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Abstract

Realizations of four dimensional Lie algebras as vector fields in the plane are expli-
citly constructed. Fourth order ordinary differential equations which admit such Lie
symmetry algebras are derived. The route to their integration is described.

1 Introduction

In the second half of the XIX century, Marius Sophus Lie (1842–1899), the great Norwegian
mathematician, studied a class of special algebras, which he called continuous groups of
transformations. In the Preface to his book [3], Luigi Bianchi (1856–1928), an Italian
mathematician, who was a contemporary of Lie, wrote an eulogy about the colleague’s
work:

Movendo da concetti geometrici, associati allo studio dei problemi d’integ-
razione, Egli riconobbe l’importanza fondamentale, per la geometria e per
l’analisi, della considerazione di questi gruppi continui, e concep̀ı ed attuò
l’ardito disegno di costruirne la teoria generale che doveva estendere al
campo continuo la teoria dei gruppi di sostituzioni e quivi compiere, per le
teorie d’integrazione nell’analisi, un’opera di classificazione analoga a quella
della teoria di GALOIS nello studio delle irrazionalità algebriche.
E per opera di S. LIE la teoria dei gruppi continui, per quanto riguarda
i gruppi finiti (che dipendono cioè da un numero finito di parametri), venne
completamente costituita, arricchendo la scienza matematica di una delle
più importanti conquiste del secolo scorso.1

Copyright c© 2002 by T Cerquetelli, N Ciccoli and M C Nucci

1He moved from geometric concepts that are associated with the study of problems of integration in
order to recognize the fundamental importance of considering those continuous groups in geometry and
analysis, and to conceive and realize the daring plan of constructing their general theory which was going
to extend the theory of substitution groups to the continuous field, and thus complete for the theories of
integration in analysis a classification work similar to that of GALOIS’ theory in the study of algebraic
irrationalities. Thanks to S LIE the theory of continuous groups, for what concerns the finite groups
(those which depend by a finite number of parameters), was completely constituted; that enriched the
mathematical science of one of the most important achievements of the last century.
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Upon Lie’s death Bianchi wrote an obituary [2] in which he describes Lie’s work. In
particular, he said:

Il LIE determinò inoltre tutti i possibili tipi di gruppi finiti continui sopra
una, due o tre variabili o, se si vuole, sulla retta, nel piano o nello spazio
(in quest’ultimo caso soltanto, in modo completo, pei gruppi primitivi).2

Today the problem of determining all finite dimensional continuous groups is formulated
as the problem of determining all finite dimensional Lie algebras of vector fields up to
equivalence under diffeomorphisms [6]. A recent account on the problem of classifying
Lie algebras of vector fields can be found in [5]. There González-López et al. give the
classification of Lie algebras of differential operators in two real variables. Also they
state that “Lie, Campbell, Bianchi, etc., never really made it clear whether they were
working over the real or the complex numbers”. Let us render justice to Bianchi for he did
distinguish between complex and real space. In fact in [1] Bianchi gave the classification
of all the real algebras of vector fields in the real space. He based his work on Lie’s
classification, but stated that

Nella classificazione di LIE non vi è luogo a distinguere il reale dall’immagi-
nario, laddove noi vogliamo, in queste ricerche, riferirci soltanto a gruppi
reali ed ai loro sottogruppi reali: dovremo perciò suddividere in più tipi
qualche tipo, che dal punto di vista generale del LIE risulta unico.3

In particular, he introduced the Type IX three-dimensional Lie algebra which does not
contain any two-dimensional subalgebra:

Resta infine da considerare il caso in cui il gruppo G3 non è integrabile.
Per questi gruppi LIE assegna l’unico tipo
(Tipo VIII) (X1 X2) = X1f , (X1 X3) = 2X2f , (X2 X3) = X3f,

ma noi dovremo aggiungervi l’altro:
(Tipo IX) (X1 X2) = X3f , (X2 X3) = X1f , (X3 X1) = X2f,

il quale differisce dal precedente per ciò che in quest’ultimo non esiste alcun
sottogruppo reale a due parametri.4

In [1] Bianchi also proved the following

dimostriamo che un gruppo (transitivo) di movimenti con 6, con 5 ovvero
con 4 parametri contiene necessariamente qualche sottogruppo reale a 3
parametri.5

2Moreover LIE determined all the possible finite continuous groups on one, two, three variables or, as
one wishes, on the line, plane or space (in the latter case, only for primitive groups completely)

3In LIE’s classification there is no place for distinguishing the real from the imaginary; whereas in the
present research, we want to refer to real groups and their real subgroups only: therefore we shall have to
subdivide into more types certain types, which are unique from LIE’s general point of view.

