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Abstract

We obtain a basis of joint or proper differential invariants for the scalar linear hy-
perbolic partial differential equation in two independent variables by the infinitesimal
method. The joint invariants of the hyperbolic equation consist of combinations of
the coefficients of the equation and their derivatives which remain invariant under
equivalence transformations of the equation and are useful for classification purposes.
We also derive the operators of invariant differentiation for this type of equation. Fur-
thermore, we show that the other differential invariants are functions of the elements
of this basis via their invariant derivatives. Applications to hyperbolic equations that
are reducible to their Lie canonical forms are provided.

1 Introduction

The second-order scalar linear partial differential equation (PDE) in two independent
variables (t, x) is of the form

Autt + 2Butx + Cuxx +Dut + Eux + Fu = G, (1)

where A, B, C, D, E, F and G can be constants or given differentiable functions of t
and x.
All linear PDEs similar to equation (1) are parabolic, hyperbolic or elliptic. Parabolic

equations describe heat flow and diffusion processes and satisfy the property B2−AC = 0.
Hyperbolic equations describe vibrating systems and wave motion and satisfy the property
B2−AC > 0. Elliptic equations describe steady-state phenomena and satisfy the property
B2 −AC < 0.
Moreover, one can further simplify the equation (1) by introducing new coordinates,

i.e. characteristics coordinates, see e.g. [8]. When this PDE (1) is written in terms of the
new coordinates, it takes on one of three canonical forms (depending on whether B2−AC
is positive, zero, or negative respectively). We consider the hyperbolic canonical form.
The linear hyperbolic equation has a variety of applications in the physical and bio-

logical sciences [1, 2, 3, 4, 8, 14, 15, 16]. For example, population dynamics, tides and
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waves, chemical reactors, flame and combustion problems, the linearized theory of tran-
sonic aerodynamics, etc.
We are interested here in the differential invariants of the hyperbolic equation with

respect to the dependent and independent variables by use of the infinitesimal method.
We write it as

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0, (2)

where a, b and c are differentiable functions of t and x.
Lie [10] was the first to classify the general linear second-order PDE in two independent

and one dependent variables. He obtained seven canonical forms according to their sym-
metries and classes of equations. Of these four belonged to the hyperbolic class and three
belonged to the parabolic class (the elliptic equation can be transformed into the hyper-
bolic equation by means of complex transformations [3, 8]). He also developed methods
for their integration. Practical criteria for reduction of parabolic equations to the classical
heat equation are given in [7].
The two semi-invariants h = at+ab−c and k = bx+ab−c, known as Laplace invariants,

were discovered by Laplace [9] in 1773 for the equation (2) in his fundamental memoir [9]
dedicated to the integration theory of linear PDEs. These two quantities h and k are
unaltered under linear transformations of the dependent variable

ū = σ(t, x)u, σ(t, x) �= 0, (3)

where σ is a twice differentiable arbitrary function.
It was claimed in [5], [6, p. 262] that the Ovsiannikov [12] joint invariants p = k/h

and q = (∂t∂x lnh)/h (see [5, 6, 12]) form a basis of invariants for the equation (2) under
transformations of dependent and independent variables and the other joint invariants are
functions of p, q and their invariant derivatives. Notwithstanding, the invariants p and q
were utilized to classify equation (2) with three non-trivial Lie point symmetries when
p = const and q = 0 or p = const and q = const �= 0. In the case where p and q (�= 0) are
constants, equation (2) is reducible to the Euler–Poisson equation [13]. We show in this
paper that there are three more third-order joint invariants of equation (2) in addition
to the Ovsiannikov invariants which together form a basis of joint invariants. All other
higher order joint invariants are functions of these via invariant differentiations.
We outline our work in this paper as follows. In Section 2 we deal with the derivation

of the joint invariants by the infinitesimal method under the transformations of dependent
and independent variables. Section 3 focuses on obtaining the operators of invariant
differentiation which can be used to find the invariants of higher orders. In Section 4 we
compare the basis of invariants obtained in the previous Sections 2 and 3 with those of
the Lie canonical forms for the equation (2). Some examples are given in Section 5 to
illustrate our results obtained. Finally, concluding remarks are made in Section 6.

