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Abstract

Today we consider the question of whether it is possible to sort without the use of comparisons. They answer is yes, but only 
under very restrictive circumstances. Many applications involve sorting small integers (e.g. sorting the employees according 
employee Id, sorting the list of students according roll numbers of the student etc.). We present an algorithm based on the 
idea of speeding up sorting in special cases, by not making comparisons. 

Key words: Introduction, Literature review, TPS Algorithm, complexity of TPS sort, Advantages, Disadvantages, 
Applications, sorting algorithm Implementation 

1. Introduction  
Sorting is always carried out technically. In computer 
science and mathematics; we can formulate a procedure for 
sorting unordered array or a file. Such procedure is always 
governed by an algorithm; called Sorting Algorithm. 
Algorithms are paramount in computer programming, but 
an algorithm could be of no use even though it is correct 
and gives a desired output if the resources like storage and 
time it needs to run to completion are intolerable. This 
paper presents a Linear sorting algorithm which sorts the 
element in O (n) time. 

Generally, Computational complexity (worst, 
average and best behavior) of element comparisons in 
terms of the size of the unsorted list is considered for the 
analysis of the efficiency of sorting algorithm. The 
complexity notational terminology is covered in [2]. If the 
size of unsorted list is (n), then for typical sorting 
algorithms, good behavior is O (n log n) and bad behavior 
is   (n2).  The Ideal behavior is O (n). Sort algorithms which 
only use an abstract key comparison operation always need   
(n log n) comparisons in the worst case. An important 
criterion used to rate sorting algorithms is their running 
time. Running time is measured by the number of 
computational steps it takes the sorting algorithm to 
terminate when sorting n records. We say that an algorithm 
is O (n2) ("of order n-squared") if the number of 

computational steps needed to terminate as n tends to 
infinity increases in proportion to n2.  

Literature review carried out in indicates the 
man’s longing efforts to improve efficiency of sorting 
algorithm with respect to time.   
 
2. Literature review 
 
Counting sort assumes that each input is an integer in the 
range from 1 to k. The algorithm sorts in Θ (n + k) time. If k 
is known to be O (n), then this implies that the resulting 
sorting algorithm is Θ (n) time. The basic idea is to 
determine, for each element in the input array, its rank in the 
final sorted array. Recall that the rank of a item is the 
number of elements in the array that are less than or equal to 
it. Notice that once you know the rank of every element, you 
sort by simply copying each element to the appropriate 
location of the final sorted output array. The question is 
how to find the rank of an element without comparing it to 
the other elements of the array? Counting sort uses the 
following three arrays. As usual A[1…n] is the input array. 
Recall that although we usually think of A as just being a list 
of numbers, it is actually a list of records, and the numeric 
value is the key on which the list is being sorted. In this 
algorithm we will be a little more careful to distinguish the 
entire record A[j] from the key A[j].key. 
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Counting Sort 

CountingSort(int n, int k, array A, array B) {                // sort A[1..n] to B[1..n] 
for x = 1 to k do R[x] = 0                                           // initialize R 
for j = 1 to n do R[A[j].key]++                            // R[x] = #(A[j] == x) 
for x = 2 to k do R[x] += R[x-1]                           // R[x] = rank of x 
for j = n downto 1 do {                                     // move each element of A to B 
x = A[j].key                                                 // x = key value 
B[R[x]] = A[j]                                              // R[x] is where to put it 
R[x]--                                                       // leave space for duplicates 
} 
} 

 
 
We use three arrays: 
 

A[1..n] Holds the initial input. A[j] is a record. A[j].key 
is the integer key value on which to sort. 

B[1..n] Array of records which holds the sorted output. 

R[1..k] An array of integers. R[x] is the rank of x in A, 
where x � [1..k]. 

