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Abstract

We consider surfaces arising from integrable partial differential equations and from
their deformations. Symmetries of the equation, gauge transformation of the corre-
sponding Lax pair and spectral parameter transformations are the deformations which
lead infinitely many integrable surfaces. We also study the integrable Willmore sur-
faces.

Surfaces corresponding to integrable equations are called integrable and a connection for-
mula, relating integrable equations to surfaces, was first established by Sym [1], [2]. Here
in this work we shall give a brief introduction (following our previous work [3]) of the
recent status of the subject and also give some new results.

Let F : U → R
3 be an immersion of a domain U ∈ R

2 into R
3. Let (u, v) ∈ U . The sur-

face F (u, v) is uniquely defined to within rigid motions by the first and second fundamental
forms. Let N(u, v) be the normal vector field defined at each point of the surface F (u, v).
Then the triple {Fu, Fv, N} define a basis of Tp(S), where S is the surface parameterized
by F (u, v) and p is a point in S, p ∈ S. The motion of the basis on S is characterized
by the Gauss-Weingarten (GW) equations. The compatibility of these equations are the
well-known Gauss-Mainardi-Codazzi (GMC) equations. The GMC equations are coupled
nonlinear partial differential equations for the coefficients gij(u, v) and dij(u, v) of the first
and second fundamental forms respectively. For certain particular surfaces these equations
reduce to a single or to a system of integrable equations. The correspondence between the
GMC equations and the integrable equations has been studied extensively, see for example
[3].

Recently a more systematic approach to surfaces, GMC equations and integrable equa-
tions has been established by defining surfaces on Lie algebras and on their Lie Groups.
In particular this approach provides an explicit relation between symmetries of integrable
equations and surfaces in R

3. The investigation of this relation between generalized sym-
metries and the associated surfaces in R

3 is the main subject of this work. We have a
new result indicating that the sphere, for a large class of differential equations, is the inte-
grable surface corresponding to the some special gauge transformations (generalizing the
Theorem 2.3 of Ref.[3]) and to some translational symmetries. We also give a connection
with the integrable surfaces and Willmore surfaces in the last section.

Let us first give the connection between the integrable equations with the surface in R
3
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60 M Gürses

Theorem 1 (Fokas-Gelfand [4]) Let U(u, v;λ), V (u, v;λ), A(u, v;λ), B(u, v;λ) ∈ su(2) be
differentiable functions of u, v and λ in some neighborhood of R

2 × R. Assume that these
functions satisfy

Uv − Vu + [U, V ] = 0,

and

Av −Bu + [A, V ] + [U,B] = 0

Define Φ(u, v;λ) ∈ SU(2) and F (u, v;λ) ∈ su(2) by the equations
Φu = U Φ , Φv = V Φ,

and

Fu = Φ−1AΦ , Fv = Φ−1BΦ.

Then for each λ, F (u, v;λ) defines a 2-dimensional surface in R
3,

xj = Fj(u, v;λ) , j = 1, 2, 3 , F = i
3∑

k=1

Fk σk,

where σk are the usual Pauli matrices. The first and second fundamental forms of S are

(dsI)2 =< A,A > du2 + 2 < A,B > dudv+ < B,B > dv2,
(dsII)2 =< Au + [A,U ], C > du2 + 2 < Av + [A, V ], C > dudv+
< Bv + [B, V ], C > dv2,

where < A,B >= −1
2 trace(AB) , |A| = √

< A,A >, and C = [A,B]
|[A,B]| . A frame on this

surface S, is

Φ−1AΦ , Φ−1BΦ , Φ−1CΦ.

The Gauss and mean curvatures of S are given by K = det(G) , H = trace(G) , where
G = g−1 b.

Given U and V to find A and B from the equation Av −Bu + [A, V ] + [U,B] = 0 is in
general a difficult task. However, there are some deformations which provide us A and B
directly. These deformations are given as follows ,[5], [3], [1],[2],[9],[10].

1. Spectral parameter invariance of the equation. Historically this was the first deforma-
tion of integrable equations which gives a very nice connection with the integrable surfaces
and it has first established by Sym [1], [2]. His connection formula is given by

A = ∂U
∂

λ
, B =

∂V

∂λ
, F = Φ−1 ∂Φ

∂λ
.

2. Symmetries of integrable differential equations. Let δ denote an operation representing
one of such symmetries. Then

A = δU, B = δV, F = Φ−1 δΦ.
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δ may represent the classical Lie symmetries and (if integrable) the generalized symmetries
of the nonlinear PDE.

3. Gauge symmetries of the Lax equation.

A =
∂M

∂u
+ [M,U ], B =

∂M

∂v
+ [M,V ], F = Φ−1M Φ.

Here M is any traceless 2× 2 matrix.

Any linear combination of these deformations give also new A, B and F . Hence we observe
that there are infinitely many surfaces corresponding to deformations of an integrable
differential equation. Among these surfaces we focus our attention to some special cases.
For illustration we shall first give surfaces corresponding to some deformations of sine-
Gordon equation.

Deformations of Sine-Gordon Surfaces

The sine-Gordon equation is given by

∂2 θ

∂u∂v
= sin θ, (0.1)

where θ(u, v) ∈ R and time is denoted by v. Define U(u, v, λ), and V (u, v, λ) by

U =
i

2
(−θu σ1 + λσ3) , V =

i

2λ
(sin θσ2 − cos θσ3). (0.2)

Let ϕ be a symmetry of equation (0.1), i.e., let ϕ be a solution of

∂2 ϕ
∂

u
∂v = ϕ cos θ. (0.3)

Then for each ϕ Theorem 2 (with α = 0,M = 0) implies the surface constructed from

A = − i
2
∂ϕ

∂u
σ1 , B = − i

2λ
ϕ(cos θ σ2 + sin θ σ3). (0.4)

Equation (0.1) is an integrable equation and hence it admits infinitely many symmetries
usually referred as generalized symmetries. Indeed, there exists infinitely many explicit
solutions of equation (0.3) in terms of θ and its derivatives.The first few are

ϕ := θu , θv , θuuu +
θ3u
2
, θvvv +

θ3v
2
, ... (0.5)

We now give the surfaces corresponding to these generalized symmetries
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Let S be the surface generated by a generalized symmetry of the sine-Gordon equation.
That is, let S be the surface generated by U, V,A,B defined by equations (0.2)-(0.4). The
first and second fundamental forms, the Gaussian and the mean curvatures of this surface
are given by

ds2I =
1
4
(ϕ2

u du
2 +

1
λ2
ϕ2 dv2) , ds2II =

1
2
(λϕu sin θdu2 +

1
λ
ϕθvdv

2) (0.6)

K =
4λ2θv sin θ
ϕϕu

, H =
2λ(ϕuθv + ϕ sin θ)

ϕϕu
(0.7)

Let S be the particular surface defined above lemma corresponding to ϕ = θv. This surface
is the sphere with

ds2I =
1
4
(sin2 θ du2 +

θ2v
λ2
dv2) , ds2II =

λ

2
(sin2 θ du2 +

θ2v
λ2
dv2) (0.8)

K = 4λ2 , H = 4λ (0.9)

We now consider different class of surfaces associated with solutions of the sine-Gordon
equation. These are called the Weingarten surfaces. Surfaces where the Gauss and mean
curvatures are related are called the Weingarten surfaces. Some deformations of the sine-
Gordon equation lead to the linear Weingarten surfaces. Let S be the surface constructed
from U and V defined by equations (0.2) and from A = µ∂U

∂λ + ip
2 [σ1, U ], B = µ∂V

∂λ +
ip
2 [σ1, V ]. This surface is a linear Weingarten surface and parallel to a space of negative
constant curvature. The distance between these surfaces is p

4 . The relation between the
Gauss and mean curvatures are given by

(µ2 + λ2 p2)K − 2 p λ2H + 4λ2 = 0. (0.10)

Let K0 and H0 be the Gaussian and mean curvatures of a surface S0 with constant
curvature K0 and let S be parallel to S0 then (see [3])

K0 =
K

1− 2 aH + a2K
, H0 =

H − aK
1− 2 aH + a2K

(0.11)

where a is a constant. Hence comparing the first equation above and (0.10) we find that
a = p

4 and K0 = − 16 λ2

3p2+4µ2 . Hence S is parallel to a surface S0 with negative constant
curvature. p

4 is the distance between the surfaces.

From the above example, deformations of integrable nonlinear partial differential equa-
tions lead to some special surfaces , like sphere, Weingarten surfaces. Recently [3] we stud-
ied several integrable partial differential equations like the modified Korteweg-de Vries,
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Nonlinear Schrödinger, hyperbolic sine-Gordon. We have found higher degree Weingarten
(quadratic and higher) surfaces and proved that the deformed surface to any constant
gauge transformation is the sphere. It is possible to generalize this result. The following
surfaces are spheres.

1. Any gauge transformation M with constant determinant, detM = a positive constant.
Since F = Φ−1M Φ, then detF = x2

1 + x
2
2 + x

2
3 = detM .

2. Translational symmetries δ = ∂u or δ = ∂v. In these cases the embedding function
takes the form F = Φ−1 U Φ or Φ−1 V Φ. Deformed surface is the sphere if detU or detV
is a positive constant. Sine-Gordon is an example. For other examples see [3].

Willmore Surfaces

As a final example we shall consider the following surfaces which seem to have a nice
connection with the Willmore surfaces.

Theorem 2. (Bobenko [6]) Let U and V be given by

U =
(

1
2uz −Qe−u/2

H
2 e

u/2 0

)
, V =

(
0 −H

2 e
u/2

Q̄e−u/2 uz̄
2

)
,

satisfying the condition Uz̄ − Vz + [U, V ] = 0 which is equivalent to

u,zz̄ + 1
2H

2eu − 2QQ̄e−u = 0,
Q,z̄ = 1

2H,ze
u, Q̄,z = 1

2H,z̄e
u.

Then the associated surface is given by: The first and second fundamental forms are

ds2I = eu dzdz̄,
ds2II = Qdz2 +Heudzdz̄ + Q̄dz̄2.

Gaussian ,K, and mean ,H, curvatures are respectively given by

K = H2 − 2QQ̄e−2u,
u,zz̄ + 1

2H
2eu − 2QQ̄e−u = 0.

The basis {F,z, F,z̄, N} at each point on the surface is given by

F,z = −ieu/2Φ−1

(
0 0
1 0

)
Φ, F,z̄ = −ieu/2Φ−1

(
0 1
0 0

)
Φ,

N = −iΦ−1

(
1 0
0 −1

)
Φ,

where Φ satisfies the linear equations Φ,z = U Φ and Φ,z̄ = V Φ. The matrices A and B
defined in Theorem 1 are given by

A =
(

0 0
−ieu/2 0

)
, B =

(
0 −ieu/2

0 0

)
.
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Let us parameterize the matrix function Φ as

Φ =
(
ψ̄2 ψ̄1

−ψ1 ψ2

)
.

Then we find that

det(Φ) = ψ1 ψ̄1 + ψ2 ψ̄2 = eu/2,
ψ̄1 ψ2,z − ψ2 ψ̄1,z = −Q,
ψ1,z = pψ2,

ψ2,z̄ = −pψ1,

where p = 1
2He

u/2. From the expressions for F,z and F,z̄ one can show that

x1 − ix2 =
∫
C [(ψ̄2)2dz̄ − (ψ̄1)2dz],

x3 =
∫
C [ψ̄1 ψ2dz + ψ1 ψ̄2dz̄].

This is the Weierstrass representation of a surface often used by Konopelchenko and his
collaborators [7], [8]. Here C is a contour in the complex z-plane. Willmore surfaces arise
from the variation of the following functional

W (S) =
∫ ∫

S
H2dσ =

∫ ∫
U

√
detg H2dzdz̄.

Willmore surfaces extremize this functional and defined by the following Euler-Lagrange
equations (called the Willmore equation) [11]

∇2H + 2H(H2 −K) = 0,

where ∇2 is the Laplace-Beltrami operator defined on the surface. This equation is highly
nonlinear. In particular if one parameterizes S as the graph of a differentiable function f ,
then the Willmore equation becomes a fourth order nonlinear partial differential equation
for f . Sphere and a special torus are exact solutions of the Willmore equation [11]. We
observed that, except the sphere cases, none of the integrable surfaces studied in [3] are
Willmore (their H and K do not satisfy the above Willmore equation). For the surfaces
defined in Theorem 2 the Willmore equation reduces to

H,zz̄ + 2QQ̄He−u = 0,

or

H,zz̄ +Hu,zz̄ +
1
2
H3eu = 0.

As a result any integrable Willmore surface in conformal gauge must satisfy the following
equations

Gauss equation:

u,zz̄ +
1
2
H2eu − 2QQ̄e−u = 0,
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Codazzi equations:

Q,z̄ =
1
2
H,ze

u, Q̄,z =
1
2
H,z̄e

u,

Willmore equations:

H,zz̄ +Hu,zz̄ +
1
2
H3eu = 0.

Exact solutions of the above equations are: (a) The minimal surfaces H = 0 , Q = 0 and
u is a harmonic function. (b) The sphere , H = λ,K = λ2 where λ is a constant, