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Abstract 
In this paper we analyse insurance data using 
Artificial Neural Networks (ANN)[1]. In particular, 
we use ANN for the problem of Loss Reserving.  

Loss reserving is the practice of estimating the 
future payments for the claims which have occurred on 
an insurance portfolio. A difficulty in forecasting 
future payments is that the time series of payments 
often depends on influences that are not observable in 
the historical data.  

For example, claims cost inflation may depend on 
future events such as legislative change and changes in 
judicial attitudes. Because of this, it is often necessary 
to supplement ANNs with separate forecasts which 
account for the expected changes in the future claims 
environment. 
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1. Introduction 
Certain classes of insurance involve substantial delay 
between occurrence of the event generating a claim 
and its settlement.  During this interval, there may be 
considerable uncertainty as to the amount of the final 
settlement. 

Loss reserving is the practice of estimating the 
future payments on the claims which have occurred on 
an insurance portfolio. The future payments that will 
be made on these claims are a liability to the insurer 
and most insurers are required by statute to estimate 
the size of these liabilities for inclusion in their 
financial statements. 

Typically, the claims experience of an insurance 
portfolio has many features that result from events 
such as changes in claim management procedures, 
changes in legislation, seasonality and changes in the 
rates of claim cost inflation. We have found that ANN 
are useful modeling these features of an insurer’s 
historical claims experience. 

However, a difficulty in using ANN to forecast 
future claims experience results from the fact that the 
forecasts often depend on influences that are not 

observable in the historical data. For example, future 
claims cost inflation may depend on future events such 
as legislative change and changes in judicial attitudes.  
Hence any influences not directly observable in the 
historical data need to be separately forecast to 
produce loss reserve estimates. 

We have addressed this difficulty by 
supplementing our ANN with separate forecasts which 
accounted for the expected changes in the future 
claims environment. 

In the following paper, the use of ANN for loss 
reserving is illustrated using data from a motor bodily 
injury portfolio. We also compare the results to those 
obtained using Generalized Linear Modelling (GLM) 
– a technique more often used for loss reserving than 
ANN. 

2. Methodology 
The insurance data we analyse relates to Motor Bodily 
Injury (CTP) insurance in one state of Australia. The 
payments for Motor Bodily Injury are usually 
dominated by a single lump sum near the date of claim 
finalisation. Hence a common approach to such 
payment types is to: 
• Model the expected number of claim finalisations 

to be made at future dates; and 
• Model the expected size of finalised claims at 

each future finalisation date. 
In the following paper we restrict our attention to 

the model of expected claim sizes, however the 
general conclusions apply equally to the model of 
claim finalisations. 

2.1. Data 
The data set consists of a claim file with 
approximately 60,000 claims for a 9 year period up to 
30 September 2003. For each claim various items are 
recorded, including the date of injury, date of 
notification, and histories of paid losses, case 
estimates and finalised/unfinalised status including 
dates of change of status. 



For this analysis, all paid loss amounts have been 
converted to 30 September 2003 values in accordance 
with past wage inflation in the state concerned.  

2.2. Regression Models 
We fitted both an ANN and a GLM to the data. For 
both models we were interested in modelling the size 
of the rth finalised claim, Yr in terms of: 
• ir = accident quarter = 1, 2, 3, …, 37 
• jr = development quarter = 0,1, 2, …, 36 
• kr = calendar quarter of finalisation = ir + jr 
• tr = operational time = proportion of claims 

incurred in accident quarter ir which have been 
finalised at the mid-point of development quarter 
jr 

• sr = season of finalisation = March, June, 
September, and December 
Hence both the GLM and the ANN have the 

general regression function: 
 

Yr = f(ir, jr, kr, tr, sr)              [Eqn 1] 
 

Note that calendar quarter is just the sum of 
accident quarter and development quarter. The 
dependency between these three predictors indicates 
that the model should be primarily based on 2 of these 
3. 

For both the ANN and GLM we found that a 
model based primarily on calendar quarter and 
development quarter was preferred. However in both 
cases an accident quarter binary variable was included 
to model the effect of a legislative change that came 
into effect in September 2000. 

2.3. Sofware 
All analysis was performed using the software “R” 
[2]. The algorithm package nnet was used for the 
neural network algorithm and the glm function was 
used for the GLM model. A random subset of 70% of 
the data was assigned to be the training data set, while 
the remaining 30% formed the test data set. 

The tuning parameters were determined using 
cross-validation and the final neural network consisted 
of a single hidden layer with 20 units and a weight 
decay of 0.05. 

3. Results  

3.1. GLM 
The procedures that were used to build the GLM 
model have been described previously [3] and here we 

restrict ourselves to the main features of the model. 
The GLM equation was: 

 
   [Eqn 2] 

with the response assumed to follow an exponential 
dispersion family distribution with a variance power 
of 2.3 (Taylor and McGuire, 2004). A plot of the log 
of the regression function (the linear predictor) is 
shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Plot of the linear predictor of the GLM 
model. To smooth this plot I have assumed used the 
same rates of finalisation across each accident quarter, 
and I have ignored the effect of seasonality. 
 

Eqn 2 and Fig. 1 illustrate the features that are 
present in the finalised claim data. There are 5 main 
features: 
• Operational time effect: Because of changes in 

the rate of claims finalisation, the regression 
function includes an operational time effect rather 
than a development quarter effect. This effect 
shows that the average size of finalised claims 
increases with operational time. 

• Seasonal effect: Claims finalised in the March 
quarter tend to be slightly lower than in other 
quarters. 

• Finalisation quarter effect: This represents 
superimposed inflation. Because the historical 
payment data was adjusted to constant dollar 
values using a historical inflation index, any 
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 + βd
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additional inflation is termed superimposed 
inflation.  The model indicates that there is a 
change in the rate of superimposed inflation 
before 1997 and at the end of the September 2000 
quarter. 

• Operational time and finalisation quarter 
interaction: This brings out the feature that 
smaller and larger finalised claims are subject to 
different rates of superimposed inflation. 

• Operational time and accident quarter interaction: 
This feature resulted from legislative changes that 
came into effect in September 2000. This 
legislation placed limitations on the payment of 
plaintiff costs and effectively eliminated a certain 
proportion of smaller claims in the system in all 
subsequent accident quarters. 

3.2. ANN  
A plot of the log of the claim size for the ANN model 
is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Plot of log(size) for the ANN model. Smoothing as 
for Fig. 1. 

  
The predictive accuracy of the ANN on the test data set 
compared favourably to the GLM for two different measures 
(Table 1). 
 
Table 1 Test errors for the ANN and GLM models 

 
Model Average Sum 

of squares 
Average 

Absolute Error 
GLM $99,9652 $33,777 
ANN $99,8432 $33,559 
 
In addition, a variety of 1 dimensional residual plots showed 
that there appeared to be no systematic bias in the model fits 

across the predictors. The quality of the residual plots was 
similar between the ANN and the GLM model. 

3.3. Projection of future claim size 
In Figs. 1 and 2 claim sizes have been projected into 
future quarters, that is quarters beyond the last 
historical data date of 30 Sep 2003. This is represented 
by the upper right hand triangles of these plots. In 
other words, the diagonal line joining the front corner 
(accident quarter = 37, development quarter = 0) to the 
back corner (accident quarter = 1, development quarter 
= 36) represents the latest quarter of finalisation in the 
historical data. Every point to the right of this line 
represents a future data point. 

A particular concern with this data set when 
projecting future claim sizes is the assumed level of 
future superimposed inflation. Sources of 
superimposed inflation in a motor bodily injury 
portfolio such as the one under study include 
legislative changes and increasing generosity in court 
awards. Hence future projections of superimposed 
inflation should give consideration to the expected 
claims environment in the future - they will not 
usually be a simple extrapolation of past trends.  

The past and future superimposed inflation that is 
predicted by the ANN and GLM models respectively 
(using simple extrapolation) are shown in Figs. 3 and 
4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Historical and projected superimposed inflation 
for the ANN model as a function of finalisation quarter 
and development quarter. Future superimposed inflation is 
from finalisation quarter 38. Development quarter was: red 
line, 10; green line, 20; yellow line, 30; blue line, 35. An 
Operational time appropriate for the development quarter 
was also chosen. All other predictors were constant. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Historical and projected superimposed inflation 
for GLM model. Future superimposed inflation is from 
finalisation quarter 38. Development quarter was: red line, 
10; green line, 20; yellow line, 30; blue line, 35. Operational 
time appropriate for the development quarter was also 
chosen. All other predictors were constant.  

 
Of interest is the significant difference in the 

estimated superimposed inflation. This results from 
the different architectures of the two models. In 
particular, while our ANN model included both 
development quarter and operational time as 
predictors, the GLM model only included operational 
time. If development quarter was excluded from the 
ANN model, the ANN model predicted negative 
superimposed inflation values at early quarters of 
finalisation also. 

As discussed above it is often not appropriate to 
simply extrapolate past trends in superimposed 
inflation and it is usually necessary to make a separate 
forecast of the expected future values. We do not have 
sufficient space to discuss the considerations that are 
required when choosing future superimposed 
forecasts. We simply note that we have assumed that 
future superimposed inflation will be 0% in all future 
years and we have then forecast future claim sizes by 
supplementing our ANN with this assumption. Note 
that while a very simple model of future superimposed 
inflation has been chosen, the forecast could have 
easily taken a more complex form. The model of 
projected claim sizes made using the 0% future 
superimposed inflation forecast is illustrated in  Fig. 5. 

 If the projections of the size of finalised claims are 
combined with projections of the number of finalised 
claims it is possible to estimate the total amount of 
future payments – the loss reserve. If we use simple 
extrapolation to project the model of finalised claims, 
it is found that the GLM produces a loss reserve 11% 
higher than the ANN. This is not surprising given the 
projected levels of superimposed inflation (Figs. 3 and 
4).  However, using the 0% future superimposed 

inflation assumption for both the ANN and GLM 
models yields loss reserves that agree to within 0.1%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Plot of ANN model of finalised claim size. 

4. Discussion 
The main points from the loss reserving exercise were: 
• ANN were effective in modelling the complex 

features of the historical insurance data. 
• The ANN model resulted in better predictive 

accuracy on the test data set compared to the GLM 
model. 

•  It took significantly less time to fit the ANN 
compared to the GLM model. The ANN algorithm 
was largely automated while fitting the GLM 
required significant input from the model builder. 

• The functional form of the ANN was more 
complicated than the GLM having 181 parameters 
compared to the GLM’s 13. It was necessary to use 
graphical techniques to understand the behaviour 
of the ANN. 

• A difficulty in forecasting future payments is that 
the time series of payments often depends on 
influences that are not observable in the historical 
data. This was illustrated by superimposed 
inflation for which it was necessary to supplement 
the ANN with a separate forecast of future 
superimposed inflation. 

• Further assessment of the ANN and GLM models 
is being undertaken. 
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