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Abstract

The classical generation theorem of conservation laws from known ones for a system
of differential equations which uses the action of a canonical Lie–Bäcklund generator
is extended to include any Lie–Bäcklund generator. Also, it is shown that the Lie
algebra of Lie–Bäcklund symmetries of a conserved vector of a system is a subalgebra
of the Lie–Bäcklund symmetries of the system. Moreover, we investigate a basis of
conservation laws for a system and show that a generated conservation law via the
action of a symmetry operator which satisfies a commutation rule is nontrivial if the
system is derivable from a variational principle. We obtain the conservation laws of
a class of nonlinear diffusion-convection and wave equations in (1+ 1)-dimensions. In
fact we find a basis of conservation laws for the diffusion equations in the special case
when it admits proper Lie–Bäcklund symmetries. Other examples are presented to
illustrate the theory.

1 Introduction

The nonlinear diffusion-convection equation

ut = (k(u)ux)x − (f(u))x, (1.1)

and the nonlinear wave equation

utt = g(x, ux)uxx + h(x, ux), (1.2)

have been of considerable interest in the literature.
The Lie point symmetry analysis of (1.1) was carried out in [18]. The work [3] presents

a more detailed treatment of (1.1). For f = 0, (1.1) was investigated in [19] for its point
symmetries and later the authors of [2] found that (1.1) admits nontrivial Lie–Bäcklund
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symmetries only in the case k(u) = a(u + b)−2, where a and b are constants, for which
linearization is possible (see [2] and refs. in [7, chap. 10]). Also for f = 0, the conservation
laws of (1.1) are given in [7, chap. 10].

The class of equations (1.2) was studied by various authors. Lie [14], the originator of
symmetry analysis, initiated the group classification of wave equations. In recent times
Ames et al [1] studied the group properties of vtt = (g(v)vx)x or (1.2) if one sets v = ux with
gx = 0 and h = 0. These studies gave impetus to later investigations. The preliminary or
partial group classification of (1.2) was performed in [9]. This resulted in 33 cases which
need further investigations from the group-theoretic standpoint.

The outline of the paper is as follows. In Section 2 we provide the theory dealing
with the action of Lie–Bäcklund symmetry generators on conservation laws to generate
conservation laws. In this section it is also proved that a symmetry of a conserved vector
is a symmetry of the system itself and this result is illustrated on an equation that arises
in the study of Maxwellian tails as well as on the angular momentum for a central force
problem. The results on the basis of conservation laws and symmetry action are also
included here. Section 3 deals with a complete basis of conservation laws via action of
symmetry generators on the fundamental conservation laws which we deduce for (1 + 1)
diffusion and wave equations. This includes the special equations in the class (1.1) which
admit nontrivial Lie–Bäcklund symmetries and hence an infinite number of conservation
laws with finite basis. Notwithstanding for the nonlinear wave equations we study the
class when h(x, ux) = 0, g = g(ux) and determine a basis of conservation laws.

2 Action of symmetries and related conservation laws

We utilise, amongst others, the following theoretical constructions which can simply be
stated as: action of any Lie–Bäcklund symmetry generator on a conservation law yields
a conservation law; symmetry of a conserved vector is a symmetry of the system and the
notion of a basis of conservation laws of an equation.

The generation of conservation laws from known ones of a system of differential equa-
tions using symmetry properties of the system has been investigated over many years. In
the case of ordinary differential equations, this result is well-known as the related integral
theorem and has found widespread applications, for example, in classical mechanics (see,
e.g., [20] and refs. therein). For a system of partial differential equations, a similar result
has been established for canonical Lie–Bäcklund symmetries (see, e.g., [6, 17, 21]). We
extend this result to include any Lie–Bäcklund symmetry. This extension has advantages.
Firstly one does not have to convert to a canonical Lie–Bäcklund operator and thus a
point symmetry generator which is geometrically transparent remains of a point type and
the calculations are simpler. Secondly the generated conserved vectors via the canoni-
cal Lie–Bäcklund symmetry operator corresponding to a point symmetry operator are,
in general, of a higher order than the starting ones whereas in the extended approach
adopted here the order is preserved. Consequently it is not straightforward to recognise
when the generated conservation laws via a canonical operator of a point operator are in
fact new while it is easy to see this in the noncanonical situation. Furthermore the rela-
tionship between Lie–Bäcklund symmetry generators associated with a conserved form of
an equation and the corresponding equation itself is not known in the canonical operator
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case. We show that such a relationship does exist. Indeed we find that the Lie algebra of
Lie–Bäcklund symmetry generators of the conserved form of a system is a subalgebra of
the Lie–Bäcklund symmetry generators of the system itself.

