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Abstract—This paper discusses on how the Kohonen Self-
Organizing Map (KSOM) is used as a tool to cluster and 
classify the tropical wood species. Wood features have been 
extracted through the use of two features extractors; Basic 
Grey Level Aura Matrix (BGLAM) and Statistical Properties 
of Pores Distribution (SPPD) techniques from the wood images. 
The wood dataset is trained and tested separately using KSOM 
algorithm with different parameters such as the number of 
epochs and map sizes in order to find the best topological 
network for clustering and classifying the wood data. The 
clustering results are analyzed and the best result is selected 
based on common KSOM performance measurement; 
topological error and quantization error. The number of 
cluster performed by KSOM is 61 clusters, while the number 
of overlapped cluster varies for each map. From the results, 
the 23x23 map size has produced the lowest number of 
overlapped clusters with the minimum value of topological 
error and quantization error. 

Keywords-clustering, Kohonen Self-Organizing Map 
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I. INTRODUCTION 
Wood is the most important naturalsource in tropical 

countries especially Malaysia and commonly, the wood 
production is designated for timber industries. The 
International Tropical Timber Organization (ITTO) has 
categorized that 60% of its members comprise of tropical 
countries, which are known as the producer countries and the 
remaining are the consumer countries that involved the non-
tropical countries [1]. Malaysia is one of the wood producer 
countries, which has the world’s largest area of certified 
tropical forest. The total amount of wood exports of certified 
timber products is between 72,000 and 84,000 cu m annually 
or 6,000 and 7,000 cu m monthly [2], and the number has 
tremendously increased every year. The total exports of the 
wood and the wood products from January to August 2012 
were RM 13.18 billion [3]. The wood is designated for wood 
industry, such as building and housing, house design, 
furniture, handicraft, boat, construction and carving. Some of 
these woods are indigenous species and can only be found in 
the certain areas of this country.  

In the early 1990s at least 1/3 of log exports from 
Malaysia were illegal due to some reasons, including the 
high demand for wood and shortage of supply from 
Permanent Forest Reserves and State Land and the existence 
of illegal wood-based mills, which is still in operation [4]. 
Normally this illegal wood trade is carried out through wood 

smuggling and the illicit operations in other countries [5]. 
The Malaysian firms are complicit in illegal harvesting. In 
Kalimantan, the wood is sometimes smuggled across the 
border and then shipped as "Malaysian" wood [4]. The 
Malaysia Timber Council has estimated that currently there 
are approximately 176 million m3 total merchantable volume 
of wood in the production forest. Furthermore, assuming that 
the logging continues in the year 2004 with the production 
rate of 22 million m3, the total merchantable volume will be 
depleted within 8 years of by 2014. To mitigate the 
deforestation, the Compensatory Forestry Plantation Project 
was launched in 1982 and it was reported that the total of 
50,000 hectares has been established. Yet, this is hardly a 
sufficient mitigating factor because of the 15 years maturity 
period while the annual rate of deforestation is about 400,000 
hectares. Regardless, a commercial forest cannot replace the 
destroyed virgin rain forest with its accompanying rich 
biodiversity, which took millions of years to form. 

The National Forestry Act (1984) was amended by the 
Malaysia Parliament on 4th August 1993 where heavier 
penalties would be imposed on forest offenses to deter illegal 
logging. However, the enforcement has again proved the 
weakest link due to the lack of manpower to effectively 
police vast tracts of the rain forest[7]. The detection and 
classification process is normally done manually by the 
wood experts who havevast experiences and knowledge in 
this area. They normally used dichotomous key; the 
traditional way of classifying the wood species by looking at 
the tree barks and the pattern of the wood cross-section. The 
task has become harder caused by some influential factors; 
including (1) wood reaction, (2) fungus attack, (3) site 
condition and (4) weather and light condition. Besides that, 
the other main problem is the overlapped issues among the 
wood species due to: - 

• Some of the wood species have different features 
even though they are in the same species 

• Some different species might have similar features 
with other species 

These have made the wood species classification to 
become harder and complex. Nevertheless, the authorities 
have to check and verify every operation and export 
transaction to prevent the illegal logging. Hence, it is an 
urge to have an automated wood recognition system to help 
the authority bodies to control the situation.  
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II. PREVIOUS WORKS 
Khalid et.al [7] has developed an automatic wood 

recognition system based on image processing, feature 
extraction and artificial neural networks. This system is able 
to classify 30 tropical wood species accordinglybased on 
macroscopic wood anatomy. The wood features are extracted 
using grey level co-occurrence matrix (GLCM) and 
Backpropagation Neural Network (BPNN) is applied as a 
classifier to train and classify the wood data according to its 
species. While Nasirzadeh et.al [8] used LBP histogram to 
extract features from the enhanced wood images, which help 
to determine the classification between the various wood 
species. The recognition and classification are performed 
using nearest neighbor classifier in the computed space with 
Chi-square as a dissimilarity measure. 

