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Abstract

The symmetry approach to the determination of Jacobi’s last multiplier is inverted to
provide a source of additional symmetries for the Euler–Poinsot system. These addi-
tional symmetries are nonlocal. They provide the symmetries for the representation
of the complete symmetry group of the system.

1 Jacobi’s last multiplier

The method of Jacobi’s last multiplier [12, 13, 14] (see also [15, pp. 320, 335, 342–347] for
a summary of these three papers of Jacobi) provides a means to determine an integrating
factor, M , of the partial differential equation

Af =
n∑

i=1

ai
∂f

∂xi
= 0 (1)

or its equivalent associated Lagrange’s system

dx1

a1
=

dx2

a2
= · · · =

dxn

an
. (2)

Provided sufficient information about the system (1)/(2) is known, the multiplier is
given by

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= MAf, (3)

where

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= det




∂f
∂x1

· · · ∂f
∂xn

∂ω1
∂x1

∂ω1
∂xn

...
...

∂ωn−1
∂x1

· · · ∂ωn−1
∂xn



�= 0 (4)
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and ω1, . . . , ωn−1 are n − 1 solutions of (1) or, equivalently, first integrals of (2). As
a consequence, one can prove that each multiplier is a solution of the partial differential
equation

n∑
i=1

∂ (Mai)
∂xi

= 0. (5)

A different combination of the integrals can produce a different multiplier, M ′. The
ratio M ′/M is a solution of (1) or a first integral of (2), which may be trivial as in the
application of the Poisson–Jacobi Theorem [29, 10] to the determination of additional first
integrals. A scholarly essay on the history of the Poisson–Jacobi theorem which Jacobi
considered [10]

la plus profonde découverte de M. Poisson1

and the pervasive influence of Jacobi’s work upon Lie can be found in [9].
In its original form the method of Jacobi’s last multiplier required almost complete

knowledge of the system under consideration. Since the existence of a first integral is
consequent upon the existence of symmetry, one is not surprised that Lie [18, pp. 333–
347] provided a symmetric route to the determination of Jacobi’s last multiplier. A more
transparent treatment is given by Bianchi [3, pp. 456–464].

Suppose that we know n− 1 symmetries of (1)/(2)

Xi = ξij∂xj , i = 1, n− 1. (6)

Then Jacobi’s last multiplier is also given by

M =
1
∆

(7)

in the case that ∆ �= 0, where now

∆ = det




a1 a2 · · · an

ξ11 ξ1,n
...

...
ξn−1,1 ξn−1,2 · · · ξn−1,n


 . (8)

Jacobi’s last multiplier provides an incestuous interrelationship between symmetries,
first integrals and integrating factors for well-endowed systems. The practicality of this
interrelationship was somewhat diminished in the past due to the effort required to evaluate
the determinants of matrices of even moderate size. For example a Newtonian problem
in three dimensions would require the evaluation of the determinant of a 6 × 6 matrix
(7 × 7 if one considers time dependence, ie a1 = 1). This possibly explains the omission
of discussion of the method by postclassical authors such as Cohen [4], Dickson [5] and
Eisenhart [6]. The ready availability of computer algebra systems has rendered this method
an attractive alternative, say, for the determination of first integrals given symmetries. To
take a trivial example the ‘free particle’ has the Newtonian equation

ÿ = 0 ⇔
{

u̇1 = u2,
u̇2 = 0

(9)

1‘the most profound discovery by Mr Poisson’; see also the letter of Jacobi [11].
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with the Lie point symmetries

Γ1 = ∂u1 , Γ5 = t∂t − u2∂u2 ,

Γ2 = t∂u1 + ∂u2 , Γ6 = t2∂t + tu1∂u1 + (u1 − tu2) ∂u2 ,

Γ3 = u1∂u1 + u2∂u2 , Γ7 = u1∂t − u2
2∂u2 ,

Γ4 = ∂t, Γ8 = tu1∂t + u2
1∂u1 + (u1 − tu2)u2∂u2 . (10)