Consider an rth-order (r ≥ 1) system of differential equations of n independent variables
and m dependent variables

Eβ
(
x, u, u(1), . . . , u(r)

)
= 0, β = 1, . . . , m̃, (2.1)

where u(k) denote the various collections of kth-order partial derivatives. The maximal
order of the equations that appear in (2.1) is r. In most applications m̃ = m. If x is
a single independent variable, then (2.1) is a system of ordinary differential equations and
otherwise it is a system of partial differential equations.

We use the following definitions and results. The summation convention is used where
appropriate.

Definition 1 ([10]). The differential (n − 1)-form

ω = T i
(
x, u, u(1), . . . , u(r−1)

) ∂

∂xi
� (
dx1 ∧ . . . ∧ dxn

)
(2.2)

is called a conserved form of

Eβ
(
x, u, u(1), . . . , u(r)

)
= 0, β = 1, . . . , p̃ ≤ m̃ (2.3)

if

Dω = 0 (2.4)

is satisfied on the manifold in the space of variables x, u, u(1), . . . , u(r) defined by the sys-
tem (2.3), where D is the total exterior derivative.

Theorem 1 ([10]). Suppose that

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · ,

where the ξi (i = 1, . . . , n) and ηα (α = 1, . . . ,m) are differential functions and the
additional coefficients are

ζα
i = Di(ηα)− uα

j Di(ξj),

ζα
i1...is = Dis(ζ

α
i1...is−1

)− uα
ji1...is−1

Dis(ξ
j), s > 1,

is a Lie–Bäcklund symmetry generator of the system (2.3) such that the conserved form ω
of (2.3), given by (2.2), is invariant under X. Then

X(T i) + T iDj(ξj)− T jDj(ξi) = 0, i = 1, . . . , n. (2.5)

Here Di = ∂/∂xi + uα
i ∂/∂uα + · · · is the total derivative operator with respect to xi.

Note. For any differential function f , Df = Difdxi and for any k-form ω = fi1i2...ikdx
i1 ∧

dxi2 ∧ · · · ∧ dxik , Dω = Djfi1i2...ikdx
j ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .
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Definition 2 ([10]). A Lie–Bäcklund symmetry generator X is said to be associated
with a conserved vector T =

(
T 1, . . . , Tn

)
(or its corresponding conserved form ω) of the

system (2.3) if X and T i satisfy the relations (2.5) (or equivalently if X(ω) = 0).

It is a well established classical result (see e.g. [6, 17, 21]) that the Lie–Bäcklund
operator X and the total differentiations Dj are related by the commutation rule as

[X,Di] = −Di(ξj)Dj , i = 1, . . . , n. (2.6)

For canonical Lie–Bäcklund symmetry operators, X̃ = X − ξjDj , (2.6) yields the well-
known result (see e.g. [6, 17, 21]) that the canonical operator, X̃, commutes with the total
differentiation Di, viz.,

X̃(Di(f)) = Di

(
X̃(f)

)
, i = 1, . . . , n, (2.7)

for any differential function f . If one sets f = T i, i = 1, . . . , n, where the T is are the
components of a conserved vector of a system (2.1), then

Di

(
X̃

(
T i

) )
= 0, (2.8)

since X̃
(
Di

(
T i

))
= 0 on the manifold in the space of variables x, u, u(1), . . . , u(r) defined

by the system (2.1). Hence

T̃ i
∗ = X̃

(
T i

)
, i = 1, . . . , n, (2.9)

constitute the components of a conserved vector of (2.1). This is the well-known generation
theorem (see e.g. [6, 17, 21]) for conservation laws. In the following we extend this result
to include any Lie–Bäcklund symmetry.

