◦ θρ for f ∈ C(Mρ). This means in particular that we
have

θ∗ρ∆Mρ = ∆ρθ
∗
ρ.

Given ρ0 ∈Wa(Σ), consider now the following nonlinear nonlocal partial differential equa-
tion

d ρ

dt
= L(ρ)∆ρ(δ − µ∆ρ)−1K(ρ) in I × Σ, ρ(0) = ρ0 on Σ. (3.1)

In order to treat (3.1) in the framework of Theorem 2.1, we set

P (ρ) := L(ρ)∆ρ(δ − µ∆ρ)−1K(ρ) for ρ ∈W (Σ) ∩ h2+α(Σ).

Our first result in this section shows that P can be extended to an analytic mapping with
values in hα−1(Σ).

Lemma 3.1. There exists an extension of P , again denoted by P , which belongs to the
space P ∈ Cω(W (Σ), hα−1(Σ)).

Proof. (i) We first express the terms L(ρ), K(ρ), and ∆ρ in local coordinates. To make
this precise, let

ρ̂l(s) := ρ(ϕl(s)), X̂l(s, r) := Xl(ϕl(s), r), (s, r) ∈ (−a, a)m+1,

be the local representations of ρl and Xl with respect to Ul. In the following we do not
always distinguish between ρl, Xl and their local representations ρ̂l, X̂l, as well as between
local coordinates s ∈ (−a, a)m and the corresponding points ϕl(s) on Ul. Moreover, we
suppress the index l ∈ {1, . . . , n} if no confusion seems likely. Given ρ ∈W (Σ), define

wjk(ρ)(s) := (∂jX|∂kX)|(s,ρ(s)), s ∈ (−a, a)m,

for j, k ∈ {1, . . . ,m}, where (·|·) stands for the Euclidean metric in Rm+1 and ∂j denotes
the partial derivative with respect to the j-th variable of s. Since ρ belongs to W (Σ), the
matrix [wjk(ρ)] is invertible and we write wjk(ρ) for the entries of its inverse. Then we
have

L(ρ) =
√

1 + wjk(ρ)∂jρ∂kρ (3.2)

cf. (2.3) in [13]. In (3.2) and in what follows we use summation convention over repeated
indices. Moreover, we write

Γi
jk(ρ) :=

1
2
wil(ρ) (∂k(∂lX|∂jX) − ∂l(∂jX|∂kX) + ∂j(∂kX|∂lX))

∣∣∣
(·,ρ)

,

for the corresponding Christoffel symbols. Then Lemma 2.1 in [13] shows thatK(ρ) carries
a quasi-linear structure, i.e. given ρ ∈W (Σ), there are

K1(ρ) ∈ L(h2+α(Σ), hα(Σ)) and K2(ρ) ∈ hα(Σ) (3.3)
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such that

K(ρ) = K1(ρ)ρ+K2(ρ) for ρ ∈W (Σ) ∩ h2+α(Σ). (3.4)

In the chosen local coordinates these mappings are represented as:

K1(ρ) =
1

mL(ρ)3

[{
− L(ρ)2wjk(ρ) + wjl(ρ)wkn(ρ)∂lρ∂nρ

}
∂j∂k

+
{
L(ρ)2wjk(ρ)Γi

jk(ρ) + wjl(ρ)wki(ρ)Γm+1
jk (ρ)∂lρ

+ 2wkn(ρ)Γi
(m+1)k(ρ)∂nρ− wjl(ρ)wkn(ρ)Γi

jk(ρ)∂lρ∂nρ
}
∂i

]
(3.5)

and

K2(ρ) = − 1
mL(ρ)

wjk(ρ)Γm+1
jk (ρ). (3.6)

In order to express ∆ρ in local coordinates, let η be the Euclidean metric and write
σ(ρ) := θ∗ρη for the Riemannian metric on Σ induced by the diffeomorphism θρ. This means
that, using the above introduced notation, we have Σ(ρ) = (Σ, σ(ρ)). Let further σjk(ρ)
denote the components of σ(ρ) in local coordinates and write σjk(ρ) for the components
of the inverse of [σjk(ρ)]. Using again summation convention over repeated indices, the
Christoffel symbols of σ(ρ) in the chosen coordinates are given by

γljk(ρ) =
σln(ρ)

2

[
∂σkn(ρ)
∂sj

+
∂σjn(ρ)
∂sk

− ∂σjk(ρ)
∂sn

]
,

and we have

∆ρ = σjk(ρ)
[

∂2

∂sj∂sk
− γljk(ρ)

∂

∂sl

]
, ρ ∈W (Σ) ∩ h2+α(Σ), (3.7)

cf. the proof of Lemma 2.1 in [13].
(ii) It follows from [11, p. 1037] that wjk(ρ) is a quadratic polynomial in ρ. Moreover,

we have that

[ρ 	→ θρ − idΣ] ∈ L(h1+α(Σ), h1+α(Σ,Rm+1)).