We find, for example, the determinants

∆1 =

∣∣∣∣∣∣
1 u2 0
0 t 1
0 u1 u2

∣∣∣∣∣∣ = tu2 − u1, ∆2 =

∣∣∣∣∣∣
1 u2 0
0 u1 u2

t2 tu1 u1 − tu2

∣∣∣∣∣∣ = (u1 − tu2)2 ,

∆3 =

∣∣∣∣∣∣
1 u2 0
1 0 0
tu1 u2

1 (u1 − tu2)u2

∣∣∣∣∣∣ = − (u1 − tu2)u2
2,

using Γ2 and Γ3; Γ3 and Γ6; and Γ4 and Γ8 respectively, and the integrals

I1 =
∆2

∆1
= tu2 − u1, I2 =

∆3

∆1
= u2

2 (11)

as expected. (Note that there are twenty-eight possible determinants to be calculated.
Some of these are zero.)

2 Complete symmetry groups

In 1994 Krause [16] introduced a new concept of the complete symmetry group of a system
by defining it as the group represented by the set of symmetries required to specify the
system completely. There is not necessarily any relationship between the symmetries
required to specify completely a system and its point symmetries. Thus Andriopoulos et
al [1] reported the complete symmetry group of the ‘free particle’ to be A3,3 (D⊕sT2), the
semidirect sum of dilations and translations in the plane, with the symmetries being three
of the usual eight Lie point symmetries of (9a), and that of the Ermakov–Pinney equation
[7, 27] to be A3,8 (sl(2,R)) with the symmetries being the three Lie point symmetries of
that equation. On the other hand Krause [16] reported that an additional three nonlocal
symmetries are necessary to specify the Kepler Problem completely since the five Lie point
symmetries of the three-dimensional Kepler Problem are insufficient to the purpose. This
contains the implication that eight Lie symmetries are necessary to specify completely the
Kepler Problem. However, a more careful analysis of sufficiency by Nucci et al [26], based
on the method of reduction of order proposed by Nucci in 1996 [23] and her interactive
code for the determination of Lie symmetries [21, 22], has revealed that the equation for
the three-dimensional Kepler Problem is completely specified by six Lie symmetries with
the algebra A1 ⊕{A1 ⊕s {2A1 ⊕ 2A1}} (⇔ A1 ⊕{D ⊕s {T2 ⊕ T2}}), where the subalgebra
D⊕s T2 is that associated with the first integrals of the one-dimensional simple harmonic
oscillator [19] (equally any second order ordinary differential equation with the algebra
sl(3,R)) to which the Kepler Problem reduces naturally [25] under the method of reduction
of order.
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One assumes that, when he devised his method of the last multiplier, the original
intention of Jacobi was to determine integrating factors and that the adaptation from
integral to symmetries by Lie was of like intention. However, (8) in combination with (5)
suggests the possibility to determine symmetries provided the multiplier is known. The
general solution of (5) is equivalent to the solution of (2) unless one has the opportunity
to perceive a particular solution without real effort. A particular case in point is when the
functions ai(x) are independent of xi for then (5) has the solution that M is a constant,
taken to be chosen as a convenient value, which in this instance is not a ‘trivial’ solution.
Since one now has an M , one can attempt to determine a further symmetry by solving (8)
with one row of the matrix the coefficient functions of the unknown symmetry. One may
infer that Lie and Bianchi had in mind point and contact symmetries in their treatments
of Jacobi’s last multiplier from the basis of symmetries rather than the original approach
through first integrals used by Jacobi. However, as is common with many of the theoretical
properties and applications of symmetries, there is no statement of the variable dependence
of the coefficient functions in the method of Jacobi’s last multiplier required for the method
to hold. Consequently the considerations above apply equally to determination of nonlocal
symmetries, in particular nonlocal symmetries of the type used by Krause, in which the
nonlocality is found in the coefficient function of the independent variable, for autonomous
systems. For such systems one of the known symmetries is ∂t which is represented in the
matrix of (8) by the row (1, 0, . . . , 0). In the Laplace expansion of the determinant the
only possible nonzero terms must contain the first element of this row. If the unknown
symmetry is

Γn = V ∂t + Gi∂ui , (12)

V does not appear in the expression for ∆, only the Gi. These may be selected at will
to satisfy the requirement that ∆ = 1, or other suitable constant, and for each selection
a V be computed through the invariance of the system of first order ordinary differential
equations under the action of Γ[1]

n , the first extension of Γn. In principle this would permit
n symmetries to be determined. However, that presumes the independence of the Gi,
i = 1, n. This need not be the case if the ui come from the reduction of an nth order
scalar ordinary differential equation and the imposition of point symmetries is made at
the level of the nth order equation.

3 The complete symmetry group
of the Euler–Poinsot system

As an illustration of the ideas contained in §§ 1 and 2 we consider the simplest case of the
motion of a rigid body which is the system governed by the Euler–Poinsot equations [8, 28]

ω̇1 =
B − C

A
ω2ω3 = W1,

ω̇2 =
C −A

B
ω3ω1 = W2,

ω̇3 =
A−B

C
ω1ω2 = W3 (13)
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in which ω := (ω1, ω2, ω3)T is the angular velocity and A, B and C are the principal
moments of inertia. It is a commonplace that the system (13) possesses respectively the
two first integrals and Lie point symmetries

E =
1
2

(
Aω2

1 + Bω2
2 + Cω2

3

)
, L2 = A2ω2

1 + B2ω2
2 + C2ω2

3,

Γ1 = ∂t, Γ2 = −t∂t + ωi∂ωi . (14)

We note that Nucci’s method of reduction of order [23] looks for first integrals in which
one variable is missing [20] and provides [24]

I1 = ω2
2B(A−B) − ω2

3C(C −A),

I2 = ω2
3C(B − C) − ω2

1A(A−B),

I3 = ω2
1A(C −A) − ω2

2B(B − C) (15)

as three conserved quantities, which are obviously not independent and can be constructed
from the two independent integrals, E and L2, by the respective elimination of ω1, ω2

and ω3 from them.
We note that ωi is absent from the right hand side of ω̇i in (13) and so one solution

of (5) for Jacobi’s last multiplier is a constant. The condition that Γn (12) be a third
symmetry of the Euler–Poinsot system (13) is

∆ = Det




1 W1 W2 W3

1 0 0 0
−t ω1 ω2 ω3

V G1 G2 G3


 = a, (16)

where a is the constant to which we may assign some convenient value. We obtain

Aω1I1G1 + Bω2I2G2 + Cω3I3G3 = aABC. (17)

We take

G1 =
aBC

ω1I1
, G2 = 0, G3 = 0 et cyc (18)

and set a = I1/BC et cyc to obtain the three sets of coefficient functions for the dependent
variables(

1
ω1

, 0, 0
)

;
(

0,
1
ω2

, 0
)

;
(

0, 0,
1
ω3

)
. (19)

We note that the sets in (19) provide a basis and that other combinations could be taken.
We keep the forms (19) simply for their present simplicity and find their subsequent utility.

It remains to determine V . Consider the first set in (19). The corresponding symmetry
is written as

Γ3 = V3∂t +
1
ω1

∂ω1 , (20)

Γ[1]
3 = Γ3 − ω̇1

(
1
ω2

1

+ V̇3

)
∂ω̇1 − ω̇2V̇3∂ω̇2 − ω̇3V̇3∂ω̇3 (21)
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and the action of Γ[1]
3 on the Euler–Poinsot system, (13), is

−ω̇1

(
1
ω2

1

+ V̇3

)
= 0,

ω̇2

ω2
1

=
C −A

B

ω3

ω1
,

ω̇3

ω2
1

=
A−B

C

ω2

ω1
(22)

in which (22b,c) are consistent with (13) and (22a) gives

V3 = −
∫

dt
ω2

1

. (23)

A similar calculation applies to second and third of (19).
We obtain the three nonlocal symmetries

Γ3 = −
(∫

dt
ω2

1

)
∂t +

1
ω1

∂ω1 ,

Γ4 = −
(∫

dt
ω2

2

)
∂t +

1
ω2

∂ω2 ,

Γ5 = −
(∫

dt
ω2

3

)
∂t +

1
ω3

∂ω3 (24)

for the Euler–Poinsot system (13).
Since the system (13) is of the first order and autonomous, it is in a suitable form for

reduction of order. We set y = ω3 as the new independent variable. This is an arbitrary
choice. Equally ω1 or ω2 could be chosen as the independent variable. The results do not
differ. The reduced system is

dω1

dy
=

(B − C)C
A(A−B)

y

ω1
,

dω2

dy
=

(C −A)C
B(A−B)

y

ω2
(25)

and inherits the symmetries

Γ̃2 = ω1∂ω1 + ω2∂ω2 + y∂y,

Γ̃3 =
1
ω1

∂ω1 , Γ̃4 =
1
ω2

∂ω2 , Γ̃5 =
1
y
∂y (26)

with the Lie Brackets[
Γ̃2, Γ̃3

]
= −2Γ̃3,

[
Γ̃3, Γ̃4

]
= 0,

[
Γ̃4, Γ̃5

]
= 0[

Γ̃2, Γ̃4

]
= −2Γ̃4,

[
Γ̃3, Γ̃5

]
= 0,[

Γ̃2, Γ̃5

]
= −2Γ̃5. (27)
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Consider a general two-dimensional system

dω1

dy
= f1(ω1, ω2, y),

dω2

dy
= f2(ω1, ω2, y), (28)

of which the system (25) is a specific instance. We determine which of the four symmetries
Γ̃2, . . . , Γ̃5 are necessary to specify (25) given (28). (This does beg the question of the
appropriateness of these four symmetries, but this will eventually become apparent.)

The actions of

Γ̃[1]
2 = ω1∂ω1 + ω2∂ω2 + y∂y,

Γ̃[1]
3 =

1
ω1

∂ω1 −
ω′

1

ω2
1

∂ω′
1
,

Γ̃[1]
4 =

1
ω2

∂ω2 −
ω′

2

ω2
2

∂ω′
2

(29)

on (28 a) give

0 = y
∂f1

∂y
+ ω1

∂f1

∂ω1
+ ω2

∂f1

∂ω2
,

− f1

ω2
1

=
1
ω1

∂f1

∂ω1
,

0 =
1
ω2

∂f1

∂ω2
(30)

from which it is evident that

f1(ω1, ω2, y) = K
y

ω1
(31)

and hence (25a) is recovered.
The same symmetries acting on (28b) lead to (25b) and so the three symmetries, Γ̃2,

Γ̃3 and Γ̃4 are a representation of the complete symmetry group of the system (25). By
means of a similar calculation we see that the triplets of Γ̃2, Γ̃3 and Γ̃5 and of Γ̃2, Γ̃4

and Γ̃5 are also representations of the complete symmetry group of (25).
The listing of Lie Brackets in (27) shows that the Lie algebra in each of the three cases

is A1⊕s2A1 or D⊕sT2, a representation of the pseudo-Euclidean group E(1, 1) of dilations
and translations in the plane.

This is not be end of the story. Consider about the actions of Γ̃[1]
3 , Γ̃[1]

4 and Γ̃[1]
5 on (28a).

We obtain three constraints on f1, videlicet

− f1

ω2
1

=
1
ω1

∂f1

∂ω1
,

0 =
1
ω2

∂f1

∂ω2
,

f1

y2
=

1
y

∂f1

∂y
(32)



Jacobi’s Last Multiplier 117

when (28a) is taken into account. It is obvious that (25a) is recovered. Similarly (28b)
reduces to (25b).