 
The algorithm is remarkably simple, but deceptively clever. 
The algorithm operates by first constructing R. We do this in 
two steps. First we set R[x] to be the number of elements of 
A[j] whose key is equal to x. We can do this initializing R  
to zero, and then for each j, from 1 to n, we increment 
R[A[j].key] by 1. Thus, if A[j].key = 5, then the 5th element 
of R is incremented, indicating that we have seen one more 
5. To determine the number of elements that are less than or 
equal to x, we replace R[x] with the sum of elements in the 
sub array R[1..x]. This is done by just keeping a running 
total of the elements of R. Now R[x] now contains the rank 
of x. This means that if x = A[j].key then the final position of 
A[j] should be at position R[x] in the final sorted array. 
Thus, we set B[R[x]] = A[j]. Notice that this copies the 
entire record, not just the key value. There is a subtlety here 
however. We need to be careful if there are duplicates, since 
we do not want them to overwrite the same location of B. To 
do this, we decrement R[i] after copying. There are four 
(unnested) loops, executed k times, n times, k − 1 times, and 
n times, respectively, so the total running time is Θ (n + k) 
time. If k = O (n), then the total running time is Θ (n). 

This paper is important as Sorting algorithms are 
often prevalent in introductory computer science classes, 
where the abundance of algorithms for the problem 
provides a gentle introduction to a variety of core algorithm 
concepts. Sorting algorithms illustrate a number of 
important principles of algorithm design; some of them are 
also counterintuitive. Efficient sorting is important to 
optimizing the use of other algorithms such as Binary 
search and merge algorithms that require sorted lists to 
work correctly. We can not deploy binary search if data is 
not pre sorted otherwise the search process may get trapped 

into a blind alley thereby exhibiting worst case complexity.   
  

3. TPS Sort:  
The basic idea of this sort is to place the element in the 
position (index) what is its own value. That is an element 
‘x’ would be placed in the x’th position of the array. 

So if there is no repetition of the values, the elements will 
be well sorted very effortlessly. This sort runs in O (n) 
time. 

In this sort we assume that the input is an array 
arr[0,1,…n], and the maximum of the all elements is max. 
A temporary storage (array) temp [] provides the 
intermediate working storage that holds the sorted elements 
with some possibly empty (NULL) entries.  
     
TPS Sorting Algorithm: 
 
TPS_SORT (arr[], max) 

  Step1.  temp[max]        //allocating array of size 
equal to the maximum of input 
  Step2.  For every element of arr [] 
 

 //if repetition allowed *******   
         
                 IF temp [arr []] is FREE 
                    temp [arr []] =arr [] 
                      ELSE 
                       Maintain a linked list to store arr [] // 
 
  Step3.  temp [arr[]] =arr[] 
  Step4.  For every non-NULL values of temp [] 
  Step5. Return temp[] 
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SORT ALGORITHMS REVIEWS 

 
 
 

 

 
 
 

4. Algorithm Analysis 

Because the algorithm uses only simple for loops, without 
recursion or subroutine calls, it is straightforward to 
analyze. The initialization of the output array, iterate at most 
k + 1 times and therefore take O(k) time. The other for loop, 
and the initialization of the output array, it take O(n) time. 
Therefore the time for the whole algorithm is the sum of the  
times for these steps, O (n + k). Because it uses array of 
length k (max_element - min_element), the total space 
usage of the algorithm is also O ( k). For problem instances 
in which the maximum key value is significantly less than 
equal to the number of items , TPS sort can be highly space-  
 
Efficient, as the only storage it uses other than its input 
array is the output array which uses space O(k)  

for i=1 to k do  
              *(ptr+i) =32767      /*Initialize Output 
array 32767 such as Null*/ 
     for j=1 to n do 
                *(ptr+arr[i]) =arr[i]    /*putting at the 
index according to it’s value*/ 
               if(*(ptr+i)!=32767)        /*Place the 
elements in output array ptr[]*/ 
              printf("%d\n",*(ptr+i)); 
 
1. The loop of lines 1   takes O(k) time  
2. The loop of lines 2   takes O(n) time  

Therefore, the overall time of the TPS sort is O (k) + O (n) = 
O (k + n). In practice, we usually use TPS sort algorithm 
when have k = O (n), in which case running time is O (n). 
The TPS sort is a stable sort i.e., multiple keys with the 
same value are placed in the sorted array in the same order 
that they appear in the input array. 

 
Note: - That TPS sort beats the lower bound of Ω (n log n), 
because it is not a comparison sort. There is no comparison 
between elements. Counting sort uses the actual values of 
the elements to index into an array. [5] 
 
 
 
ADVANTAGES- 
 

1) This sort can be proved one the fastest and simplest 
as well. 

