
Implementation of the technique of Space minimization for Counting Sort algorithm

Sanjeev Kumar Sharma

Professor and Dean
JP Institute of Engineering & Technology, Meerut

dean.ar@jpiet.com

Prem Sagar Sharma
Research Scholar

Premsagar1987@rediffmail.com

Abstract

Today we consider the question of whether it is possible to sort without the use of comparisons. They answer is yes, but only
under very restrictive circumstances. Many applications involve sorting small integers (e.g. sorting the employees according
employee Id, sorting the list of students according roll numbers of the student etc.). We present an algorithm based on the
idea of speeding up sorting in special cases, by not making comparisons.

Key words: Introduction, Literature review, TPS Algorithm, complexity of TPS sort, Advantages, Disadvantages,
Applications, sorting algorithm Implementation

1. Introduction
Sorting is always carried out technically. In computer
science and mathematics; we can formulate a procedure for
sorting unordered array or a file. Such procedure is always
governed by an algorithm; called Sorting Algorithm.
Algorithms are paramount in computer programming, but
an algorithm could be of no use even though it is correct
and gives a desired output if the resources like storage and
time it needs to run to completion are intolerable. This
paper presents a Linear sorting algorithm which sorts the
element in O (n) time.

Generally, Computational complexity (worst,
average and best behavior) of element comparisons in
terms of the size of the unsorted list is considered for the
analysis of the efficiency of sorting algorithm. The
complexity notational terminology is covered in [2]. If the
size of unsorted list is (n), then for typical sorting
algorithms, good behavior is O (n log n) and bad behavior
is (n2). The Ideal behavior is O (n). Sort algorithms which
only use an abstract key comparison operation always need
(n log n) comparisons in the worst case. An important
criterion used to rate sorting algorithms is their running
time. Running time is measured by the number of
computational steps it takes the sorting algorithm to
terminate when sorting n records. We say that an algorithm
is O (n2) ("of order n-squared") if the number of

computational steps needed to terminate as n tends to
infinity increases in proportion to n2.

Literature review carried out in indicates the
man’s longing efforts to improve efficiency of sorting
algorithm with respect to time.

2. Literature review

Counting sort assumes that each input is an integer in the
range from 1 to k. The algorithm sorts in Θ (n + k) time. If k
is known to be O (n), then this implies that the resulting
sorting algorithm is Θ (n) time. The basic idea is to
determine, for each element in the input array, its rank in the
final sorted array. Recall that the rank of a item is the
number of elements in the array that are less than or equal to
it. Notice that once you know the rank of every element, you
sort by simply copying each element to the appropriate
location of the final sorted output array. The question is
how to find the rank of an element without comparing it to
the other elements of the array? Counting sort uses the
following three arrays. As usual A[1…n] is the input array.
Recall that although we usually think of A as just being a list
of numbers, it is actually a list of records, and the numeric
value is the key on which the list is being sorted. In this
algorithm we will be a little more careful to distinguish the
entire record A[j] from the key A[j].key.

Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013)

© 2013. The authors - Published by Atlantis Press 604

Sanjeev Kumar Sharma, Prem Sagar Sharma

Counting Sort

CountingSort(int n, int k, array A, array B) { // sort A[1..n] to B[1..n]
for x = 1 to k do R[x] = 0 // initialize R
for j = 1 to n do R[A[j].key]++ // R[x] = #(A[j] == x)
for x = 2 to k do R[x] += R[x-1] // R[x] = rank of x
for j = n downto 1 do { // move each element of A to B
x = A[j].key // x = key value
B[R[x]] = A[j] // R[x] is where to put it
R[x]-- // leave space for duplicates
}
}

We use three arrays:

A[1..n] Holds the initial input. A[j] is a record. A[j].key
is the integer key value on which to sort.

B[1..n] Array of records which holds the sorted output.

R[1..k] An array of integers. R[x] is the rank of x in A,
where x � [1..k].