Hence, the wood recognition work is continued by 
focusing on the main problem in the wood images; the lack 
of discriminative features of the texture images [9]. Gabor 
filter is chosen as a feature extractor to generate multiple 
processed images from a single image, in order to obtain 
more wood features. Gabor filter has increased the 
performance of the BPNN network training by producing 
higher accuracy compared to the previous work. Another 
work done by Yusof et.al [10]proposed a new mutation 
operation for faster feature selection by Genetic Algorithm 
(GA) based on exclusiveness of the allele. The standard 
exclusiveness in GA preserves the fit chromosomes that are 
evaluated using the fitness function. In the same way, the 
highest fit allele will be preserved and the fitness of the allele 
is evaluated based on the frequency of occurrences.This 
method has increased the optimal convergence rate for 
feature selection while maintaining the classification 
accuracy. Then, Khalid et.al [11] has developed a pre-
classification stage to solve the nonlinearity of the tropical 
wood species separation boundaries problem using K-Means 
Clustering and Kernel Discriminant Analysis (KDA). The K-
means clustering allows the system to compute the wood 
database in a respective cluster instead of computing the 
entire database to classify a wood species while the 
dimension reduction enables the wood samples to be 
represented accurately in a lower-dimensional space. As a 
result, by adding the pre-classification stage has increased 
the performance of the network tremendously. 

The selected intelligent technique, Kohonen Self-
Organizing Map (KSOM) has also been widely used as a 
visualization tool for dimensionality reduction. Its unique 
topology preserving property can be used to visualize the 
relative mutual relationships among the data. It has been 
applied to organize and visualize vast amount of textual 
information, for example Welfaremap and WEBSOM [12]. 
The main advantage of KSOM is for the topology 
preservation of the input space, which makes similar topics 
appear closely on the map. Most of these applications 
however are based on 2D grids and map.  

III. METHODOLOGY 

A. Data Acquisition 
For this research, the wood samples are obtained from 

Forest Research Institute of Malaysia (FRIM), which 
comprises of 52 tropical wood species in cubic form where 
each species has 5 sample cubes. As a preparation for feature 
extraction process, the wood images are captured and pre-
processed by using the homomorphic filter to enhance, 
sharpen and flatten lighting variations in the images. For this 
research, two feature extraction methods have been used to 
extract the features from wood images; the same methods 
used by Khairuddin et.al [15] in their work. The two feature 
extractors are Basic Grey Level Aura Matrix (BGLAM) and 
Statistical Properties of Pores Distribution (SPPD) to extract 
the wood features. This combination has produced 157 wood 
features where 136 features are from BGLAM and the other 
21 is from SPPD. The total number of wood samples is 5040, 
which represents 52 tropical wood species. BGLAM can 
uniquely represent the wood images by applying the 
homomorphic image of wood since it can characterize the 
co-occurrence probability distributions of gray levels at all 
possible displacements configurations. Qin and Yang 
[16]had proved in their research that BGLAM could give the 
necessary and sufficient information to differentiate between 
images. Then SPPD technique is implemented to both black 
and white pores images, separately, where only distinct pores 
are acknowledged as characteristics of a species.Fig. 1 shows 
the images of ‘Palaquiumridleyi’ or Bitis. 

 
Figure 1. The images of wood (a) homomorphic image of wood, 

(b) black pores image of wood and (c) white pores image of wood
There are only 10 features are obtained from black pores 

and another 10 features from white pores images, which are:- 
• Mean size of pores and corresponding standard 

deviation (2 features) 
• Mean distance between pores and corresponding 

standard deviation (2 features) 
• Number of small, medium and large pores (3 

features)  
• Number of pairs and solitary pores (2 features)� 
• Number of pores per square  mm (1 feature) 

There is another feature that has been obtained from the 
original image; the grey level feature. Thus, the total 
number of wood features that have been extracted using 
SPPD is 21 features. 

B. Data Clustering 
After completing the feature extraction process, wood 

data is trained and tested using KSOM algorithm. In this 
experiment, the number of input ݔ is the number of wood 
features; 157 features while the number of cluster nodes are 
determined by doing several experiments, arranged into an 
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features; which is the pores size. This is shown clearly in Fig 
4, where wood species with same pores size are arranged 
into the same cluster. Generally, the pores size for tropical 
wood species can be categorized into three sizes; (1) small, 
(2) medium-sized and (3) large, as shown in Table 2 and 
Figure 6. 

Table 2. Wood Species based on Pores Sizes 

Pore Sizes Wood Species 
Small Mataulat 

Medium-
Sized 

balau, bintangor, bitis, chengal, gerutu, giam 
jelutong, kapur, kasai, kekatong, keledang, keranji, kulim, 
machang, medang, melunak, perupok, redbalau 

Large bintangor, durian, gerutu2, kapur, kasai, keledang, keruing, 
machang, merantibakau, redbalau, rubberwood, sesendok 

 

 

 Figure 4:Clustering result according to pores size (Small, Medium-Sized 
and Large) 

V. CONCLUSION 
Wood recognition systems have provided a huge 

advantage by helping the authorities to determine the 
originality and the quality of the tropical wood. The reason 
for adapting and applying different techniques and methods 
used in the previous researchesis to increase the accuracy of 
the wood recognition system. The use of intelligent 
techniques in image processing, feature extraction and 
clustering and classification phases has improved the 
performance of existing wood recognition system. In the 
preliminary experiments, KSOM has been used as a 
clustering tool to cluster thousands of wood data into its 
original clusters, thus it helps in identifying the error data, 
which has been misallocated in other clusters.The KSOM 
able to cluster and classify the wood data according to the 
wood pore sizes even though there are 11 overlapped clusters 
have been formed. Further, some extension will be made by 
hybridizing the KSOM with optimization technique to solve 
the overlapped clusters problem.  
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