Theorem 2. Suppose that X is any Lie–Bäcklund symmetry generator of (2.3) and T i,
i = 1, . . . , n, are the components of a conserved vector of (2.3). Then

T i
∗ = X

(
T i

)
+ T iDj(ξj)− T jDj(ξi), i = 1, . . . , n, (2.10)

constitute the components of a conserved vector of (2.3), i.e.,

DiT
i
∗ = 0

on the manifold in the space of variables x, u, u(1), . . . , u(r) defined by the system (2.3).

Proof. If DiT
i = 0 is a conservation law of (2.3), it follows from (2.6) that

Di

(
X

(
T i

))
= Di(ξj)Dj

(
T i

)
. (2.11)

Now the application of Di on T i∗ and the use of (2.11) easily result in Di

(
T i∗

)
= 0 on

the manifold in the space of variables x, u, u(1), . . . , u(r) given by the system (2.3) which
proves the assertion. �



64 A H Kara and F M Mahomed

Corollary. If X̃ is the canonical operator of X, i.e. X̃ = X − ξiDi, and T i∗ is as in
Theorem 2, then the following diagram commutes

X → X̃
↓ ↓
T ∗

i → T̃ i∗ ,

where

T̃ i
∗ = T i

∗ + T kDk(ξi)− Dk

(
ξkT i

)
. (2.12)

Proof. The proof follows trivially by invoking (2.10) and (2.9). �

The Maxwellian tails model equation, viz.,

uxt + ux + u2 = 0, (2.13)

has conserved components,

T 1 =
1
3
u3 exp(3t), T 2 =

1
2
(ut + u)2 exp(3t), (2.14)

with associated symmetry X1 = ∂/∂x. Clearly equation (2.13) admits X2 = ∂/∂t. The
action of X2 on (2.14) yields a multiple of (2.14), viz. T 1∗ = 3T 1 and T 2∗ = 3T2 and therefore
does not produce a new conservation law. Thus the application of Theorem 2 does not
guarantee new nontrivial conservation laws (we return to this aspect after Theorem 3
below). If one utilised the canonical approach, viz. X̃2T

1 = T̃ 1∗ and X̃2T
2 = T̃ 2∗ , where X̃2

is the canonical Lie–Bäcklund operator (not of point type), one would get

T̃ 1
∗ = −utu

2 exp(3t), T̃ 2
∗ = −(ut + utt)(ut + u) exp(3t)

which is of higher order than T 1 and T 2. These are not new conserved components and
are related to T i∗ via the above Corollary. That is

T̃ 1
∗ = T 1

∗ +DxT
2, T̃ 2

∗ = T 2
∗ − DtT

2.

Theorem 3. A Lie–Bäcklund symmetry generator X associated with a conserved form ω
(2.2) of a system (2.3) is a symmetry generator of the system (2.3).

Proof. If

ω = fi1i2...ikdx
i1 ∧ dxi2 ∧ · · · ∧ dxik

is any k-form, then

XDω = DXω

follows straightforwardly after the invocation of (2.6). Now let ω be the conserved form
(2.2). Since X is associated with the conserved form ω, i.e., X(ω) = 0, it follows that
XDω = 0 which implies that X is a symmetry of the system (2.3). �
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To illustrate Theorem 3, we firstly determine the point symmetries associated with
(2.14). To that end, we utilise the conditions (2.5). These yield, for T 1 and T 2 respectively,
the following two symmetries

X1 =
∂

∂x
, X3 = exp t

∂

∂t
− u exp t

∂

∂u
. (2.15)

Indeed {X1, X3} forms a subalgebra of the Lie algebra of point symmetry generators of
the equation (2.13), as it should, by Theorem 3.

We next provide the point symmetries associated with the magnitude of the conserved
angular momentum (in polar coordinates)

L = r2θ̇ (2.16)

of the radially dependent central force equation of motion

r̈ =
f(r)
r

r, (2.17)

where f(r) is the magnitude of the radially dependent central force. The condition (2.5)
gives the two-infinity point symmetry operators [5]

Xα,a = α(t)
∂

∂t
+
1
2
(rα̇ − ra′(θ))

∂

∂r
+ a(θ)

∂

∂θ
.