2 Invariants of linear hyperbolic equations

In this section, we derive the joint differential invariants by the infinitesimal method. We
begin this section by stating some preliminaries.
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We recall that an equivalence transformation of equation (2) is an invertible trans-
formation belonging to the class t̄ = φ(t, x, u), x̄ = ϕ(t, x, u) and ū = ψ(t, x, u) which
preserves the order of equation (2) as well as the properties of linearity and homogeneity.
In general, though, the transformed equation has new coefficients ā, b̄ and c̄.
It is also a known fact that the set of all equivalence transformations of equation (2) is

an infinite group which consists of the linear transformations of the dependent variable (3)
and invertible transformations on the independent variables:

t̄ = φ(t), x̄ = ϕ(x), φt �= 0, ϕx �= 0, (4)

where φ(t) and ϕ(x) are arbitrary functions and ū is the new dependent variable. Two
equations of the form (2) are called (locally) equivalent if they can be mapped to each
other by a combination of the equivalence transformations (3)–(4). The semi-invariants
(Laplace invariants) of (2) are combinations of the coefficients a, b and c of (2) that
remain unchanged under the transformations (3) only. The joint differential invariants of
the equation (2) are combinations of the Laplace invariants (h, k) and their derivatives
which are unaltered under the transformations (3)–(4).
We obtain the joint differential invariants of (2) in terms of the Laplace invariants (h, k)

by the infinitesimal method (see [5, 6] for the infinitesimal approach).
Firstly we write the operator in the form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtx

∂

∂utx
+ µ

∂

∂a
+ ν

∂

∂b
+ ω

∂

∂c
,

where ξ1 = ξ1(t, x, u), ξ2 = ξ2(t, x, u) and µ, ν and ω are functions of t, x, a, b and c. We
invoke the determining equation X(utx + aut + bux + cu)|(2) = 0. One easily arrives at

ξ1 = α(t), ξ2 = β(x), µ = −aβx, ν = −bαt, ω = −(cαt + cβx), (5)

where the functions α(t) and β(x) are arbitrary.
We now seek a projected generator of the form

X = α(t)
∂

∂t
+ β(x)

∂

∂x
− aβx

∂

∂a
− bαt

∂

∂b
− (cαt + cβx)

∂

∂c
+ µt

∂

∂at
+ νx

∂

∂bx
. (6)

Here, we utilize the following total differentiations with respect to t and x:

Dt =
∂

∂t
+ at

∂

∂a
+ att

∂

∂at
+ atx

∂

∂ax
+ · · ·+ bt

∂

∂b

+ btt
∂

∂bt
+ btx

∂

∂bx
+ · · ·+ ct

∂

∂c
+ ctt

∂

∂ct
+ ctx

∂

∂cx
+ · · · ,

Dx =
∂

∂x
+ ax

∂

∂a
+ axx

∂

∂ax
+ atx

∂

∂at
+ · · ·+ bx

∂

∂b

+ bxx
∂

∂bx
+ btx

∂

∂bt
+ · · ·+ cx

∂

∂c
+ cxx

∂

∂cx
+ ctx

∂

∂ct
+ · · · . (7)

We calculate µt by use of the equations (5) and (7) and it is

µt = Dt(µ)− atDt(ξ1)− axDt(ξ2) = −at(αt + βx).
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In a similar manner, νx is found as νx = −bx(αt + βx). Then, the action of X on the
Laplace invariants yields

Xh = −(αt + βx)h, Xk = −(αt + βx)k.

We look for an infinitesimal generator, by utilising the preceding equations, in the space
of the Laplace invariants h and k:

X = X(h)
∂

∂h
+X(k)

∂

∂k
,

i.e., the generator

X = −(αt + βx)h
∂

∂h
− (αt + βx)k

∂

∂k
. (8)

The infinitesimal test XJ = 0 for the invariants J(h, k) is

h
∂J

∂h
+ k

∂J

∂k
= 0.