This obviously implies that

wjk ∈ Cω(W (Σ), h1+α(Σ)), σjk ∈ Cω(W (Σ), hα(Σ)), (3.8)

and consequently:

wjk, Γi
jk ∈ Cω(W (Σ), h1+α(Σ)), σjk ∈ Cω(W (Σ), hα(Σ)). (3.9)

(iii) Combining (3.9) and (3.2), we see that

L ∈ Cω(W (Σ), hα(Σ)). (3.10)
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Recall that we have assumed that α > 1/2. Hence α > max{1−α, α−1}, and we conlcude
from [23, Theorem 2.8.2] and a localization argument that

hα(Σ) × hα−1(Σ) → hα−1(Σ), (f, g) 	→ fg (3.11)

is continuous and bilinear. Using this and Theorem 2.3.8 in [23], it follows from (3.5),
(3.6), and (3.9) that

[ρ 	→ K(ρ)] ∈ Cω(W (Σ), hα−1(Σ)). (3.12)

(iv) Let ρ0 ∈W (Σ) be given and choose ε > 0 such that

B0 := Bh1+α(Σ)(ρ0, ε0) ⊂W (Σ).

For simplicity we set X0 := hα−1(Σ) and X1 := h1+α(Σ), and denote the X0-realization of
δ − µ∆ρ by A(ρ). Shrinking ε0 > 0, it follows from Theorem 4.2 in [3] and a localization
argument that

A(ρ) ∈ H(X1, X0), ρ ∈ B0. (3.13)

Moreover, we conclude from Theorem 7.4.3 and Remark 7.2.5.1 in [24] that R+ belongs
to the resolvent set res(A(ρ)) of A(ρ) for all ρ ∈ B0. Observing (3.7), we infer from (3.13)
that

[ρ 	→ A(ρ)A(0)−1], [ρ 	→ ∆ρA(0)−1] ∈ Cω(B0,L(X0)). (3.14)

The first assertion in (3.14) yields

[ρ 	→ A(0)A(ρ)−1] ∈ Cω(B0,L(X0)), (3.15)

since [B 	→ B−1] ∈ Cω(L(X0)), see Theorem VIII.7 in [25]. From the second assertion
in (3.14) and (3.15) we thus get

[ρ 	→ ∆ρA(ρ)−1] ∈ Cω(B0,L(X0)). (3.16)

Since pointwise multiplication in hα(Σ) is bilinear and continuous, it remains to combi-
ne (3.10), (3.12), and (3.16) to complete the argumentation. �

Lemma 3.2. Given ρ ∈W (Σ), we have

∂P (ρ) ∈ H(h1+α(Σ), hα−1(Σ)).

Proof. Let ρ ∈W (Σ) be given. Then

P (ρ) =
1
µ
L(ρ)K(ρ) − δ

µ
L(ρ)(δ − µ∆ρ)−1K(ρ)

=
1
µ
L(ρ)K1(ρ)ρ+

1
µ
L(ρ)[K2(ρ) − δ(δ −∆ρ)−1K(ρ)]

Observing (3.5), (3.6), (3.7), and (3.10) we find that there is a

R ∈ Cω(W (Σ),L(h1+α(Σ), hα(Σ)) (3.17)
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such that

∂P (ρ)h =
1
µ
L(ρ)K1(ρ)h+R(ρ)h, (ρ, h) ∈W (Σ) × h1+α(Σ).

It follows from Lemma 3.2 in [12] that K1(ρ) is a strongly elliptic differential operator
with coefficient belonging to hα(Σ). Moreover, L(ρ) ∈ hα(Σ) is positive. Thus we infer
from Theorem 4.2 in [3] that K1(ρ) ∈ H(h1+α(Σ), hα−1(Σ)). Combining this with (3.17),
a well-known perturbation result for generators of analytic semigroups shows that ∂P (ρ) ∈
H(h1+α(Σ), hα−1(Σ)). �

Corollary 3.3. Let Ej := hα−1+2j(Σ) for j = 0, 1 and B := W (Σ). Then the operator P
satisfies the hyptheses (2.1) and (2.2).

