
Journal of Nonlinear Mathematical Physics Volume 9, Supplement 2 (2002), 92–101 Birthday Issue

Group Invariant Solution and Conservation Law

for a Free Laminar Two-Dimensional Jet

D P MASON

Centre for Differential Equations, Continuum Mechanics and Applications,
School of Computational and Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Wits 2050, Johannesburg, South Africa
E-mail: dpmason@cam.wits.ac.za

Received May, 2002

Abstract

A group invariant solution for a steady two-dimensional jet is derived by considering
a linear combination of the Lie point symmetries of Prandtl’s boundary layer equations
for the jet. Only two Lie point symmetries contribute to the solution and the ratio
of the constants in the linear combination is determined from conservation of total
momentum flux in the downstream direction. A conservation law for the differential
equation for the stream function is derived and it is shown that the Lie point symmetry
associated with the conservation law is the same as that which generates the group
invariant solution. This establishes a connection between the conservation law and
conservation of total momentum flux.

1 Introduction

The theory of laminar jets has many applications in science and engineering. In this paper
we will consider the two-dimensional steady laminar flow of a thin jet from a long narrow
orifice into a fluid at rest. Since the jet is thin, the velocity in the direction of the jet
varies more rapidly across the jet than along the jet. Prandtl’s boundary layer theory
therefore applies. There is no bounding wall. It is a free boundary layer and it is an
example of a flow without an outer flow. Since there is no solid boundary present and the
pressure gradient in the direction of the jet vanishes, the total flux of momentum in the
downstream direction is constant and independent of the distance from the orifice. This
conserved quantity plays an important part in the solution of the problem.

Schlichting [7] was the first to apply laminar boundary layer theory to the steady flow
produced by a free two-dimensional jet emerging into a fluid at rest. He solved the re-
sulting ordinary differential equation numerically. Later, Bickley [1] solved the differential
equation analytically. The application of the boundary layer approximation to laminar
jets is discussed fully in standard texts on boundary layer theory such as by Schlich-
ting [8], Schlichting and Gersten [9] and Rosenhead [6]. The standard procedure is to
obtain a similarity solution by assuming a certain form for the stream function.
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We will derive a group invariant solution for the two-dimensional steady laminar jet
by considering a linear combination of the Lie point symmetries of the partial differential
equation for the stream function. It is not necessary to assume a specific form for the
stream function. This method was introduced by Momoniat et. al. [5] who considered
the axisymmetric spreading of a thin liquid drop. It is found that the similarity solution
of Schlichting [7] and Bickley [1] is the group invariant solution.

There is a close connection between conservation laws for a differential equation and
the Lie point symmetries of the differential equation. By using a result of Kara and
Mahomed [3, 4] connecting conservation laws and Lie point symmetries, we will establish
a connection between a simple conservation law for the partial differential equation for the
stream function and the condition that the total flux of momentum in the direction of the
jet is independent of the distance from the orifice.

2 Mathematical formulation

Consider a steady two-dimensional thin jet which emerges from a long narrow orifice in a
wall into a fluid which is at rest. The surrounding fluid consists of the same fluid as the jet
itself and is viscous and incompressible. Choose the x-axis along the jet with x = 0 at the
wall and the y-axis perpendicular to the jet with y = 0 at the orifice. Since the jet is thin,
vx(x, y) varies much more rapidly with y than with x. The boundary layer approximation
therefore applies to the two-dimensional flow produced by the jet. Since the fluid velocity
vanishes outside the jet, it follows from Euler’s equation that ∂p/∂x vanishes outside the
jet. Since in the boundary layer approximation, p = p(x), it follows that dp/dx vanishes
in the jet. Hence, Prandtl’s two-dimensional boundary layer equations in the jet are

vx
∂vx

∂x
+ vy

∂vx

∂y
= ν

∂2vx

∂y2
, (2.1)

∂vx

∂x
+

∂vy

∂y
= 0, (2.2)

where ν is the kinematic viscosity of the fluid. The boundary conditions are

y = 0 : vy = 0,
∂vx

∂y
= 0, (2.3)

y = ±∞ : vx = 0. (2.4)

By integrating (2.1) with respect to y from y = −∞ to y = ∞ and using (2.3) it can be
verified that J is a constant independent of x where

J = ρ

∫ ∞

−∞
v2
x(x, y) dy = 2ρ

∫ ∞

0
v2
x(x, y) dy. (2.5)

J is the total flux in the x-direction of the x-component of momentum and it is constant
because there is no solid boundary present and dp/dx is neglected.