Consequently the three symmetries Γ̃3, Γ̃4 and Γ̃5 provide a representation of the com-
plete symmetry group of (25). In this case the algebra of the symmetries is the abelian
3A1

2 and not the A1 ⊕s 2A1 of the previous algebras.
The system (25) is not the system (13) and one cannot expect that the complete sym-

metry group of (13) would be that of (25) although from the point of view of differential
equations both are equally described in terms of a three-dimensional phase space. We
consider the two triplets, videlicet Γ3, Γ4 and Γ5 and Γ2, Γ3 and Γ4 (equivalently Γ2, Γ3

and Γ5 and Γ2, Γ4 and Γ5 as we saw above) and their respective actions on the general
system.

ω̇1 = f1(t, ω1, ω2, ω3),
ω̇2 = f2(t, ω1, ω2, ω3),
ω̇3 = f3(t, ω1, ω2, ω3) (33)

to which class the Euler–Poinsot system (13) belongs.
The actions of the first extensions of Γ3, Γ4 and Γ5, videlicet

Γ[1]
3 =

(
−

∫
dt
ω2

1

)
∂t +

1
ω1

∂ω1 +
ω̇2

ω2
1

∂ω̇2 +
ω̇3

ω2
1

∂ω̇3 ,

Γ[1]
4 =

(
−

∫
dt
ω2

2

)
∂t +

1
ω2

∂ω2 +
ω̇1

ω2
2

∂ω̇1 +
ω̇3

ω2
2

∂ω̇3 ,

Γ[1]
5 =

(
−

∫
dt
ω2

3

)
∂t +

1
ω3

∂ω3 +
ω̇1

ω2
3

∂ω̇1 +
ω̇2

ω2
3

∂ω̇2 , (34)

on (33a) are

0 = −T1
∂f1

∂t
+

1
ω1

∂f1

∂ω1
,

f1

ω2
2

= −T2
∂f1

∂t
+

1
ω2

∂f1

∂ω2
,

f1

ω2
3

= −T3
∂f1

∂t
+

1
ω3

∂f1

∂ω3
(35)

in which we have written Ti =
∫

dt/ω2
i . The system (35) does not contain sufficient infor-

mation to reduce (33a) to the first of system (13). The same applies for (33b) and (33c).
The abelian group 3A1 represented by Γ3, Γ4 and Γ5 is not the complete symmetry group
of (13).

The first extensions of Γ2 is

Γ[1]
2 = −t∂t + ω1∂ω1 + ω2∂ω2 + ω3∂ω3 + 2ω̇1∂ω̇1 + 2ω̇2∂ω̇3 . (36)

2At first glance the existence of 3A1 for a second order system may seem to be at odds with the general
result that a second order ordinary differential equation — a second order system — cannot admit 3A1.
However, (25) cannot be written as a scalar second order ordinary differential equation. This emphasises
the general point that a higher-order scalar equation may be reduced to a system of first order ordinary
differential equations, but the reverse process is not always possible.
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The actions of this, Γ[1]
3 and Γ[1]

4 on (33a) are

2f1 = −t
∂f1

∂t
+ ω1

∂f1

∂ω1
+ ω2

∂f1

∂ω2
+ ω3

∂f1

∂ω3
,

0 = −T1
∂f1

∂t
+

1
ω1

∂f1

∂ω1
,

f1

ω2
2

= −T2
∂f1

∂t
+

1
ω2

∂f1

∂ω2
. (37)

From the first of (37)

f1 = t−2F1(u, v, w), (38)

where u, v and w are the three characteristics independent of f1, videlicet tω1, tω2 and tω3.
The substitution of (38) into (37b) and (37c) gives, respectively,

1
u

∂F1

∂u
=

T1

t3

[
−2F1 + u

∂F1

∂u
+ v

∂F1

∂v
+ w

∂F1

∂w

]
,

1
v

∂F1

∂v
− F1

v2
=

T2

t3

[
−2F1 + u

∂F1

∂u
+ v

∂F1

∂v
+ w

∂F1

∂w

]
(39)

and now the situation is entirely different since the t dependence outside of the character-
istics is isolated in the coefficients of the terms within crochets in both (39a) and (39b).
Consequently we have the three terms separately zero, ie

1
u

∂F1

∂u
= 0,

1
v

∂F1

∂v
− F1

v2
= 0,

u
∂F1

∂u
+ v

∂F1

∂v
+ w

∂F1

∂w
= 2F1. (40)

We recover (13a). Like calculations recover (13b) and (13c).
The complete symmetry group of the Euler–Poinsot system, (13), is E(1, 1) (⇔ D⊗sT2).

There are three equivalent representations.

4 Discussion

In this paper we have brought together several disparate ideas to arrive at something
of a question mark. The symmetry-based version of Jacobi’s last multiplier has been
turned on its head, as it were, to provide a means to calculate nonlocal symmetries, in
this instance, for the Euler–Poinsot system given the last multiplier. With these nonlocal
symmetries we can identify the set of symmetries which specify completely the Euler–
Poinsot system from all possible classes of systems of three first order equations. The
number of symmetries required for this specification is three.

This is surprising in terms of general expectations. The general first order equation for
a system with one independent and n dependent variables is

ω̇i = fi(t, ω1, . . . , ωn). (41)
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With the application of each symmetry the number of variables in fi is reduced by
one so that, after the application of n symmetries, there remains a general function of
one characteristic. The application of a further symmetry specifies that general function.
Thus we would expect that the complete symmetry group would have a representation in
terms of an algebra of n + 1 elements. In fact one would regard an algebra of fewer than
n + 1 elements as being quite unusual since it would imply an unexpected degree of con-
nectedness amongst the coefficient functions of the different variables in the symmetries.
(Such an example is found most dramatically in the case of the Kepler Problem [26].)

It is already known [1] that a given system may possess more than one representation
of its complete symmetry group. Indeed this is quite standard for any equation of the
second order possessing eight symmetries.

In the case of the Euler–Poinsot system we have found a rather intriguing result. In
the reduced two-dimensional system, (25), we found that they were two inequivalent rep-
resentations of the complete symmetry group, videlicet A1 ⊕s 2A1 and 3A1. This lack of
uniqueness does not persist when one returns to the three-dimensional system, properly
known as the Euler–Poinsot system, for then at the latter symmetry group, videlicet 3A1,
falls away as a representation of the complete symmetry group. We do find that in con-
junction with Γ1 the three symmetries of 3A1 do specify (13), but the four-dimensional
algebra is not a candidate as a representation of the complete symmetry group since its
dimensionality is not minimal.

It would be interesting to find other examples of systems exhibiting similar properties3.
Certainly the present result does place something of a question mark against the interpre-
tation of the concept of a complete symmetry group as being the group of the symmetries
which completely specify the equation although it does this without detracting from the
inherent interest of the concept of a complete symmetry group. In fact one must seriously
consider the identification of the characteristic system for a given problem, in this case
whether it is the three-dimensional system (13), which is the standard Euler–Poinsot sys-
tem, or the reduced two-dimensional system (25). Curiously enough a similar question has
arisen in the case of the Painlevé Property for systems of first-order ordinary differential
equations [17].
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Dr MC Nucci for their kind hospitality while this work was undertaken and the National
Research Foundation of South Africa and the University of Natal for their continuing
support.

3For a recent instance of which see the paper by Andriopoulos et al [2] in the present volume.
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and Lie–Bäcklund Symmetries of Differential Equations, Preprint, GT Math:
0620902-051, Department of Mathematics, Georgia Institute of Technology, Atlanta,
Georgia, USA, 1990.

[22] Nucci M C, Interactive REDUCE Programs for Calculating Lie Point, Nonclassical,
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mécanique, J. École Poly 15 (1809), 266–344.