Proof. Let β ∈ (1/2, α) be fixed. Then, given ρ ∈ B, the very same arguments as in
Lemma 3.2 ensure that ∂P (ρ) ∈ H(h1+β(Σm), hβ−1(Σm)). Since the spaces hs(Σm) are
stable under continuous interpolation and since the maximal E0-realization of ∂P (ρ) ∈
L(h1+β(Σm), hβ−1(Σm)) obviously coincides with ∂P (ρ) ∈ L(E1, E0), Theorem 2.3 in [21]
implies that P satisfies assumption (2.2) as well. �

Corollary 3.4. Let ρ0 ∈W (Σ) be given and let M be the graph of ρ0 in normal direction.
Then there is a T = T (M) > 0 such that (1.1) possesses a unique solution {Mρ(t) ; t ∈
[0, T )} with

ρ ∈ C([0, T ), h1+α(Σ)) ∩ C1([0, T ), hα−1(Σ)).

Proof. This follows from Corollary 3.3 and Theorem 2.1. �

4 The smoothing property

Let Σ be an analytic closed Riemannian manifold of dimension m and assume that E0

and E1 are Banach spaces of functions over Σ. More precisely, assume that E1 is dense
in E0 and that

E1 ↪→ BUC(Σ), E1 ↪→ E0 ↪→ D′(Σ), (A1)

where D′(Σ) stands for the space of all distributions on Σ. Throughout this section we
presuppose (2.1) and (2.2) and we let u denote the solution of (2.4) on [0, t+), where
u0 ∈ B is given and where we assume for simplicity that f ≡ 0. Moreover, we set
û(t, q) := u(t)(q) for (t, q) ∈ [0, t+) × Σ. Our goal is to show that u enjoys a smoothing
property. Hence, subdividing the interval of existence and using the semiflow property
of u, see Remark 2.2(h), we may assume without loss of generality that t+ ≤ 1. Further,
we fix T ∈ (0, t+) and set I := [0, T ].

From Theorem 2.1 we know that u belongs to C(I,B)∩C1(I, E0). Since we are dealing
with nonlinear equations, including fully nonlinear partial differential equations involving
nonlocal terms too, there is no reason to expect u to have any further regularity, like

u ∈ Cα(I \ {0}, E1) or u ∈ C(I \ {0}, (E1, E2)α), (4.1)
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where E2 stands for the domain of definition of [∂P (u0)]2, equipped with the corresponding
graph norm and where (·, ·)α denotes a suitable interpolation method. However, it turns
out that there is actually a strong smoothing property for solutions of problem (2.4),
provided we impose suitable symmetry properties for the manifold Σ as well as for the
nonlinear operator P .

It should be remarked that if P carries a quasilinear structure in the sense that Theo-
rem 12.1 in [1] is applicable it can be shown that the corresponding solutions do in fact
possess a smoothing property in the sense of (4.1) without any geometrical condition on Σ
or on P .

Concerning the manifold Σ we shall assume that it is analytically diffeomorphic to
a globally Riemannian symmetric space. More precisely, we assume that

there exists a globally symmetric
Riemannian space M and a Φ ∈ Diff ω(M,Σ). (A2)

Recall that a Riemannian manifoldM is called a globally symmetric space if it is connected
and if for each p ∈M there is a involutive isometry σp : M →M such that p is an isolated
fixed point of σp. Observe that σp reverses in particular geodesics passing through the
point p. This implies that M is complete and, by the Hopf–Rinow theorem, that the
group I(M) of all isometries acts transitively on M . Observe further that (A2) implies
that (Σ,Φ∗g) is a globally symmetric Riemannian space, where g denotes the metric of M .
However, in view of applications, we prefer to keep the original metric on Σ.