2) Very simple and Easy algorithm. 
3) Complexity of RUNTIME is proportional to the 

array size(i.e. O(n)) 
4) This algorithm is even applicable for NEGATIVE 

NUMBERS  using pointer 
5) This algorithm is better suited for small numbers.  
6) This algorithm is very effective where there is no 

much differences(gTPS)   
               among the numbers to be sorted.      
 
DISADVANTAGES- 
 

1) Without dynamic memory allocation facility….it 
may cause memory wastage (Hardware being in 
trend of getting cheaper day by day, it’s won’t be a 
great issue, until and unless the difference is very 
big.).  

 
APPLICATION AREAS- 
        Where the data come serially. For example, sorting the 
employees according employee Id, sorting the list of 
students according roll numbers of the student etc. 
 

 

 Keys Type Average 
run-time 

Worst case 
run-time 

Extra Space In Place Stable 

Insertion Sort Any O(n2) O(n2) O(1) √ √ 
Merge Sort Any O(nlogn) O(nlogn) O(n) X √ 
Heap Sort Any O(nlogn) O(nlogn) O(1) √ X 
Quick Sort Any O(nlogn) O(n2) O(1) √ X 
Counting Sort integers 

[1..k] 
O(n+k) O(n+k) O(n+k) X √ 

TPS  Sort integers 
[1…n] 

O(n) O(n) O(n) X √ 

Radix Sort d digits in 
base b 

O(d(b+n)) O(d(b+n)) Depends on the 
stable sort used 

Depends 
on the 
stable sort 
used 

√ 

Bucket sort [0,1) O(n) O(n2) O(n) X √ 
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Sorting Algorithm Implementation 
 

IMPLEMENTATION IN ‘C’LANGUAGE 
 
#include<stdio.h> 
#include<conio.h> 
int max(int []); 
int size; 
void main() 
  int i,j,*ptr,s_len,min_len,max_len; 
  int num[10],sorted[10]; 
  clrscr(); 
 

ENTER THE SIZE OF INPUT PROBLEM (UNSORTED 
PROBLEM 

   
  printf("Enter the number of inputs:"); 
  scanf("%d",&size);                         
  printf("\nEnter the numbers :\n"); 
  for(i=0;i<size;i++) 
     scanf("%d",&num[i]); 
 

FIND THE MAXIMUM KEY VALUE(S_LEN) AND 
MINIMUM KEY VALUE(MIN_LEN) 

 
  s_len=max(num); 
  min_len=min(num); 
 

FIND TOTAL SIZE OF TEMPARARY 
ARRAY(MAX_LEN) 

max_len=max(num)-min(num); 
ptr=(int*)calloc(max_len,sizeof(int)); 
            /*dynamic memory allocate to *ptr*/ 
 for(i=min_len;i<s_len;i++) 
          *(ptr+i)=32767;  
      /*Initializing 32767,This could be NULL */ 
    if(min_len<1)      
     { 
      ptr=ptr-min_len;      
 /*Set value of pointer to handel nagetive value*/     
     } 
       
 printf("The sorted array is:\n"); 
  for(i=min_len;i<=s_len;i++) 
  printf("Initialize starting location of ptr : %u\n",ptr); 
     for(i=0;i<size;i++) 
      { 
  j=num[i];  
/*putting at the index according to its value*/ 
  *(ptr+j)=j; 
      } 
     } 
/*Collect only not null value as output*/ 
if(*(ptr+i)!=32767)    
         { printf("%d\t%u\n",*(ptr+i),(ptr+i));} 
     } 

  getch(); 
} 
 

DEFINATION OF max(int ) FUNCTION 
int max(int a[]) 
{ 
  int i,max=0; 
  for(i=0;i<size;i++) 
     { 
    if(a[i]>max) 
       max=a[i]; 
     } 
  return max; 
} 
 

FUNCTION THE SIZE OF OUTPUT ARRAY 
int min(int a[]){ 
  int i,min=32767; 
  for(i=0;i<size;i++) 
     { 
   if(a[i]<min) 
   min=a[i]; 
     } 
  return min;} 
//The program here is implemented more effectively (to 
save memory) by introducing Minimum calculating variable 
‘min’. 
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