The solution of this PDE gives us the first-order joint differential invariant p = k/h which
is one of Ovsiannikov’s invariants [13] who derived it using another approach.
In order to find the second-order differential invariants, i.e., the invariants of the form

J(h, k, ht, hx, kt, kx), one should prolong the operator (8) once. We have

X = µ
∂

∂h
+ ν

∂

∂k
+ µt

∂

∂ht
+ µx

∂

∂hx
+ νt

∂

∂kt
+ νx

∂

∂kx
,

where µ = −(αt + βx)h, ν = −(αt + βx)k, and µt, µx, νt and νx are found via the total
differentiations with respect to t and x presented in (9). The total differentiations are

Dt =
∂

∂t
+ ht

∂

∂h
+ htt

∂

∂ht
+ htx

∂

∂hx
+ · · ·+ kt

∂

∂k
+ ktt

∂

∂kt
+ ktx

∂

∂kx
+ · · · ,

Dx =
∂

∂x
+ hx

∂

∂h
+ hxx

∂

∂hx
+ htx

∂

∂ht
+ · · ·+ kx

∂

∂k
+ kxx

∂

∂kx
+ ktx

∂

∂kt
+ · · · (9)

with the aid of which we have

µt = Dt(−(αt + βx)h))− htDt(α)− hxDt(β),
= −(αtth+ 2αtht + βxht).

and in an analogous manner we find

µx = −(αthx + βxxh+ 2βxhx),
νt = −(αttk + 2αtkt + βxkt),
νx = −(αtkx + βxxk + 2βxkx).

Therefore, the once-extended generator of (8) is

X = −(αt + βx)h
∂

∂h
− (αt + βx)k

∂

∂k
− (αtth+ 2αtht + βxht)

∂

∂ht

− (αthx + βxxh+ 2βxhx)
∂

∂hx
− (αttk + 2αtkt + βxkt)

∂

∂kt

− (αtkx + βxxk + 2βxkx)
∂

∂kx
. (10)
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The equation XJ(h, k, ht, hx, kt, kx) = 0, upon the equation to zero of the coefficients of
αtt, βxx, αt and βx, provides the following system of four PDEs:

h
∂J

∂ht
+ k

∂J

∂kt
= 0, h

∂J

∂hx
+ k

∂J

∂kx
= 0,

h
∂J

∂h
+ k

∂J

∂k
+ 2ht

∂J

∂ht
+ hx

∂J

∂hx
+ 2kt

∂J

∂kt
+ kx

∂J

∂kx
= 0,

h
∂J

∂h
+ k

∂J

∂k
+ ht

∂J

∂ht
+ 2hx

∂J

∂hx
+ kt

∂J

∂kt
+ 2kx

∂J

∂kx
= 0. (11)

The solution of this system of PDEs (11) gives rise to

J = Φ
(
p, J1

2

)
,

where Φ is an arbitrary function of the Ovsiannikov invariant p and the second-order joint
differential invariant J1

2 is

J1
2 =

(hkt − kht)(hkx − khx)
h5

=
1
h
ptpx.

We further deduce the third-order differential invariants, i.e., those of the form J(h, ht,
hx, htt, htx, hxx; k, kt, kx, ktt, ktx, kxx) under the twice-extended generator of (8), viz.

X = µ
∂

∂h
+ ν

∂

∂k
+ µt

∂

∂ht
+ µx

∂

∂hx
+ νt

∂

∂kt
+ νx

∂

∂kx
+ µtt

∂

∂htt

+ µtx
∂

∂htx
+ µxx

∂

∂hxx
+ νtt

∂

∂ktt
+ νtx

∂

∂ktx
+ νxx

∂

∂kxx
,

where

µtt = −(αttth+ 3αttht + 3αthtt + βxhtt),
µtx = −(αtthx + 2αthtx + βxxht + 2βxhtx),
µxx = −(αthxx + βxxxh+ 3βxxhx + 3βxhxx),
νtt = −(αtttk + 3αttkt + 3αtktt + βxktt),
νtx = −(αttkx + 2αtktx + βxxkt + 2βxktx),
νxx = −(αtkxx + βxxxk + 3βxxkx + 3βxkxx)