Let now Φ∗ and Φ∗ denote the pull back and push forward operator induced by Φ. This
means that, given v ∈ D(Σ) and w ∈ D(M), we have

Φ∗v := v ◦ Φ and Φ∗w := w ◦ Φ−1,

where, of course, D(Σ) stands for the space of all test functions over Σ. It follows from
Theorem 2.2.26 and Corollary 2.2.21 in [17] that M has bounded curvature and a positive
radius of injectivity δ > 0. Hence Lemma 2.26 in [5] ensures that there exists a uniformly
locally finite covering of geodesic balls M(pj , δ) on M and a smooth partition of unity
{πj ; j ∈ N} subordinated to {M(pj , δ) ; j ∈ N}. Using this partion of unity it is not
difficult to verify by duality that

Φ∗ ∈ Isom(D′(Σ),D′(M)), Φ∗ ∈ Isom(D′(M),D′(Σ)) with [Φ∗]−1 = Φ∗.

For j = 0, 1, let now

Fj := {Φ∗v ; v ∈ Ej}, ‖w‖Fj := ‖Φ∗w‖Ej , w ∈ Fj .

Then Fj := (Fj ; ‖ · ‖Fj ) are well-defined Banach spaces such that F1 is continuously
injected and dense in F0. Moreover, we have F0 ⊂ D′(M) and F1 ⊂ BUC(M). We next
introduce

Q(w,Φ) := Φ∗P (Φ∗w), v ∈ D,
where D := {Φ∗v ; v ∈ B}. Of course,

D is open in F1 and Q(·,Φ) ∈ Cω(D,F0), (4.2)
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because of the fact that Φ∗ : Ej → Fj is an isometric isomorphism. We write ∂1Q(w,Φ) ∈
L(F1, F0) for the Fréchet derivative of Q(·,Φ). Further, we need the spaces

F0 := C(I, F0), F1 := C(I, F1) ∩ C1(I, F0). (4.3)

The pull back and push forward operator induced by Φ on E0 and F0 are defined pointwise
with respect to t ∈ I, i.e., given v ∈ E0 and w ∈ F0, let

Φ∗v : I → F0, t 	→ Φ∗v(t), Φ∗w : I → E0, t 	→ Φ∗w(t).

Of course we do also not distinguish notationally between Φ∗ and Φ∗ and restrictions of
these operators to linear subspaces of E0 and F0, respectively.

Lemma 4.1. The following assertions hold true:
(i) Φ∗ ∈ Isom(Ej ,Fj), Φ∗ ∈ Isom(Fj ,Ej) and [Φ∗]−1 = Φ∗ for j = 0, 1.
(ii) (F1,F0) is a pair of maximal regularity for ∂1Q(·,Φ), i.e.,

( d
dt

+ ∂1Q(w,Φ), γ
)
∈ Isom(F1,F0 × F1), w ∈ D. (4.4)

Proof. The first assertion follows from the construction of the spaces Fj , j = 0, 1. The
second one is a consequence of (i) and the chain rule. �

Let G := I0(M) be the identity component of the group I(M) of C1-isometries onM . It
follows from (A2) and from Theorem I.4.6 in [18] that G acts analytically and transitively
as a Lie transformation group on M , so that M is a homogeneous Riemannian space with
respect to G. Fix p0 ∈ M and let H := {g ∈ G ; g · p0 = p0} denote the isotropy group
of p0, where · : G×M →M denotes the action of G on M , which is real analytic as well,
see again Theorem I.4.6 in [18]. Furthermore, G/H admits a real analytic structure and

j : G/H →M, g ·H 	→ g · p0

is a real analytic diffeomorphism, cf. Proposition I.4.2 in [18]. By means of this diffeomor-
phism we always identify M with the coset manifold G/H. Finally, recall that

• Rm,

• the unit sphere Sm = SO(m+ 1)/SO(m),

• products of Riemannian globally symmetric spaces

are Riemannian globally symmetric spaces.
Let Y be a nonempty set. Given f ∈ YM and g ∈ G, we define g · f ∈ YM by

g · f(p) := f(g · p). The next result contains the transformation rule for the operator Q
with respect to G which will be needed in the following

Lemma 4.2. Let g ∈ G be given. Then
(i) g · Φ ∈ Diff ω(M,Σ);
(ii) g ·Q(w,Φ) = Q(g · w, g · Φ), w ∈ D.
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Proof. (i) This follows from the analyticity of the group action of G on M .
(ii) Given g ∈ G we have

(g · Φ)∗v = g · (Φ∗v), v ∈ E0, (g · Φ)∗(g · w) = Φ∗w, w ∈ F0. (4.5)

Thus we find

Q(g · w, g · Φ) = (g · Φ)∗P ((g · Φ)∗(g · w)) = (g · Φ)∗P (Φ∗w)
= g · (Φ∗P (Φ∗w)) = g ·Q(w,Φ),

for any w ∈ D. �

We call G a strongly continuous transformation group on the spaces Ej if [v 	→
g · v] ∈ L(Ej) for all g ∈ G and if

av : G→ Ej , g 	→ g · v

is continuous at the unit e of G for any v ∈ Ej . We next assume that

G is a strongly continuous transformation group on Fj for j = 0, 1. (A3)

Writing L(G) for the Lie algebra of G, we define

TX(t)w := exp(tX) · w for (X, t, w) ∈ L(G) × R × Fj .