By Theorem 3, the set {Xα,a} forms an infinite-dimensional subalgebra of point symmetry
generators of the angular component of the central force equation, viz. 2ṙθ̇ + rθ̈ = 0.

The following definition is motivated by an equivalent one given for Lagrangian systems
in [6].

Definition 3. Consider the set C of conserved vectors of a given system (2.3) which admits
the symmetry Lie–Bäcklund algebra L. A basis of conservation laws of the system (2.3)
is a minimal subset of the set C which is obtained by the action, in the sense of (2.10), of
each symmetry operator X ∈ L on the conserved vectors in C.

Theorem 2 and its Corollary provide a mechanism to generate conservation laws from
known symmetry generators and conservation laws of the system. However, the generated
conserved vectors need not be nontrivial (it may be zero or a multiple of the known ones).
When does this occur? The other question is as to when the generated conservation laws
are nontrivial and how can one obtain a basis of conservation laws.

The answers lie precisely on the structure of the symmetry Lie algebra of the equation.
Suppose that L is the symmetry Lie algebra of the equation. For any Y ∈ L the map
adY : L → L is defined by the derivations adY (X) = [X,Y ]. The set of elements adY
for Y ∈ L is a Lie algebra which is called the adjoint algebra La of L since [adY1, adY2] =
ad [Y1, Y2] for any Y1, Y2 ∈ L.

We answer the first question.

Theorem 4. Let adY (X) = Z such that Y is associated with the conserved vector T
of (2.3) defined by ω and X is admitted by (2.3). Then T∗, defined by T i∗ given by (2.10),
is a trivial conserved vector of (2.3) if Z = bY , for any constant b.
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Proof. This follows simply by noting two points.
(i) If Z = 0, then [X,Y ]ω = XY (ω) − Y X(ω) = −Y X(ω) = (a1X + a2Y )(ω) = 0

for constants a1 and a2. Thus we have X(ω) vanishes or is a multiple of ω in which case
a1 = 0.

(ii) If Z = bY , it turns out that X(ω) = −bω. �

The second question is answered as follows.
Once again let [X,Y ] = Z such that Y is associated with the conserved vector T defined

by ω of (2.3). The linear dependence, i.e. X(ω) being a multiple of ω, implies Z = 0 or
Z = bY , for some constant b, which means that we require Z �= 0 and Z �= bY in order for
nontriviality of the generated conserved components T i∗ given in (2.10). This, however, is
not a sufficient condition. The following example amply illustrates this fact.

Consider the following system that arises in porous media flow [4]

vx = u, vt =
(
u−1

)
x
+ cxu, (2.18)

where c is a constant. An obvious conserved vector of (2.18) is T =
(−u,

(
u−1

)
x
+ cxu

)
.

Point symmetry generators admitted by the system (2.18) are

Xα = α(t, v)
∂

∂x
− αvu

2 ∂

∂u
,

where α satisfies αt+αvv +αc = 0. A symmetry generator associated with T is Y = ∂/∂t.
Now adY (Xα) = −Xαt (�= 0, bY ), where αt satisfies αtt + αtvv + αtc = 0. By (2.10)

T∗ =
(−αvu

2 + uαvvx,−αcu+ cxu2αv − vxαvv − u−2uxvxαv − αtu − uvtαv

)

which is trivial since it vanishes on the solutions of (2.18).

Remark 1. In the case for which there is no symmetry operator associated with a con-
servation law, one can still act on the known conservation law with a symmetry generator
of the equation by using Theorem 2.

We investigate the sufficient conditions for which the generated conservation is non-
trivial. This occurs when the system (2.1) is derivable from a variational principle, i.e.,
when (2.1) can be written as an Euler–Lagrange equation with respect to a Lagrangian
L

(
x, u, . . . , u(k)

)
, k ≤ r, viz.