A stream function ψ(x, y) is introduced which is defined by

vx(x, y) =
∂ψ

∂y
, vy(x, y) = −∂ψ

∂x
. (2.6)
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Equation (2.2) is identically satisfied. Equation (2.1) becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (2.7)

The problem can be stated as follows. Solve the partial differential equation (2.7)
for ψ(x, y) subject to the boundary conditions

y = 0 :
∂ψ

∂x
= 0,

∂2ψ

∂y2
= 0, (2.8)

y = ±∞ :
∂ψ

∂y
= 0. (2.9)

and subject to the condition that J is a given constant independent of x where

J = 2ρ
∫ ∞

0

(
∂ψ

∂y
(x, y)

)2

dy. (2.10)

The approach followed by Schlichting [7, 8] was to assume a similarity solution for the
stream function of the form

ψ(x, y) = xpf
( y

xq

)
. (2.11)

The exponents p and q were determined by imposing the condition that (2.7) reduce to
an ordinary differential equation for f and that J is independent of x. We will look for
a group invariant solution and it will not be necessary to assume a specific form for the
stream function ψ(x, y).

3 Lie point symmetry generators

Equation (2.7) can be written as

F (ψx, ψy, ψxy, ψyy, ψyyy) = 0, (3.1)

where

F = ψyψxy − ψxψyy − νψyyy (3.2)

and a subscript denotes partial differentiation. The Lie point symmetry generators

X = ξ1(x, y, ψ)
∂

∂x
+ ξ2(x, y, ψ)

∂

∂y
+ η(x, y, ψ)

∂

∂ψ
(3.3)

of the partial differential equation (3.1) are obtained by solving the determining equa-
tion [2]

X [3]F
∣∣∣
F=0

= 0, (3.4)
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where

X [3] = X + ζ1
∂

∂ψx
+ ζ2

∂

∂ψy
+ ζ11

∂

∂ψxx
+ ζ12

∂

∂ψxy
+ ζ22

∂

∂ψyy

+ ζ111
∂

∂ψxxx
+ ζ112

∂

∂ψxxy
+ ζ122

∂

∂ψxyy
+ ζ222

∂

∂ψyyy
(3.5)

and

ζi = Di(η)− ψsDi(ξs), (3.6)
ζij = Dj(ηi)− ψisDj(ξs), (3.7)
ζijk = Dk(ηij)− ψijs Dk(ξs), (3.8)

with summation over repeated indices. In (3.6) to (3.8), D1 and D2 are the operators of
total differentiation with respect to x and y respectively:

D1 =
∂

∂x
+ ψx

∂

∂ψ
+ ψxx

∂

∂ψx
+ ψyx

∂

∂ψy
+ · · · , (3.9)

D2 =
∂

∂y
+ ψy

∂

∂ψ
+ ψxy

∂

∂ψx
+ ψyy

∂

∂ψy
+ · · · . (3.10)

Since F depends only on ψx, ψy, ψxy, ψyy and ψyyy, the coefficients ζ11, ζ111, ζ112 and ζ122

do not need to be calculated. The coefficient ζ222 depends on ψyyy which is eliminated
from (3.4) using the partial differential equation (3.1). Equation (3.4) is separated accord-
ing to the derivatives of ψ. It is found that

X = c1X1 + c2X2 + c3X3 + c4X4 + Xg, (3.11)

where c1, c2, c3 and c4 are constants and

X1 = x
∂

∂x
+ y

∂

∂y
, X2 = x

∂

∂x
+ ψ

∂

∂ψ
,

X3 =
∂

∂x
, X4 =

∂

∂ψ
, Xg = g(x)

∂

∂y
, (3.12)

where g(x) is an arbitrary function. The Lie point symmetry generators of the partial
differential equation (2.7) are given by (3.12).

4 Group invariant solution

In order to derive a group invariant solution of (2.7) we consider the linear combina-
tion (3.11) of the Lie point symmetry generators. Since X is determined up to an arbitrary
multiplicative constant we divide (3.11) by c1 which we can expect to be non-zero since X1

is a non-trivial symmetry generator. We incorporate c1 into the remaining constants and
into g(x) which is equivalent to taking c1 = 1.

Now, ψ = Φ(x, y) is a group invariant solution of (2.7) provided[(
(1 + c2)x + c3

)∂

∂x
+

(
y + g(x)

) ∂

∂ψ
+ (c2ψ + c4)

∂

∂ψ

](
ψ − Φ(x, y)

)∣∣∣
ψ=Φ

= 0, (4.1)
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which may be rewritten as

(
(1 + c2)x + c3

)∂Φ
∂x

+
(
y + g(x)

)∂Φ
∂y

= c2Φ+ c4. (4.2)

Equation (4.2) is a quasi-linear first order partial differential equation for Φ(x, y). Two
independent solutions of the differential equations of the characteristic curves are

y(
x + c3

1+c2

) 1
1+c2

− G(x) = a1, (4.3)

Φ + c4
c2(

x + c3
1+c2

) c2
1+c2

= a2, (4.4)

where

G(x) = (1 + c2)1/(1+c2)

∫ x g(x) dx[
(1 + c2)x + c3

] 2+c2
1+c2

(4.5)

and a1 and a2 are constants. Hence, since ψ = Φ(x, y), the group invariant solution of (2.8)
is of the form

ψ(x, y) =
(

x +
c3

1 + c2

) c2
1+c2

f(ξ)− c4

c2
, (4.6)

where f(ξ) is an arbitrary function of ξ and

ξ =
y(

x + c3
1+c2

) 1
1+c2

− G(x). (4.7)

We now substitute (4.6) into (2.7). This yields an ordinary differential equation for f(ξ):

ν
d3f

dξ3
+

c2

(1 + c2)
d
dξ

(
f(ξ)

df

dξ

)
+ 2

(
1
2 − c2

1 + c2

) (
df

dξ

)2

= 0. (4.8)

Consider next the condition that J , defined by (2.10), is constant independent of x.
By making the change of variable from y to ξ at any given position x, (2.10) becomes

J = 2ρ
(

x +
c2

1 + c2

) 2c2−1
c2+1

∫ ∞

0

(
df

dξ

)2

dξ. (4.9)

Thus J is independent of x provided

c2 =
1
2
. (4.10)

When c2 = 1
2 , (4.9) becomes

J = 2ρ
∫ ∞

0

(
df

dξ

)2

dξ (4.11)
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and (4.6) and (4.7) reduce to

ψ(x, y) =
(

x +
2
3
c3

)1/3

f(ξ)− 2c4, (4.12)

ξ =
y(

x + 2
3c2

)2/3
− G(x). (4.13)

The differential equation (4.8) becomes

d3f

dξ3
+

1
3ν

d
dξ

(
f(ξ)

df

dξ

)
= 0. (4.14)

We see that the result c2 = 1/2 puts the differential equation (4.8) in a form that can be
integrated analytically.

Finally, consider the boundary conditions on f(ξ). The function g(x) in (4.5) is arbit-
rary. To make ξ = 0 correspond to y = 0 we choose g(x) = 0 and therefore G(x) = 0.
Since

∂ψ

∂x
=

1

3
(
x + 2

3c3

)2/3

(
f(ξ)− 2ξ

df

dξ

)
, (4.15)

∂ψ

∂y
=

1(
x + 2

3c3

)1/3

df

dξ
,

∂2ψ

∂y2
=

1(
x + 2

3c3

) d2f

dξ2
, (4.16)

the boundary conditions (2.8) and (2.9) on ψ(x, y) yield the following boundary conditions
on f(ξ):

f(0) = 0, f ′′(0) = 0, f ′(±∞) = 0. (4.17)

For completeness we outline briefly the solution of (4.14) subject to the boundary
conditions (4.17). Integration of (4.14) once with respect to ξ gives

d2f

dξ2
+

1
3ν

f(ξ)
df

dξ
= k, (4.18)

where k is a constant. The boundary conditions (4.17) give k = 0 provided

f(0)
df(0)
dξ

= 0. (4.19)

We will take k = 0 and check that the solution obtained satisfies (4.19). Equation (4.18)
becomes

d2f

dξ2
+

1
6ν

d
dξ

(
f2(ξ)

)
= 0 (4.20)

and integration with respect to ξ gives

df

dξ
+

1
6ν

f2(ξ) =
α2

6ν
, (4.21)
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where α is a constant. Since vx is positive, it follows from (2.6) and (4.16) that df/dξ is
positive. Hence the left hand side of (4.21) is positive and we therefore wrote α2 instead
of α on the right hand side. Equation (4.21) is a variables separable differential equation.
Its solution subject to the boundary condition f(0) = 0 is

f(ξ) = α tanh
( α

6ν
ξ
)

. (4.22)

It is readily verified that (4.19) is satisfied by (4.22). The constant α is obtained in terms
of the given flux of momentum, J , by substituting (4.22) into (4.11):

α =
(
9νJ

2ρ

)1/3

. (4.23)

The boundary condition f ′(±∞) = 0 was not used. It is satisfied by the solution (4.22).
It remains to determine the constants c3 and c4. The long narrow orifice in the wall

is assumed to be infinitely small. In order to have a finite volume of flow and a finite
momentum it is necessary to assume an infinite fluid velocity at the orifice [8]. Now

vx(x, 0) =
∂ψ

∂y
(x, 0) =

α2

6ν
(
x + 2

3c3

)1/3
. (4.24)

We therefore take c3 = 0 to ensure that vx(x, 0) = ∞ at x = 0. Also, a stream function
ψ(x, y) is determined up to an arbitrary additive constant. Hence from (4.12) we choose
c4 = 0.

From (4.12), (4.13) and (4.22) we obtain the group invariant solution

ψ(x, y) = αx1/3 tanh
( α

6ν
ξ
)

, (4.25)

where α is given by (4.23) and

ξ =
y

x2/3
. (4.26)

This result agrees with the solution obtained by the combined work of Schlichting [7] and
Bickley [1] and given in standard texts [6, 8]. The solution derived by Schlichting and
Bickley is therefore the group invariant solution.

Since c1 = 1, c2 = 1/2, c3 = 0, c4 = 0 and g(x) = 0, the Lie point symmetry which
generates the group invariant solution is

X =
3
2
x

∂

∂x
+ y

∂

∂y
+

1
2
ψ

∂

∂ψ
. (4.27)

5 Conservation law

We will establish a connection between a conservation law for the differential equation
(2.7), the Lie point symmetry (4.27) which generated the group invariant solution of the
differential equation and conservation of the total flux of momentum in the direction of
the jet.
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The equation

D1T
1 + D2T

2 = 0 (5.1)

is a conservation law for the differential equation (2.7) if (5.1) is satisfied for all solu-
tions ψ(x, y) of (2.7) [2]. In (5.1) D1 and D2 are the operators of total differentiation
defined by (3.9) and (3.10). The quantities T i(x, y, ψ, ψx, ψy, . . .), where i = 1 and 2, are
the components of the conserved vector T =

(
T 1, T 2

)
.