It follows from (A3) that {TX(t) ; t ∈ R} is for any X ∈ L(G) a strongly continuous group
on F0. We write AX for the infinitesimal generator of {TX(t) ; t ∈ R}. It follows from
Theorem IV.3.3 in [16] that L(G) is finite dimensional. We fix a basis B = {X1, . . . , XN}
of L(G) and assume that

F1 ↪→ dom(AX) for any X ∈ L(G), (A4)

where dom(AX) is given the graph norm of AX . Observe that (A4) implies that

AX ∈ L(F1, F0) for any X ∈ L(G). (4.6)

Recall that, given v ∈ Fj , we have set

av : G→ Fj , g 	→ g · v.

We write dgav for the differential of av at g ∈ G, provided av is differentiable, of course.

Lemma 4.3. (i) If v ∈ Fj then av ∈ C(G,Fj) for j = 0, 1.
(ii) If v ∈ F1 then av ∈ C1(G,F0) and, given (g, X) ∈ G× L(G), we have

dgavX = g ·AXv. (4.7)
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Proof. (i) Let g ∈ G and choose a sequence (gk) in G such that gk → g. Since G is
a strongly continuous transformation group on Fj we find

av(gk) = ag·v(gkg−1) → g · v = av(g) in Fj .

(ii) Due to (i) and (4.6) it suffices to prove (4.7). Identifying TeG ∼= L(G), we have that
{g ·exp(tX) t ∈ R} is an integral curve on G through g with tangent vector X. Thus (A3)
yields

lim
t→0

av(g · exp(tX))− av(g)
t

= g · lim
t→0

exp(tX) · v − v

t
= g ·AXv in F0,

since v belongs to F1 ⊂ dom(AX). �

Remark 4.4. Let M = Σ = R and Ej = BUCj(R) for j = 0, 1. Then Fj = Ej for
j = 0, 1 and, given v ∈ Fj and λ ∈ R, we have that av(λ) = τλv, where τλv denotes the
left translation by λ ∈ R of v. This shows that the regularity of av with respect to G as
stated in Lemma 4.3 is optimal.

Recall that B = {X1, . . . , XN} denotes a fixed basis of L(G). Given (µ1, . . . , µN} ∈ RN ,
we write

µB :=
N∑

k=1

µkXk, Tµ(t) := TµB(t), Aµ := AµB.

Let E, F, and G be Banach spaces. Writing L2(E × F,G) for the Banach space of all
bilinear continuous mappings from E × F to G, we have

Corollary 4.5. [(µ,w) 	→ Aµw] ∈ L2(RN × F1,F0).

Proof. It follows easily from Lemma 4.3 that [(µ,w) 	→ Aµw] is bilinear. Let C :=
N∑

k=1

‖AXk
‖L(F1,F0) and observe that (4.6) implies that C <∞. Now, given w ∈ F1, µ ∈ RN ,

and t ∈ I, we have

‖Aµw(t)‖F0 = ‖deaw(t)

N∑
k=1

µkXk‖F0 ≤ |µ|RN

N∑
k=1

‖AXk
w(t)‖F0 ≤ C|µ|‖w‖F1 .