δL

δuα
= 0, α = 1, . . . ,m, (2.19)

where δ/δuα is the Euler–Lagrange operator given by

δ

δuα
=

∂

∂uα
+

∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂uα
i1...is

, α = 1, . . . ,m. (2.20)

A Lie–Bäcklund operator X is a Noether symmetry generator [16, 6, 17, 8] associated with
a Lagrangian L of (2.19) if there exists a vector B =

(
B1, . . . , Bn

)
such that

X(L) + LDi(ξi) = Di

(
Bi

)
. (2.21)
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We also recall Noether’s theorem [16].

Noether’s theorem [16, 6, 8]. For each Noether symmetry generator X associated with
a given Lagrangian L of (2.19), there corresponds a vector T =

(
T 1, . . . , Tn

)
of (2.19),

with T i defined by

T i = N i(L)− Bi, i = 1, . . . , n, (2.22)

which is a conserved vector of the Euler–Lagrange equations (2.19) and the Noether ope-
rator associated with X is

N i = ξi +Wα δ

δuα
i

+
∑
s≥1

Di1 · · ·Dis(W
α)

δ

δuα
ii1...is

, i = 1, . . . , n,

in which the Euler–Lagrange operators with respect to derivatives of uα are obtained
from (2.20) by replacing uα by the corresponding derivatives, e.g.,

δ

δuα
i

=
∂

∂uα
i

+
∑
s≥1

(−1)sDj1 · · ·Djs

∂

∂uα
ij1...js

, i = 1, . . . , n, α = 1, . . . ,m.

Theorem 5 ([8]). The components of the Noether conserved vector T of (2.19), T i, given
by (2.22), with respect to a Lie–Bäcklund operator X which is a generator of a Noether
symmetry associated with a given Lagrangian L of (2.19), satisfy

X
(
T i

)
+ T iDk(ξk)− T kDk(ξi)

= N i
(
Dk

(
Bk

))
+BkDk(ξi)− BiDk(ξk)− X

(
Bi

)
. (2.23)

If (2.23) is satisfied, X is said to be associated with the Noether conserved vector T .

In view of equations (2.5), which hold irrespective of a Lagrangian, we can set the Bis
to be zero in (2.23). This also follows from [8, 10].

The property X(T ) = 0 has already been applied in the case of point symmetries to
physically important ordinary differential equations by Leach [12].

Lemma. If X̃ is the canonical Noether operator of X associated with a given Lagrangian L
of (2.19), and T i∗ is a Noether conserved component generated by X, i.e. T i∗ is as in (2.10),
then T̃ i∗ as in (2.12) is a Noether generated conserved component generated by the opera-
tor X̃.

Theorem 6 (see Khamitova [11]). Let X̃, Ỹ and Z̃ be canonical Noether operators
associated with a given Lagrangian L of (2.19) with ad Ỹ (X̃) = Z̃ such that to Ỹ there
corresponds a Noether conserved vector T . Then the Noether conserved vector T̃∗, with
components

T̃ i
∗ = X̃

(
T i

)
, (2.24)

corresponds to Z̃.

The following theorem provides the sufficient conditions for which the generated con-
servation law is nontrivial for a Lie–Bäcklund symmetry operator.
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Theorem 7. Suppose that X, Y and Z are Noether symmetry operators associated with
a given Lagrangian L of (2.19) that satisfy adY (X) = Z, where Z �= 0 and Z �= bY ,
such that Y is associated with T . Then the Noether conserved vector T∗, with compo-
nents T i∗ given by (2.10), is associated with Z. Moreover, T∗ is a nontrivial conserved
vector different from T .

Proof. Follows from the above Lemma and Theorem 6. �

3 Applications

3.1 Nonlinear diffusion equations

The nonlinear diffusion-convection equation (1.1), viz. ut = (k(u)ux)x − (f(u))x, has an
obvious conserved vector T with components

T 1 = u, T 2 = f(u)− k(u)ux. (3.1)

We determine all the other conservation laws, DtT
1 + DxT

2 = 0, for nonlinear (1.1),
where T 1 and T 2 are up to first-order in the derivatives. The determining equations result
in

T 1 = A(t, x)u+B(t, x),

T 2 = −k(u)uxA(t, x) + f(u)A(t, x) +Ax

∫
k(u) du+ C(t, x), (3.2)

where A, B and C satisfy

Atu+ f(u)Ax +Axx

∫
k(u) du+Bt + Cx = 0.

We distinguish the following cases:
(a) f(u) = 0, k(u) �= const

T 1 = (a1x+ a2)u,

T 2 = −k(u)ux(a1x+ a2) + a1

∫
k(u) du, (3.3)

where a1 and a2 are constants. Thus there are two independent conserved vectors T1 =(
T 1

1 , T 2
1

)
(a1 = 0, a2 = 1) and T2 =

(
T 1

2 , T 2
2

)
(a1 = 1, a2 = 0).

The principal Lie algebra of (1.1) for f = 0 is spanned by X1 = ∂/∂t, X2 = ∂/∂x,
X3 = 2t∂/∂t+ x∂/∂x. The algebra extends for three cases [19], viz.

1. k(u) = eu, X4 = x
∂

∂x
+ 2

∂

∂u
,

2. k(u) = uσ, σ �= 0,−4
3
, X4 =

σ

2
x

∂

∂x
+ u

∂

∂u
,

3. k(u) = u−4/3, X4 = −2
3
x

∂

∂x
+ u

∂

∂u
, X5 = −x2 ∂

∂x
+ 3xu

∂

∂u
.
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Remark 2. . In Case 3 the three symmetry generators X2, X4 and X5 constitute sl(3, R)
which arises frequently in various applications. This algebra is intrinsic in the algebraic
structure of linear ordinary differential equations [15] as well as other systems [13].

The conserved vector T1 has associated symmetry generators X1 and X2, and T2 has X1.
The symmetry operator X3 has no associated conservation law. This is not unusual for
scaling symmetry operators and has been observed before in the case of Noether symmetry
operators (see e.g. [10]).

We determine the elements of the adjoint algebra of X1 and X2 in order to produce
a basis of conservation laws.

We obtain adX1: adX1(X2) = 0, adX1(X3) = −2X1, adX1(X4) = 0 and adX1(X5) =
0. Hence the adjoint action does not produce the other linearly independent conserved
vector by Theorem 4. Thus far a basis of conservation laws is both the vectors {T1, T2}.

We also have adX2: adX2(X1) = 0, adX2(X3) = −X2, adX2(X4) = αX2, α =
−1,−σ/2, 2/3 (for 1., 2., 3., respectively) and adX2(X5) = −X4 for 3. Therefore by
Theorem 4 only 3. allows the possibility of another linearly independent conserved vector
T1∗ =

(
T 1

1∗, T 2
1∗

)
, viz.

T 1
1∗ = X5

(
T 1

1

)
+Dx

(−x2
)
T 1

1 , T 2
1∗ = X5

(
T 2

1

)
.

Hence the adjoint action produces T1∗ =
(
xu,−xuxu

−4/3 − 3u−1/3
)
= T2.

Therefore a basis of conservation laws is {T1}.
Remark 3. If one had no prior knowledge of T2 in 3. one could still have constructed it
by the adjoint action to yield T1∗.

It was shown in [2] that nontrivial Lie–Bäcklund operators are admitted only for k =
a(u+ b)−2, where a and b are constants. For a = 1 and b = 0, the Lie–Bäcklund operators
have the form

Xr = U (r+2) ∂

∂u
+ · · · ≡ [

(Dx)2(u−1)(Dx)−1
]r

Dx

(
u−2ux

) ∂

∂u
+ · · · ,

where r is a natural number. Using the conserved vectors T1 and T2 with k = u−2, one
can generate an infinite sequence of higher-order conservation laws. For example,

T 1
1∗ = U (r+2), T 2

1∗ = U (r+2)
(
2u−3ux

) − u−2DxU
(r+2).

Likewise for T2∗ one obtains

T 1
2∗ = xU (r+2), T 2

2∗ = u−2U (r+2) + 2xu−3uxU
(r+2) − xu−2DxU

(r+2).

(b) k(u) �= const, f(u) = f1u+ f2, where f1, f2 are constants not both zero

T 1 = (a1x − a1f1t+ a3)u,

T 2 = −k(u)ux(a1x − a1f1t+ a3) + (f1u+ f2)(a1x − a1f1t+ a3)

+ a1

∫
k(u) du − a1f2x, (3.4)
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where a1 and a3 are constants. The case a1 = 1 and a3 = 0 produces a conserved vector
T1 =

(
T 1

1 , T 2
1

)
which has no associated symmetry operator for arbitrary f1 whereas a1 = 0

and a3 = 1 results in a vector T2 =
(
T 1

2 , T 2
2

)
which is associated with ∂/∂t.

According to our Remark 1, we can act on T1 by means of the symmetry generator
∂/∂t. This produces a conserved vector equivalent to T2. Hence, a basis of a conserved
vector is {T1}.

(c) f(u) = f1

∫
k(u) du+f2u+f3, where f1 �= 0, f2, f3 are constants and k an arbitrary

nonconstant function

T 1 = (a1 + a2 exp(f1f2t − f1x))u,

T 2 = −k(u)ux(a1 + a2 exp(f1f2t − f1x))

+
(

f1

∫
k(u) du+ f2u+ f3

)
(a1 + a2 exp(f1f2t − f1x))

− a2f1 exp(f1f2t − f1x)
∫

k(u) du − a2f3 exp(f1f2t − f1x), (3.5)

where a1 and a2 are constants. If we set a1 = 1 and a2 = 0, this produces a conserved
vector T1 which has associated symmetry generators ∂/∂t and ∂/∂x whilst a1 = 0 and
a2 = 1 result in a vector T2 which has no associated symmetry generator for arbitrary f2.

The action of ∂/∂t and ∂/∂x on T2 yields a vector equivalent to T2. Thus a basis of
conserved vectors is {T1, T2}.

3.2 Nonlinear wave equations

The nonlinear wave equation (1.2) with h = 0 and g = g(ux), viz., utt − g(ux)uxx = 0, has
Lagrangian

L =
1
2
u2

t −
∫∫

g(ux)dux dux

which admits the Noether point symmetry operators

X1 =
∂

∂t
, X2 = t

∂

∂u
, X3 =

∂

∂x
, X4 =

∂

∂u
.

From the determination of the elements of the adjoint algebra, a basis of conservation
laws is {T1, T2, T3} (T1, T2 and T3 are associated with X1, X2 and X3, respectively), where

T1 =
(
1
2
u2

t +
∫∫

g(ux)duxdux,−ut

∫
g(ux)dux

)
,

T2 =
(

tut − u,−t

∫
g(ux)dux

)
,

T3 =
(
−uxut,

1
2
u2

t −
∫∫

g(ux)duxdux + ux

∫
g(ux)dux

)
.

The conservation law associated with X4, obtained by the action of X1 on T2 (since
[X1, X2] = X4), is

(
ut,−

∫
g(ux)dux

)
.
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4 Conclusion

We have shown that for a system of partial differential equations, one can generate con-
servation laws from known ones using any Lie–Bäcklund symmetry operator of the system
without having to make a conversion to a canonical Lie–Bäcklund symmetry operator.
This approach, as we have seen, has distinct advantages. We did not need to convert to
a canonical Lie–Bäcklund operator and thus a point symmetry generator remains of point
type. Moreover the generated conservation laws using canonical Lie–Bäcklund symmetry
operators are of a higher order than the original ones. In the approach here, for point
symmetries, the order is preserved. Furthermore the relationship between Lie–Bäcklund
symmetry generators associated with a conserved form of a system and the corresponding
system itself is not known in the canonical case while we have shown that such a relation
does exist if one does not transform to a canonical operator. Indeed we found that the
Lie algebra of Lie–Bäcklund symmetry generators of the conserved form is a subalgebra
of the symmetries of the system itself. We have also proved that the generated conserved
vectors for the canonical and the straightforward cases are related by means of a formula.

We also investigated a basis of conservation laws and have shown that a generated con-
servation law via the action of a Lie–Bäcklund symmetry operator which satisfies a com-
mutation rule is nontrivial if the system is derivable from a Lagrangian formulation.

We have given applications of nonlinear diffusion-convection and wave equations as well
as presented other illustrative examples.
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