4Finally it remains to consider the case in which group G3 is not integrable. For these groups LIE gives
a unique type (Type VIII) . . ., but we will have to add another one (Type IX) . . ., which differs from the
other because in the latter it does not exist any real subgroup with two parameters.

5we show that a (transitive) group of motions with either 6, 5 or 4 parameters necessarily contains some
real subgroups with 3 parameters.
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In this paper we use this result to construct a (possible) realization in the plane of
four-dimensional Lie algebras by considering one of their subalgebras which were listed by
Patera and Winternitz in [11]. In particular we take into consideration the realizations
of three-dimensional Lie algebras in the plane derived by Mahomed in [9]. Moreover we
determine fourth order ordinary differential equations admitting those realizations as their
Lie symmetry algebra. Finally we show the route to integration.

2 Four-dimensional Lie algebras of vector fields

Let g be a real Lie algebra. A realization of g as vector fields in the plane is an injective
Lie algebra morphism T : g → X(R2). It is common to identify the realization T with its
image. Let us remark that for any given realization of a Lie algebra one has a naturally
defined effective local Lie action on R

2.
To achieve the general goal of realizing finite dimensional Lie algebras one can, in

principle, proceed by induction on the dimension of g. Having classified realizations up
to dimension (n − 1) one can consider in every n-dimensional Lie algebra a maximal Lie
subalgebra together with one of its realizations (there can be more than one in general)
and try to extend it to a realization of the whole algebra. This means imposing the
commutators on a generic vector field which translates into a system of linear partial
differential equations. The explicit solutions of such system, if any, provide realizations
of the algebra. However, such a programme encounters two major difficulties: neither the
classification of n-dimensional Lie algebras nor the classification of maximal subalgebras
of a given Lie algebra are known.
In what follows we restrict to the case of four-dimensional Lie algebras, a situation

in which both classifications are well known and explicit. We rely upon [11] from which
we have borrowed notations as well: Ap,q denotes a Lie algebra of dimension p and iso-
morphism type q. The classification results are recollected in Table 1. Realizations of
three-dimensional Lie algebras, which are our building brick, can be found in [9].
If we try to find a realization of a four-dimensional algebra, then we need to consider

a realization of one of its three-dimensional subalgebras. Thus we have to determine only
the remaining operator

ej = aj(x, y)
∂

∂x
+ bj(x, y)

∂

∂y
(j = 1, . . . , q ≤ 4) (1)

with aj and bj arbitrary functions of (x, y). Imposing the commutation relations which
characterize the four-dimensional algebra generates an overdetermined linear system of
partial differential equations in the two unknowns aj and bj . The solution of this system
may lead to a realization of the algebra. We give an example.

Algebra A4,12. Consider the three-dimensional subalgebra, AII
3,3: (e3; e1, e2), which

has the following realization [9]

e1 =
∂

∂y
, e2 = x

∂

∂y
, e3 = y

∂

∂y
. (2)
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Let e4 be an operator of type (1). If we require that the operators (2) and (1) satisfy
the commutation relations of A4,12 (see Table 1), then we obtain

e1 =
∂

∂y
, e2 = x

∂

∂y
, e3 = y

∂

∂y
, e4 = − (

1 + x2
) ∂

∂x
− xy

∂

∂y
. (3)

This procedure can be repeated in each case and all the results are listed in Table 2. Due
to the complexity of such systems the computations were carried out using REDUCE 3.7,
a computer algebra software. However, the algebras of type A2⊕2A1, A3,1⊕A1, A3,3⊕A1,
A3,9 ⊕ A1, A1

4,2, Aa,a
4,5 , Aa,1

4,5, A4,10, Aa
4,11 yield incompatible systems. Thus we infer that

they cannot be realized in the plane.

3 Fourth order equations admitting
a four-dimensional Lie symmetry algebra

Having a realization of a four-dimensional real Lie algebra we can construct a fourth order
ordinary differential equation (ODE) which admits such an algebra as its Lie symmetry
algebra by finding the differential invariants of the Lie algebra up to fourth order. We
consider the most general form of a fourth order ODE

Φ
(
x, y, y′, y′′, y′′′, yiv

)
= 0. (4)

We prolong the operators as given in Table 2 up to the fourth order. Then the solution of
the system

e4
i (Φ)

∣∣
Φ=0

= 0 (i = 1, 2, 3, 4) (5)

yields the differential invariants and, obviously, the corresponding fourth order ODE. We
use ad hoc interactive REDUCE programs developed by one of the authors [10] to perform
this lengthy task. All the equations we have found are listed in Table 3. We show a detailed
example.

Algebra A4,12. Consider the realization (3). The prolongations of those operators up
to fourth order yield

e4
1 =

∂

∂y
,

e4
2 = x

∂

∂y
+

∂

∂y′
,

e4
3 = y

∂

∂y
+ y′

∂

∂y′
+ y′′

∂

∂y′′
+ y′′′

∂

∂y′′′
+ yiv ∂

∂yiv
,

e4
4 = − (

1 + x2
) ∂

∂x
− xy

∂

∂y
+ (xy′ − y)

∂

∂y′
+ 3xy′′

∂

∂y′′
+ (3y′′ + 5xy′′′)

∂

∂y′′′

+
(
7xyiv + 8y′′′

) ∂

∂yiv
. (6)

Now we solve the corresponding system (5). The first and second equations imply that (4)
does not depend on y, y′, i.e.

Φ
(
x, y′′, y′′′, yiv

)
= 0. (7)
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In order to integrate the third equation, we must solve the following equations for the
characteristics:

dy′′

y′′
=
dy′′′

y′′′
=
dyiv

yiv
. (8)

We obtain the following differential invariants:

I1 =
y′′′

y′′
, I2 =

yiv

y′′
(9)

which force equation (7) to become

Φ(x, I1, I2) = 0. (10)

Finally, after the substitution of the invariants (9), the fourth equation is integrated by
solving the following characteristic equations:

dx
−(1 + x2)

=
dI1

3 + 2xI1
=

dI2

4xI2 + 8I1
(11)

which yield the following differential invariants:

J1 =
y′′′

(
1 + x2

)
+ 3xy′′

y′′
,

J2 =

(
1 + x2

) [(
1 + x2

)
yiv + 8xy′′′

]
+ 12x2y′′

y′′
. (12)

Then equation (10) becomes

Φ(J1, J2) = 0, (13)

videlicet, by Dini’s theorem:

yiv =
y′′F (J1)− 8xy′′′

(
1 + x2

) − 12x2y′′

(1 + x2)2
, (14)

with F an arbitrary function of J1. Equation (14) admits A4,12 as its Lie symmetry
algebra.

4 Integration of fourth order equations by Lie’s method

Lie showed that an ordinary differential equation of order n with a known n-dimensional
Lie symmetry algebra can be integrated by quadratures provided that its symmetry algebra
is solvable [8]. The general integrating procedure consists of n successive integrations and
leads to quite lengthy calculations. Among the equations in Table 3 only A3,8 ⊕A1 is not
solvable. In [7] the integrating procedure was provided for any third order ODE which
admits either a solvable or not solvable three-dimensional Lie symmetry algebra g3. If g3

is solvable, then we can reduce the given third order equation to a first order ODE which is
integrable by quadrature and then obtain a second order ODE which can be transformed
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into a directly integrable form (Lie’s method). If g3 is not solvable, then we can still reduce
the given third order equation to a first order equation; this equation is not integrable by
quadrature, but can be easily reduced to a Riccati equation6 by using a nonlocal symmetry
which comes from one of the symmetries of the original third order ODE.
Here we follow a similar procedure. Consider a fourth order ODE which admits a four-

dimensional solvable Lie algebra g4. Firstly we reduce it to a first order ODE by using
the differential invariants of an ideal h3 ⊂ g4. Then the first order equation can be
integrated by quadrature because it admits the one-dimensional Lie algebra g4/h3. Its
general solution becomes a third order ODE in the original variables. This equation
admits h3. Therefore it can be integrated with the procedure showed in [7]. If a fourth-
order ODE admits a Lie symmetry algebra g4 which is not solvable, then we can always
reduce it to a first order ODE by using the differential invariants of a three-dimensional
subalgebra g3. Finally the first order ODE can be integrated by using a nonlocal symmetry
which comes from the fourth symmetry. We show in details the case of a fourth order
equation which admits a solvable Lie symmetry algebra and that of the equation which
admits A3,8 ⊕ A1 as its Lie symmetry algebra.

Algebra A4,12. Consider the realization

e1 =
∂

∂y
, e2 = x

∂

∂y
, e3 = y

∂

∂y
, e4 = − (

1 + x2
) ∂

∂x
− xy

∂

∂y
(15)

and the fourth order ODE which admits A4,12 with generators (15) as its Lie symmetry
algebra

yiv =
y′′F (ξ)− 8xy′′′

(
1 + x2

) − 12x2y′′

(1 + x2)2
,

ξ =
y′′′

(
1 + x2

)
+ 3xy′′

y′′
. (16)

The commutation relations are:

[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1.

The algebra is solvable and the operators e1, e2, e3 generate a three-dimensional ideal
h3 = 〈e1, e2, e3〉. A basis of its differential invariants of order ≤ 3 is:

u = x, v =
y′′′

y′′
(17)

Then equation (16) can be reduced to the first order ODE

dv
du

=
F (ξ̃)− 8uv

(
1 + u2

) − 12u2 − v2
(
1 + u2

)2

(1 + u2)2
,

ξ̃ = 3u+ v
(
1 + u2

)
(18)

which admits the one-dimensional Lie symmetry algebra generated by

e4 = − (
1 + u2

) ∂

∂u
+ (3 + 2uv)

∂

∂v
.

6In [4] a theoretical explanation of the appearance of a Riccati equation was given.
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We write equation (18) as a linear differential form
(
F (ξ̃)− 8uv

(
1 + u2

) − 12u2 − v2
(
1 + u2

)2
)
du − (

1 + u2
)2 dv = 0. (19)

Its integrating factor is [8]

I = − 1

(1 + u2)
(
F (ξ̃)− 9u2 + 3− v (1 + u2) (6u+ 1 + u2)

) .

Therefore the general integral of equation (19) is obtained in the form U(u, v) = c1 by the
solution of

∂U

∂u
= − F (ξ̃)− 8uv

(
1 + u2

) − 12u2 − v2
(
1 + u2

)2

(1 + u2)
(
F (ξ̃)− 9u2 + 3− v (1 + u2) (6u+ 1 + u2)

) ,

∂U

∂v
= −

(
1 + u2

)
F (ξ̃)− 9u2 + 3− v (1 + u2) (6u+ 1 + u2)

. (20)

Substitution of the original variables into U yields a third order ODE of the form U
(
x, y′′′

y′′

)
= c1 which admits the Lie symmetry algebra generated by e1 = ∂y, e2 = x∂y, e3 = y∂y

and can be solved by quadrature [7].
Algebra A3,8 ⊕ A1. Consider the realization

e1 =
∂

∂y
, e2 = y

∂

∂y
, e3 = −y2 ∂

∂y
, e4 =

∂

∂x
(21)

and the fourth order equation which admits A3,8 ⊕ A1 with the generators (21) as its Lie
symmetry algebra7

yiv =
−3y′′3 + 4y′y′′y′′′ + y′3F (ξ)

y′2
,

ξ =
y′′′

y′
− 3y′′2

2y′2
. (22)

The commutation relations are:

[e1, e3] = −2e2, [e2, e3] = e3, [e1, e2] = e1.

The algebra is not solvable, but the operators e1, e2, e3 generate a three-dimensional
subalgebra g3 = 〈e1, e2, e3〉. A basis of its differential invariants of order ≤ 3 is:

u = x, v =
y′′′

y′
− 3
2

y′′2

y′2
. (23)

Then equation (22) can be reduced to the first order ODE

dv
du

= F (v) (24)
7Of course it is not a surprise that ξ corresponds to the Schwarzian derivative [7].
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which admits the one-dimensional Lie symmetry algebra generated by

e4 =
∂

∂u
.

Therefore (24) can be easily integrated by quadrature, i.e.
∫

dv
F (v)

= u+ c1

which in the original variables becomes a third order ODE which admits g3 as its Lie
symmetry algebra and can then be integrated [7].

5 Tables

In Table 1 we list the four-dimensional real Lie algebras as given in [11]. In the second
column the nonzero commutation relations are given. In the last column the suitable three
dimensional subalgebra that we have used either to generate a realization or to disprove
that a realization exists — algebras marked with (∗) — are specified.
In Table 2 we have put the realizations that we found, with f , f1, f2 arbitrary functions.

The generators of each algebra are orderly listed as e1, e2, e3, e4.
In Table 3 we list the fourth order ODEs which admit one of Lie algebras in Table 2

as Lie symmetry algebras. Note that F represents an arbitrary function and that we
have chosen a particular form — shown in the third column — for each of the arbitrary
functions listed in Table 2.
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Table 1

Lie algebra Nonzero commutation relations Subalgebra

4A1 3A1 : 〈e2, e3, e4〉
(∗) A2 ⊕ 2A1 [e1, e2] = e2 3A1 : 〈e2, e3, e4〉
2A2 [e1, e2] = e2, [e3, e4] = e4 A1 ⊕ A2 : 〈e1, e4, e2〉
(∗) A3,1 ⊕ A1 [e2, e3] = e1 3A1 : 〈e1, e2, e4〉
A3,2 ⊕ A1 [e1, e3] = e1, [e2, e3] = e1 + e2 3A1 : 〈e1, e2, e4〉
(∗) A3,3 ⊕ A1 [e1, e3] = e1, [e2, e3] = e2 3A1 : 〈e1, e2, e4〉
A3,4 ⊕ A1 [e1, e3] = e1, [e2, e3] = −e2 3A1 : 〈e1, e2, e4〉
Aa

3,5 ⊕ A1 [e1, e3] = e1, [e2, e3] = ae2 3A1 : 〈e1, e2, e4〉
(0 < |a| < 1)

A3,6 ⊕ A1 [e1, e3] = −e2, [e2, e3] = e1 3A1 : 〈e1, e2, e4〉
Aa

3,7 ⊕ A1 (a > 0) [e1, e3] = ae1 − e2, [e2, e3] = e1 + ae2 3A1 : 〈e1, e2, e4〉
A3,8 ⊕ A1 [e1, e3] = −2e2, [e2, e3] = e3, [e1, e2] = e1 A3,8 : 〈e1, e2, e3〉
(∗) A3,9 ⊕ A1 [e1, e3] = −e2, [e2, e3] = e1, [e1, e2] = e3 A3,9 : 〈e1, e2, e3〉
A4,1 [e2, e4] = e1, [e3, e4] = e2 3A1 : 〈e1, e2, e3〉
Aa

4,2 (a �= 0, 1) [e1, e4] = ae1, [e2, e4] = e2, [e3, e4] = e2 + e3 3A1 : 〈e1, e2, e3〉
(∗) A1

4,2 [e1, e4] = e1, [e2, e4] = e2, [e3, e4] = e2 + e3 3A1 : 〈e1, e2, e3〉
A4,3 [e1, e4] = e1, [e3, e4] = e2 3A1 : 〈e1, e2, e3〉
A4,4 [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3 3A1 : 〈e1, e2, e3〉
Aa,b

4,5 (ab �= 0) [e1, e4] = e1, [e2, e4] = ae2, [e3, e4] = be3 3A1 : 〈e1, e2, e3〉
(−1 ≤ a < b < 1)

(∗) Aa,a
4,5 [e1, e4] = e1, [e2, e4] = ae2, [e3, e4] = ae3 3A1 : 〈e1, e2, e3〉

(−1 ≤ a < 1, a �= 0)
(∗) Aa,1

4,5 [e1, e4] = e1, [e2, e4] = ae2, [e3, e4] = e3 3A1 : 〈e1, e2, e3〉
(−1 ≤ a < 1, a �= 0)
A1,1

4,5 [e1, e4] = e1, [e2, e4] = e2, [e3, e4] = e3 3A1 : 〈e1, e2, e3〉
Aa,b

4,6 (a �= 0, b ≥ 0) [e1, e4] = ae1, [e2, e4] = be2 − e3, [e3, e4] = e2 + be3 3A1 : 〈e1, e2, e3〉
A4,7 [e1, e4] = 2e1, [e2, e4] = e2, A

1/2
3,5 : 〈e1, e2, e4〉

[e3, e4] = e2 + e3, [e2, e3] = e1

A4,8 [e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3 A3,1 : 〈e1, e2, e3〉
Ab

4,9 (0 < |b| < 1) [e1, e4] = (1 + b)e1, [e2, e4] = e2, A3,1 : 〈e1, e2, e3〉
[e3, e4] = be3, [e2, e3] = e1

A1
4,9 [e1, e4] = 2e1, [e2, e4] = e2, A3,1 : 〈e1, e2, e3〉

[e3, e4] = e3, [e2, e3] = e1

A0
4,9 [e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2 A3,1 : 〈e1, e2, e3〉

(∗) A4,10 [e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2 A3,1 : 〈e1, e2, e3〉
(∗) Aa

4,11 (0 < a) [e1, e4] = 2ae1, [e2, e4] = ae2 − e3, A3,1 : 〈e1, e2, e3〉
[e3, e4] = e2 + ae3, [e2, e3] = e1

A4,12 [e1, e4] = −e2, [e2, e4] = e1, [e1, e3] = e1, A3,3 : 〈e1, e2, e3〉
[e2, e3] = e2
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Table 2

Lie algebra Generators

4A1 f1(x)∂y, ∂y, x∂y, f2(x)∂y

2A2 −x∂x, ∂x, −y∂y, ∂y

A3,2 ⊕ A1 ∂y, −x∂y, ∂x + (y + f(x))∂y, ex∂y

A3,4 ⊕ A1 ∂y, x2∂y, x∂x + (y + f(x))∂y, x∂y

Aa
3,5 ⊕ A1 (0 < |a| < 1) ∂y, x1−a∂y, x∂x + (y + f(x))∂y, x∂y

A3,6 ⊕ A1 ∂y,
(
x2 − 1)1/2

∂y,
−x

(
x2 − 1)1/2

∂x +
(
f(x)− y

(
x2 − 1)1/2

)
∂y, x∂y

Aa
3,7 ⊕ A1 (a > 0) ∂y, x∂y, −

(
1 + x2

)
∂x + ((a − x)y + f(x))∂y,(

1 + x2
)1/2

ea arctan(x)∂y

A3,8 ⊕ A1 ∂y, y∂y, −y2∂y, f(x)∂x

A4,1 ∂y, x∂y, (x2/2)∂y, −∂x + f(x)∂y

Aa
4,2 (a �= 0, 1) e(1−a)x∂y, −∂y, x∂y, ∂x + y∂y

A4,3 ∂y, x∂y, −x log(x)∂y, x∂x + (y + f(x))∂y

A4,4 ∂y, x∂y,
(
x2/2

)
∂y, −∂x + (y + f(x))∂y

Aa,b
4,5 (−1 ≤ a < b < 1, ab �= 0) ∂y, x1−a∂y, x1−b∂y, x∂x + (x+ y)∂y

A1,1
4,5 f(x)∂y, ∂y, x∂y, y∂y

Aa,b
4,6 (a �= 0, b ≥ 0)

(
1 + x2

)1/2
e(b−a) arctan(x)∂y, x∂y, ∂y,

(
1 + x2

)
∂x + (xy + by)∂y

A4,7 ∂y, x∂y, −∂x − x log(x)∂y, x∂x + 2y∂y

A4,8 ∂y, ∂x, x∂y, x∂x

Ab
4,9 (0 < |b| < 1) ∂y, ∂x, x∂y, x∂x + (1 + b)y∂y

A1
4,9 ∂y, ∂x, x∂y, x∂x + 2y∂y

A0
4,9 ∂y, ∂x, x∂y, x∂x + y∂y

A4,12 ∂y, x∂y, y∂y, −
(
1 + x2

)
∂x − xy∂y
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Table 3

Lie algebra Equation Functions

4A1 yiv = F (x) f1(x) = x2

f2(x) = x3

2A2 yiv =
y′′3

y′2 F

(
y′y′′′

y′′2

)

A3,2 ⊕ A1 yiv = (y′′′ − y′′)F ((y′′′ − y′′)e−x) + y′′ f(x) = 0

A3,4 ⊕ A1 yiv = x−3F
(
x2y′′′) f(x) = 0

Aa
3,5 ⊕ A1 yiv =

−(a+ 2)x2y′′′ + F (ξ)
x3

, f(x) = 0

(0 < |a| < 1) ξ = x2y′′′ + x(a+ 1)y′′

A3,6 ⊕ A1 yiv = −
(
8x4y′′′ + 12x3y′′ − 10x2y′′′ − 9xy′′ + 2y′′′)x2 − F (ξ)

(x2 − 1)2 x3
, f(x) = 0

ξ =
(
x2 − 1)1/2 (

x2y′′′ + 3xy′′ − y′′′) x2

Aa
3,7 ⊕ A1 yiv = −8x

3y′′′ + 12x2y′′ + 8xy′′′ + 3y′′ − a2y′′

(x2 + 1)2
f(x) = 0

(a > 0) + e− arctan(x)a
(
x2 + 1

)−7/2
F (ξ),

ξ = earctan(x)a
(
x2 + 1

)3/2 (
x2y′′′ + 3xy′′ + y′′′ + ay′′)

A3,8 ⊕ A1 yiv =
−3y′′3 + 4y′y′′y′′′ + y′3F (ξ)

y′2 , ξ =
y′′′

y′ − 3y′′2

2y′2 f(x) = 1

A4,1 yiv = F (y′′′ + 6x) f(x) = x3

Aa
4,2 (a �= 0, 1) yiv = (a − 1)2y′′ + exF (ξ), ξ =

(a − 1)y′′ + y′′′

ex

A4,3 yiv =
2xy′′ + F

(
xy′′ + x2y′′′)
x3

f(x) = 0

A4,4 yiv = y′′′F (y′′′ex) f(x) = 0

Aa,b
4,5 (ab �= 0) yiv =

−(2 + a)x2y′′′ − (1 + b)
(
x2y′′′ + (a+ 1)xy′′)+ F (ξ)
x3

,

(−1 ≤ a < b < 1) ξ = x2y′′′ + (1 + a)xy′′ + b(xy′′ + ay′ − a log(x))

A1,1
4,5 yiv = y′′′F (x) f(x) = x2

Aa,b
4,6 yiv =

(a − b)2y′′ − (
8x3y′′′ + 12x2y′′ + 8xy′′′ + 3y′′)

(x2 + 1)2

(a �= 0, b ≥ 0) + earctan(x)b
(
x2 + 1

)−7/2
F (ξ),

ξ =
(
x2 + 1

)3/2 (
(a − b)y′′ + x2y′′′ + 3xy′′ + y′′′) e− arctan(x)b

A4,7 yiv =
e2y′′ − 1

x2
F

(
(xy′′′ − 1)e−y′′)

A4,8 yiv = y′′2F
(

y′′′2

y′′3

)

Ab
4,9 (0 < |b| < 1) yiv = y′′( b−3

b−1 )F
(
y′′(2−b)y′′′(b−1)

)
A1

4,9 yiv = y′′′2F (y′′)

A0
4,9 yiv = y′′3F

(
y′′′

y′′2

)

A4,12 yiv =
y′′F (ξ)− 8xy′′′ (1 + x2

) − 12x2y′′

(1 + x2)2
, ξ =

y′′′ (1 + x2
)
+ 3xy′′

y′′
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