are calculated in a similar way as explained before.
Separation of the terms with βxxx, αttt, βxx, αtt, αt and βx of the equation XJ(h, ht, hx,

htt, htx, hxx; k, kt, kx, ktt, ktx, kxx) = 0 results in the system of six PDEs:

k
∂J

∂kxx
+ h

∂J

∂hxx
= 0, k

∂J

∂ktt
+ h

∂J

∂htt
= 0,

3kx
∂J

∂kxx
+ kt

∂J

∂ktx
+ 3hx

∂J

∂hxx
+ ht

∂J

∂htx
+ k

∂J

∂kx
+ h

∂J

∂hx
= 0,

kx
∂J

∂ktx
+ 3kt

∂J

∂ktt
+ hx

∂J

∂htx
+ 3ht

∂J

∂htt
+ k

∂J

∂kt
+ h

∂J

∂ht
= 0,

kxx
∂J

∂kxx
+ 2ktx

∂J

∂ktx
+ 3ktt

∂J

∂ktt
+ hxx

∂J

∂hxx
+ 2htx

∂J

∂htx

+ 3htt
∂J

∂htt
+ kx

∂J

∂kx
+ 2kt

∂J

∂kt
+ hx

∂J

∂hx
+ 2ht

∂J

∂ht
+ k

∂J

∂k
+ h

∂J

∂h
= 0,
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3kxx
∂J

∂kxx
+ 2ktx

∂J

∂ktx
+ ktt

∂J

∂ktt
+ 3hxx

∂J

∂hxx
+ 2htx

∂J

∂htx

+ htt
∂J

∂htt
+ 2kx

∂J

∂kx
+ kt

∂J

∂kt
+ 2hx

∂J

∂hx
+ ht

∂J

∂ht
+ k

∂J

∂k
+ h

∂J

∂h
= 0. (12)

The solution of this system of six equations leads to

J = Φ
(
p, J1

2 , J
1
3 , J

2
3 , J

3
3 , J

4
3

)
,

where Φ is an arbitrary function of

p, J1
2 ,

J1
3 =

1
h3
(khtx + hktx − htkx − hxkt),

J2
3 =

1
h9
(hkx − khx)2

(
hkhtt − h2ktt − 3kh2

t + 3hhtkt

)
,

J3
3 =

1
h9
(hkt − kht)2

(
hkhxx − h2kxx − 3kh2

x + 3hhxkx

)
,

J4
3 =

k

h4
(hhtx − hthx) (13)

in which h and k are nonzero. In the event that one of them is zero, one can factorize the
equation (2). The joint differential invariant J4

3 can be written as

J4
3 =

k

h

(∂t∂x lnh)
h

= p
(∂t∂x lnh)

h
.

Since p and J4
3 are joint invariants, then q = (∂t∂x lnh)/h must be a joint invariant. Of

course, joint invariants p and q are known as the Ovsiannikov invariants (see [13]).

3 Basis elements and invariant differentiation operator

In this section, we find the operators of invariant differentiation that enable one to calculate
the joint differential invariants of higher orders for (2).
Recall that an operator X̃ (see [13]) is said to be an operator of invariant differentiation

for a group G̃ if for any differential invariant J of the group G̃, X̃(J) is also a differential
invariant of this group.
Let the operator D be defined by

D = λDt + κDx,

where λ and κ are differential functions of h, k and their derivatives and Dt, Dx be given
by (9). The first prolongation of the generator (8), viz. (10), and the formula for the
invariant differentiation operator, viz. X̃ = X +D(ξ1∂λ+ ξ2∂κ) (see [13, p. 316]) result in

X̃ = −(αt + βx)h
∂

∂h
− (αt + βx)k

∂

∂k
− (αtth+ 2αtht + βxht)

∂

∂ht

− (αthx + βxxh+ 2βxhx)
∂

∂hx
− (αttk + 2αtkt + βxkt)

∂

∂kt

− (αtkx + βxxk + 2βxkx)
∂

∂kx
+ λαt

∂

∂λ
+ κβx

∂

∂κ
. (14)



Basis of Joint Invariants 55

Since the functions α and β are arbitrary, upon the equation to zero of the coefficients
of αtt, βxx, αt and βx in the equation X̃J(h, ht, hx; k, kt, kx;λ, κ) = 0 yield the following
system of four PDEs:

h
∂J

∂ht
+ k

∂J

∂kt
= 0, h

∂J

∂hx
+ k

∂J

∂kx
= 0,

h
∂J

∂h
+ k

∂J

∂k
+ 2ht

∂J

∂ht
+ hx

∂J

∂hx
+ 2kt

∂J

∂kt
+ kx

∂J

∂kx
− λ

∂J

∂λ
= 0,

h
∂J

∂h
+ k

∂J

∂k
+ ht

∂J

∂ht
+ 2hx

∂J

∂hx
+ kt

∂J

∂kt
+ 2kx

∂J

∂kx
− κ

∂J

∂κ
= 0. (15)

Solution of the above equations (15) results in

J = J
(
p, J1

2 , C1, C2

)
,

where p and J1
2 are as before and the constants C1 and C2 are

C1 = λκh, C2 =
κ

h2
(hkx − khx). (16)

We have from equations (16) that

λ =
hkx − khx

h3
C3, κ =

h2

hkx − khx
C2, (17)

where C3 is a constant. In the cases C2 = 1, C3 = 0 and C2 = 0, C3 = 1, one obtains two
independent operators of invariant differentiation

X̃1 =
hkx − khx

h3
Dt, X̃2 =

h2

hkx − khx
Dx, (18)

respectively.
If one uses the operator of invariant differentiation X̃1 on p, the joint differential inva-

riant J1
2 is obtained, i.e., X̃1(p) = J1

2 . Similarly, X̃2(p) = 1 is found, i.e., no new invariant
is found. Hence, a basis of joint differential invariants is

{
p, q, J1

3 , J
2
3 , J

3
3

}
. (19)

Now we are in a position to state the following theorem.

Theorem 1. The basis of invariants (19) of (2) defined by (2) gives a complete set of joint
differential invariants of equation (2). Any other joint differential invariant is a function
of the basic invariants (19) and their invariant derivatives.

The joint differential invariants (19) defined by (2) provide necessary conditions for
local equivalence of two (1+ 1) linear hyperbolic equations of the form (2). The sufficient
conditions are obtained by the construction of the transformations that map two equations
of this type to each other.
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4 Lie canonical forms

Lie [11] showed that a linear second-order hyperbolic equation can be reduced to one
of four canonical forms according to the non-trivial Lie point symmetries it admits. In
this section, we calculate the joint differential invariants obtained in Section 2 for the
Lie canonical forms of the canonical linear hyperbolic equation. This is required for the
applications in the next section.
Recall that in the event of the Laplace invariants h or k being zero, the hyperbolic

equation (2) is factorizable.
Consider the first Lie canonical form

utx +A(x)ux + u = 0, (20)

where A(x) is an arbitrary nonzero function of x. We have the Laplace invariants h = −1
and k = A′ − 1. Then the corresponding joint invariants are

p = 1−A′, q = 0, J1
3 = 0, J2

3 = 0, J3
3 = 0,

provided A′ �= 1. Any hyperbolic equation of the form (2) having the above differential
invariants is reducible to the equation (20).
The second Lie canonical form is given by

utx +Q(t− x)ux + Z(t− x)u = 0, (21)

where Q and Z are arbitrary functions of their arguments. It has the Laplace invariants
h = −Z and k = −(Q′ + Z). The basic invariants of (21) are

p =
Q′

Z
+ 1 = c+ 1, q =

Z
′′

Z2
− (Z ′)2

Z3
=
(lnZ)′′

Z
,

J1
3 = − 1

Z3

[
2Z ′Q

′′
+ 2(Z ′)2 −Q′Z

′′ − 2ZZ ′′ − ZQ
′′′]
= 2(c+ 1)

(lnZ)′′

Z
,

J2
3 = 0, J3

3 = 0,

where Z �= 0 and Q′/Z = c = const (�= −1). Any equation of the form (2) is transformable
into the equation (21), if it has the same differential invariants as above.
Now consider the third Lie canonical form

utx +Axux + u = 0, (22)

where A is an arbitrary constant. The equation (22) has the Laplace invariants h = −1,
k = A− 1 and the basic invariants of (22) are

p = 1−A, q = 0, J1
3 = 0, J2

3 = 0, J3
3 = 0,

where A �= 1.
The fourth Lie canonical form is

utx +
A

t− x
ux +

B

(t− x)2
u = 0, (23)

where A and B are arbitrary constants. The Laplace invariants are h = −B/(t− x)2 and
k = (A−B)/(t− x)2. The basic joint invariants for this equation (23) are

p = 1− A

B
, q =

2
B
, J1

3 = − 4
B2
(A−B), J2

3 = 0, J3
3 = 0,

where B �= 0 or A �= B.
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5 Applications

Some examples are given to illustrate the results obtained in Section 3.

Example 1. Consider the telegrapher’s equation [16]

utx +
λ

2
(ut + ux) = 0, λ = const �= 0. (24)

This equation governs the propagation of signals on telegraph lines and is of dissipative
type. Equation (24) has Laplace invariants h = λ2/4 = k and the joint differential
invariants (19) are

p = 1, q = 0, J1
3 = 0, J2

3 = 0, J3
3 = 0.

Hence, equation (24) is transformable into the third canonical form (22)

ūt̄x̄ + ū = 0, A = 0,

by means of the transformation

t̄ =
λ

2
t, x̄ = −λ

2
x, ū = u exp

{
λ

2
(t+ x)

}
.

Example 2. We now consider another equation [4]:

utx +
l

t− x
(ut − ux) = 0, l �= 0,−1 (25)

which has the Laplace invariants h = −l(l + 1)/(t− x)2 = k. Its invariants (19) are

p = 1, q =
2

l(l + 1)
, J1

3 =
4

l(l + 1)
, J2

3 = 0, J3
3 = 0.

Thus, equation (25) is reducible to the fourth canonical form (23)

ūt̄x̄ +
B

(t̄− x̄)2
ū = 0,

provided A = 0 and B = l(l + 1), by the equivalence transformation

t̄ = t, x̄ = x, ū = u(t− x)−l.

Example 3. Finally, consider

utx + (x+ 2)ut + xux + u = 0 (26)

which has the Laplace invariants h = x2 + 2x− 1, k = x2 + 2x and invariants (19)

p =
x2 + 2x

x2 + 2x− 1 , q = 0, J1
3 = 0, J2

3 = 0, J3
3 = 0.
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Comparison of the invariants of the first canonical form (20) with those of (26) and the
use of the rules of derivatives Dt = φ̇(t)D̄t̄, Dx = ϕ′(x)D̄x̄ give

Ā(x̄) = −x, ϕ(x) =
x3

3
+ x2 − x.

Moreover,

φ(t) = −t, σ(t, x) = exp
{
x2

2
+ 2x

}
.

Thus, equation (26) is reducible to the first canonical form (20)

ūt̄x̄ + Ā(x̄)ūx̄ + ū = 0

by means of the transformation

t̄ = −t, x̄ =
x3

3
+ x2 − x, ū = u exp

{
x2

2
+ 2x

}
.

6 Concluding remarks

We have derived the complete set of joint differential invariants for the scalar linear hy-
perbolic equation of the form (2) upto third order by the infinitesimal method. This
completes the Ovsiannikov invariants obtained in [12, 13]. In fact, we have found a basis
of joint differential invariants for equation (2). The operators of invariant differentiation
were obtained that enable one to find the joint differential invariants of higher orders for
hyperbolic equations (2). Other invariants of (2) are functions of the basic invariants and
their invariant derivatives. Finally, some examples were given to illustrate our results.
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