The algorithm is remarkably simple, but deceptively clever.
The algorithm operates by first constructing R. We do this in
two steps. First we set R[x] to be the number of elements of
A[j] whose key is equal to x. We can do this initializing R
to zero, and then for each j, from 1 to n, we increment
R[A[j].key] by 1. Thus, if A[j].key = 5, then the 5th element
of R is incremented, indicating that we have seen one more
5. To determine the number of elements that are less than or
equal to x, we replace R[x] with the sum of elements in the
sub array R[1..x]. This is done by just keeping a running
total of the elements of R. Now R[x] now contains the rank
of x. This means that if x = A[j].key then the final position of
A[j] should be at position R[x] in the final sorted array.
Thus, we set B[R[x]] = A[j]. Notice that this copies the
entire record, not just the key value. There is a subtlety here
however. We need to be careful if there are duplicates, since
we do not want them to overwrite the same location of B. To
do this, we decrement R[i] after copying. There are four
(unnested) loops, executed k times, n times, k − 1 times, and
n times, respectively, so the total running time is Θ (n + k)
time. If k = O (n), then the total running time is Θ (n).

This paper is important as Sorting algorithms are
often prevalent in introductory computer science classes,
where the abundance of algorithms for the problem
provides a gentle introduction to a variety of core algorithm
concepts. Sorting algorithms illustrate a number of
important principles of algorithm design; some of them are
also counterintuitive. Efficient sorting is important to
optimizing the use of other algorithms such as Binary
search and merge algorithms that require sorted lists to
work correctly. We can not deploy binary search if data is
not pre sorted otherwise the search process may get trapped

into a blind alley thereby exhibiting worst case complexity.

3. TPS Sort:
The basic idea of this sort is to place the element in the
position (index) what is its own value. That is an element
‘x’ would be placed in the x’th position of the array.

So if there is no repetition of the values, the elements will
be well sorted very effortlessly. This sort runs in O (n)
time.

In this sort we assume that the input is an array
arr[0,1,…n], and the maximum of the all elements is max.
A temporary storage (array) temp [] provides the
intermediate working storage that holds the sorted elements
with some possibly empty (NULL) entries.

TPS Sorting Algorithm:

TPS_SORT (arr[], max)

 Step1. temp[max] //allocating array of size
equal to the maximum of input
 Step2. For every element of arr []

 //if repetition allowed *******

 IF temp [arr []] is FREE
 temp [arr []] =arr []
 ELSE
 Maintain a linked list to store arr [] //

 Step3. temp [arr[]] =arr[]
 Step4. For every non-NULL values of temp []
 Step5. Return temp[]

605

Space minimization for Counting Sort

SORT ALGORITHMS REVIEWS

4. Algorithm Analysis

Because the algorithm uses only simple for loops, without
recursion or subroutine calls, it is straightforward to
analyze. The initialization of the output array, iterate at most
k + 1 times and therefore take O(k) time. The other for loop,
and the initialization of the output array, it take O(n) time.
Therefore the time for the whole algorithm is the sum of the
times for these steps, O (n + k). Because it uses array of
length k (max_element - min_element), the total space
usage of the algorithm is also O (k). For problem instances
in which the maximum key value is significantly less than
equal to the number of items , TPS sort can be highly space-

Efficient, as the only storage it uses other than its input
array is the output array which uses space O(k)

for i=1 to k do
 *(ptr+i) =32767 /*Initialize Output
array 32767 such as Null*/
 for j=1 to n do
 *(ptr+arr[i]) =arr[i] /*putting at the
index according to it’s value*/
 if(*(ptr+i)!=32767) /*Place the
elements in output array ptr[]*/
 printf("%d\n",*(ptr+i));

1. The loop of lines 1 takes O(k) time
2. The loop of lines 2 takes O(n) time

Therefore, the overall time of the TPS sort is O (k) + O (n) =
O (k + n). In practice, we usually use TPS sort algorithm
when have k = O (n), in which case running time is O (n).
The TPS sort is a stable sort i.e., multiple keys with the
same value are placed in the sorted array in the same order
that they appear in the input array.

Note: - That TPS sort beats the lower bound of Ω (n log n),
because it is not a comparison sort. There is no comparison
between elements. Counting sort uses the actual values of
the elements to index into an array. [5]

ADVANTAGES-

1) This sort can be proved one the fastest and simplest
as well.

2) Very simple and Easy algorithm.
3) Complexity of RUNTIME is proportional to the

array size(i.e. O(n))
4) This algorithm is even applicable for NEGATIVE

NUMBERS using pointer
5) This algorithm is better suited for small numbers.
6) This algorithm is very effective where there is no

much differences(gTPS)
 among the numbers to be sorted.

DISADVANTAGES-

1) Without dynamic memory allocation facility….it
may cause memory wastage (Hardware being in
trend of getting cheaper day by day, it’s won’t be a
great issue, until and unless the difference is very
big.).

APPLICATION AREAS-
 Where the data come serially. For example, sorting the
employees according employee Id, sorting the list of
students according roll numbers of the student etc.

 Keys Type Average
run-time

Worst case
run-time

Extra Space In Place Stable

Insertion Sort Any O(n2) O(n2) O(1) √ √
Merge Sort Any O(nlogn) O(nlogn) O(n) X √
Heap Sort Any O(nlogn) O(nlogn) O(1) √ X
Quick Sort Any O(nlogn) O(n2) O(1) √ X
Counting Sort integers

[1..k]
O(n+k) O(n+k) O(n+k) X √

TPS Sort integers
[1…n]

O(n) O(n) O(n) X √

Radix Sort d digits in
base b

O(d(b+n)) O(d(b+n)) Depends on the
stable sort used

Depends
on the
stable sort
used

√

Bucket sort [0,1) O(n) O(n2) O(n) X √

606

Sanjeev Kumar Sharma, Prem Sagar Sharma

Sorting Algorithm Implementation

IMPLEMENTATION IN ‘C’LANGUAGE

#include<stdio.h>
#include<conio.h>
int max(int []);
int size;
void main()
 int i,j,*ptr,s_len,min_len,max_len;
 int num[10],sorted[10];
 clrscr();

ENTER THE SIZE OF INPUT PROBLEM (UNSORTED
PROBLEM

 printf("Enter the number of inputs:");
 scanf("%d",&size);
 printf("\nEnter the numbers :\n");
 for(i=0;i<size;i++)
 scanf("%d",&num[i]);

FIND THE MAXIMUM KEY VALUE(S_LEN) AND
MINIMUM KEY VALUE(MIN_LEN)

 s_len=max(num);
 min_len=min(num);

FIND TOTAL SIZE OF TEMPARARY
ARRAY(MAX_LEN)

max_len=max(num)-min(num);
ptr=(int*)calloc(max_len,sizeof(int));
 /*dynamic memory allocate to *ptr*/
 for(i=min_len;i<s_len;i++)
 *(ptr+i)=32767;
 /*Initializing 32767,This could be NULL */
 if(min_len<1)
 {
 ptr=ptr-min_len;
 /*Set value of pointer to handel nagetive value*/
 }

 printf("The sorted array is:\n");
 for(i=min_len;i<=s_len;i++)
 printf("Initialize starting location of ptr : %u\n",ptr);
 for(i=0;i<size;i++)
 {
 j=num[i];
/*putting at the index according to its value*/
 *(ptr+j)=j;
 }
 }
/*Collect only not null value as output*/
if(*(ptr+i)!=32767)
 { printf("%d\t%u\n",*(ptr+i),(ptr+i));}
 }

 getch();
}

DEFINATION OF max(int) FUNCTION
int max(int a[])
{
 int i,max=0;
 for(i=0;i<size;i++)
 {
 if(a[i]>max)
 max=a[i];
 }
 return max;
}

FUNCTION THE SIZE OF OUTPUT ARRAY
int min(int a[]){
 int i,min=32767;
 for(i=0;i<size;i++)
 {
 if(a[i]<min)
 min=a[i];
 }
 return min;}
//The program here is implemented more effectively (to
save memory) by introducing Minimum calculating variable
‘min’.

References-
 [1]. Darlington. J, A synthesis of several sorting algorithms,
 Acta Inf. II, 1978, pp 1-30.
 [2]. V. Havran, “Heuristic ray shooting algorithms,” Ph.D.

 Thesis, Department of Computer Science and
 Engineering, Faculty of Electrical Engineering, Czech
 Technical University in Prague, Nov.2000.

 [3]. D. E. Knuth, The Art of Computer Programming,
 Volume 3: Sorting and Searching, Second
 Edition. Boston, MA: Addison- Wesley, 1998.
 [4]. Horowitz, E.,Sahni. S, Fundamentals of Computer
 Algorithms, Computer Science Press, Rockville.
 Md.
 [5]. IJCSI International Journal of Computer Science
 Issues, Vol. 4, No. 2, 2009[6]
 [6].E.M. McCreight. A space-economic suffix tree

construction algorithm. J. ACM, 23(2):262–272, 1976.
 [7].E. Ukkonen. On-line construction of suffix trees.

Algorithmica, 14(3):249–260, 1995.
 [8].A. Andersson and S. Nilsson. A new efficient radix sort.

In Proc. 35th Annual IEEE Symp. on Foundations of
Computer Science, pp. 714-721, 1994.

607