Taking the maximum over t ∈ I, we get the assertion. �

We shall now formulate the compatibility condition for the operator P with respect
to G. For this we first have to introduce the following assumption:

D is invariant under Tµ(t) for all (µ, t) ∈ (−ε0, ε0)N × I. (A5)

Further, let D1 := C(I,D) ∩ C1(I, F0), pick (µ,w) ∈ (−ε0, ε0)N × D1, and define

Q(µ,w)(t) := Q(w(t), Tµ(t)Φ), t ∈ I,
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where Tµ(t)Φ := exp(tµB) · Φ for (t, µ) ∈ R × RN . Observe that (A5) ensures that this
definition is meaningful. Moreover, we have

Q(µ,w)(t) = (Tµ(t)Φ)∗P ((Tµ(t)Φ)∗w(t)), t ∈ I.
Hence Q(µ,w) ∈ F I

0 . We need that this function belongs to F0 and that the operator
Q(µ,w) depends analytically on (µ,w). For this we first observe that

D1 is an open subset of F1. (4.8)

Indeed, this follows from the compactness of I and the fact that D is open in F1. We now
assume that there is a r ∈ (0, ε0) such that

[(µ,w) 	→ Q(µ,w)] ∈ Cω(BRN (0, r)× D1,F0). (A6)

Remarks 4.6. a) Assume that D → F0, v 	→ Φ∗P (Φ∗v) is equivariant with respect to G,
i.e. Φ∗P (Φ∗g · v) = g · Φ∗P (Φ∗v) for (g, v) ∈ G × D. Then assumption (A6) is verified.
Indeed, recalling (3.5) we get

Q(µ,w)(t) = (Tµ(t)Φ)∗P ((Tµ(t)Φ)∗w(t))
= Tµ(t)Φ∗P (Φ∗Tµ(−t)w(t))
= Φ∗P (Φ∗w(t)) = Q(w(t),Φ)

for w ∈ D1 and t ∈ I. Now the assertion follows from (4.2).
b) Assume that Σ = M = Rm and that Φ = id. Furthermore, set

E0 := bucα(Rm), B := E1 := buc2+α(Rm)

for some α ∈ (0, 1). We fix a ∈ bucα(Rm) and define

P (v) := a∆v for v ∈ E1. (4.9)

Obviously, P is only equivariant under translation if a is constant. In order to satisfy (A6)
for nonconstant coefficient functions a, observe that

Q(µ,w)(t) = (τtµa)∆w(t) for w ∈ E1,

where τtµa stands for the left translation of a by the vector tµ ∈ Rm. Assume now

a ∈ BUC∞(Rm) and there is a M0 > 0 such that

‖∂ka‖BUCα(Rm) ≤M0k! for all k ∈ N. (4.10)

Clearly, (4.10) implies that a ∈ Cω(Rm), but observe that (4.10) is in general stronger than
pointwise analyticity. If (4.10) holds then P satisfies (A6). Indeed, given (µ,w), (ν, h) ∈
Rm × F1 we have

∂kQ(µ,w)[ν, h]k(t) = (τtµ∂ka)[tν]k∆h(t), t ∈ I, k ∈ N,

and therefore

‖∂kQ(µ,w)[ν, h]k‖F0 ≤ |Tν|kRm‖h‖F1‖∂ka‖BUCα(Rm), k ∈ N.

Recall now that we have by assumption T ≤ 1. Hence we conclude that (A6) is satisfied
with r = 1.
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We next fix ε0 > 0 such that λt ∈ [0, t+) for all λ ∈ (1 − ε0, 1 + ε0) and all t ∈ [0, T ].
Given now any (λ, µ) ∈ (1−ε0, 1+ε0)×RN , we define vλ,µ ∈ F I

0 by vλ,µ(t) := Tµ(t)Φ∗u(λt)
for t ∈ I.

Our next result shows that the function vλ,µ solves a parameter dependent evolution
equation involving the operators Q and Aµ. In order to economize our notation, we set
Π := Π(ε0) := (1− ε0, 1 + ε0) × (−ε0, ε0)N .
Lemma 4.7. Given (λ, µ) ∈ Π, we have

(i) vλ,µ ∈ D1.
(ii) vλ,µ solves the evolution equation

d

dt
w + λQ(µ,w) = Aµw, w(0) = v0, (4.11)

where v0 := Φ∗u0.

Proof. (i) This follows from (2.3), the definition of D, see (4.2), assumption (A5), Lem-
ma 4.3, and the analyticity of the exponential map. Furthermore Lemma 4.3 implies
that

d

dt
vλ,µ(t) = Tµ(t)Aµ(Φ∗u(λt)) + λ(Tµ(t)Φ)∗

d

dt
u(λt), t ∈ I.

Observing (4.5) and the fact that Tµ(t) and Aµ commute on F1 we get

d

dt
vλ,µ(t) = Aµvλ,µ + λ(Tµ(t)Φ)∗

d

dt
u(λt), t ∈ I. (4.12)

(ii) Using (4.13) and (2.4) we now find

d

dt
vλ,µ(t) = Aµvλ,µ − λ(Tµ(t)Φ)∗P (u(λt)), t ∈ I.

From Lemma 4.3(ii) and the definitions of the operators Q and Q we further conclude

(Tµ(t)Φ)∗P (Φ∗Φ∗u(λt)) = Tµ(t)Q(Φ∗u(λt),Φ)
= Q(Tµ(t)Φ∗u(λt), Tµ(t)Φ) = Q(µ, vλ,µ)(t)

for t ∈ I. This completes the proof. �

Our next lemma contains the key result to show via the implicit function theorem that
the mapping (λ, µ) 	→ vλ,µ is analytic.

Lemma 4.8. Given ((λ, µ), w) ∈ Π× D1, let

F ((λ, µ), w) :=
(
d

dt
w + λQ(µ,w) −Aµw,w(0)− v0

)
.

Then

F ∈ Cω(Π × D1,F0 × F1) (4.13)

and

∂2F ((1, 0), w) ∈ Isom(F1,F0 × F1), w ∈ D1, (4.14)

where ∂2F is the derivative of F with respect to w ∈ D1.
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Proof. (i) Clearly, we have that
(
d

dt
, γ

)
∈ L(F1,F0 × F1).

Hence it follows from Corollary 3.6 that[
(λ, µ,w) 	→

(
d

dt
w −Aµw,w(0)− v0

)]
∈ Cω(F1,F0 × F1).

Thus we obtain (4.13) from assumption (A6).
(ii) Let w ∈ D1 and h ∈ F1 be given. Then we have

∂2F ((1, 0), w)h =
d

dε
F ((1, 0), w + εh)

∣∣
ε=0

=
(
d

dt
h+ ∂1Q(w,Φ)h, h(0)

)
.

Combining Lemma 4.2(ii) with Remark III 3.4.2(c) in [2] it follows that, given (f, ϕ) ∈
F0 × F1, there is a unique solution h ∈ F1 to the inhomogeneous evolution equation

d

dt
h+ ∂1Q(w(t),Φ)h = f(t), h(0) = ϕ.

(4.14) is now a consequence of the open mapping theorem. �

We are now prepared to show that vλ,µ depends analytically on the parameter (λ, µ).

Proposition 4.9. There is an ε0 > 0 such that [(λ, µ) 	→ vλ,µ] ∈ Cω(Π(ε0),D1).

Proof. Let F be given as in Lemma 4.9 and observe that F ((λ, µ), w) = 0 if and only if
w ∈ D1 is a solution to

d

dt
w + λQ(µ,w) = Aµw, w(0) = v0.

Now the assertion follows from Lemma 4.8, Lemma 4.9, and the implicit function theorem
in Banach spaces. �

It remains to translate the above Proposition into the desired analyticity of û, see the
beginning of this section.

Theorem 4.10. Assume that (A1)–(A6) hold true. Then û ∈ Cω((0, t+) × Σ).

Proof. (i) Let v̂ := Φ∗û, i.e. v̂(t, p) := û(t,Φ(p)) for (t, p) ∈ (0, t+) × M . It suffices
to show that v̂ ∈ Cω((0, t+) × M). For this we fix (t0, p0) ∈ (0, T ) × M . Moreover
there exists a subset {j1, . . . , jm} of {1, . . . , N} such that {Xj1 , . . . , Xjm} ⊂ L(G) induces
via the integral curves [t 	→ exp(tXjk) · p0] a basis of Tp0M . Without loss of generality
we may assume that j1 = 1, . . . , jm = m. Moreover, in the following we write µ̂ =
(µ1, . . . , µm, 0, . . . , 0) ∈ RN for (µ1, . . . , µm) ∈ Rm and we identify

Πm := Πm(ε0) := (1− ε0, 1 + ε0)× (−ε0, ε0)m with Π ∩ (Rm+1 × {0}).
Shrinking ε0 > 0 if necessary, we have that

ϕ : Πm → (0, t+)×M, (λ, µ̂) 	→ (λt0, Tµ̂(t0) · p0)
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is an analytic parametrization of an open neighborhood O of (t0, p0) in (0, t+) ×M .
(ii) Observe that by assumption (A1) we know that D1 ⊂ C(I,BUC(M)). Thus, given

w ∈ D1, the evaluation mapping

D1 → R, w 	→ w(t0)(p0)

is well-defined and clearly analytic. Combining this with Proposition 4.9 we find

[(λ, µ̂) 	→ vλ,µ̂(t0)(p0)] ∈ Cω(Πm,R).

But ϕ∗v̂(λ, µ̂) = vλ,µ̂(t0)(p0) for λ, µ̂ ∈ Πm. This shows that v̂ ∈ Cω(O,R) and completes
the proof. �

Proof of Theorem 1.2. (a) Assertion (i) follows from Corollary 3.4.
(b) Setting Ej := hα−1+2j(Σ) for j = 0, 1, hypothesis (A1) is clearly satisfied.
(c) By assumption there is a isometrically real analytic diffeomorphism Φ from Sm onto

Σ. Thus hypothesis (A2) is also satisfied.
(d) It follows from (A2) that the spaces Fj coincide up to an equivalent norm with

hα−1+2j(Sm) for j = 0, 1. Clearly, SO(m + 1) · BUC∞(Sm) ⊂ BUC∞(Sm). Moreover, it
is not difficult to verify that SO(m+ 1) is a strongly continuous transformation group on
BUCj(Sm) for j = 1, 2. By Remark 2.2(c) and a density argument we therefore conclude
that SO(m+1) is a strongly continuous transformation group on h1+α(Sm). Using further
the fact that 1 − ∆Sm ∈ Isom(h1+α(Sm), hα−1(Sm)) and that ∆Sm is equivariant with
respect to SO(m+1) we conclude that SO(m+1) is a strongly continuous transformation
group on hα−1(Sm) as well. This shows that hypothesis (A3) is satisfied.

(e) Let X ∈ L(SO(m + 1)) and v ∈ BUC2(Sm) be given. Then it follows from the
mean value theorem that

exp(tX) · v − v

t
→ AXv in BUC(Sm) as t→ 0.

Hence BUC2(Sm) is contained in dom(AX), implying that hypothesis (A4) is fulfiled.
(f) Let B := W (Σ). Then we have D = {v ∈ h1+α(Sm) ; ‖v‖BUC1+α < a/2}. Ob-

serve further that the metric on Sm is invariant under SO(m+ 1). This implies that the
transformation group on h1+α(Sm) induced by SO(m+1) consists of isometries, i.e. given
R ∈ SO(m+ 1), the mapping

h1+α(Sm) → h1+α(Sm), v 	→ R · v
is an isometry. This shows that (A5) is also satisfied.

(g) Finally, fix v ∈ D and R ∈ SO(m+ 1) and set

f := θΦ∗v ◦ Φ ∈ Diff 1+α(Sm,MΦ∗v), g := θΦ∗(R·v) ◦ Φ ∈ Diff 1+α(Sm,MΦ∗(R·v)).

Then R∗f = g and R : (Sm, g∗η) → (Sm, f∗η) is an isometry, where η denotes the
Euclidean metric on Rm+1. Observe further that Φ∗K(Φ∗v) and Φ∗K(Φ∗(R · v)) are, with
respect to the ambient space (Rm+1, η), the mean curvatures of (Sm, f∗η) and (Sm, g∗η),
respectively. Thus

R · Φ∗K(Φ∗v) = Φ∗K(Φ∗(R · v)). (4.15)
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Similarly, ∆(Sm,f∗η) = Φ∗∆θΦ∗v
Φ∗ and ∆(Sm,g∗η) = Φ∗∆θΦ∗(R·v)

Φ∗. Thus we obtain

R · (Φ∗∆θΦ∗v
Φ∗w) = Φ∗∆θΦ∗(R·v)

Φ∗(R · w), w ∈ h1+α(Sm). (4.16)

Therefore, given w ∈ h1+α(Sm), we also have

R · [Φ∗(δ − µ∆θΦ∗v
)−1Φ∗w] = Φ∗(δ − µ∆θΦ∗(R·v)

)−1Φ∗(R · w). (4.17)

Finally, it follows from the chain rule and R · f = g that

Φ∗L(Φ∗(R · v)) = R · Φ∗L(Φ∗v).

Combining this with (4.15), (4.16), (4.17), we see that

Φ∗PΦ∗ : D → hα−1(Sm), v 	→ Φ∗[L(Φ∗v)∆Φ∗v(δ − µ∆Φ∗v)
−1K(Φ∗v)]

is equivariant with respect to SO(m + 1). Now the the second assertion follows from
Theorem 4.10. �
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