It is readily verified that

D1

(
ψ2

y

)
+ D2(−ψxψy − νψyy) = 0 (5.2)

for all solutions ψ(x, y) of the partial differential equation (2.7). Equation (5.2) is a con-
servation law for (2.7) and the components of the conserved vector are

T 1 = ψ2
y , T 2 = −ψxψy − νψyy. (5.3)

Now, from a result due to Kara and Mahomed [3, 4], if

X = ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ η

∂

∂ψ
(5.4)

is a Lie point symmetry of (2.7) and T 1 and T 2 are the components of the conserved vector
of (2.7) associated with X then

X [l]T i + T iDkξ
k − T kDkξ

i = 0, i = 1, 2, (5.5)

where X [l] is the lth prolongation of X and the repeated index is summed form k = 1 to
k = 2. We will use this result to determine the Lie point symmetry associated with the
conserved vector (5.3).

For the conserved vector (5.3), l = 2. When expanded, (5.5) consists of the two
equations

i = 1 : X [2]T 1 + T 1D2ξ
2 − T 2D2ξ

1 = 0, (5.6)

i = 2 : X [2]T 2 + T 2D1ξ
1 − T 1D1ξ

2 = 0. (5.7)

Consider the Lie point symmetry (3.11) with c1 = 1. Using (3.6) and (3.7) it follows that

X [2] =
[
(1 + c2)x + c3

]∂

∂x
+

(
y + g(x)

)∂

∂y
+ (c2ψ + c4)

∂

∂ψ
+

(
−ψx − dg

dx
ψy

)
∂

∂ψx

+ (c2 − 1)ψy
∂

∂ψy
+ ζ11

∂

∂ψxx
+ ζ12

∂

∂ψxy
+ (c2 − 2)ψyy

∂

∂ψyy
. (5.8)

By using (5.3) for T 1 and T 2, equations (5.6) and (5.7) become

(2c2 − 1)T 1 = 0, (2c2 − 1)T 2 = 0. (5.9)

Thus (5.6) and (5.7) are satisfied provided c2 = 1/2.
Hence X given by (3.11) is the Lie point symmetry generator associated with the

conserved vector (5.3) provided c2 = 1/2. This is the same condition on c2 as obtained
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from (4.9) by insisting that J is independent of x. Hence c2 as determined by (5.5) has
the same value as in the Lie point symmetry (4.27) which generates the group invariant
solution. This establishes a connection between the conserved vector T and the total
momentum flux J through the Lie point symmetry generator. No condition is placed
on c3, c4 or g(x) by (5.5). The constants c3 and c4 and the arbitrary function g(x) are
determined by the choice of origin of coordinates and the choice of the arbitrary additive
constant in the stream function.

The connection between the conserved vector T and the total momentum flux J is that
they are related through the identity

T 1 =
1
2ρ

∂J

∂y
. (5.10)

6 Conclusions

The solution for the stream function of a free two-dimensional jet derived by the combined
work of Schlichting [7] and Bickley [1] is the group invariant solution. Only two of the five
Lie point symmetries of (2.7) contribute to the generation of the group invariant solution.

The group invariant solution, given by (4.25) and (4.26), has the form (2.11) assumed
by Schlichting [7, 8]. To obtain the group invariant solution, the form (2.11) was not
assumed, but was derived. The Lie group analysis also shows that there are no other
forms for a similarity solution of (2.7) besides (2.11).

The method used a conserved quantity to determine the constants in the linear com-
bination of Lie point symmetries. In the problem considered here the conserved quantity
was the total momentum flux in the direction of the jet. In the original problem considered
by Momoniat et. al. [5] the conserved quantity was the total volume of the liquid drop.
The method will be applicable to other problems for which conserved quantities can be
derived.

We established a connection between a simple conservation law for the differential
equation for the stream function and conservation of the total momentum flux. The Lie
point symmetry associated with the conservation law is the same as that which generates
the group invariant solution which was derived by imposing the condition that the total
momentum flux is conserved.
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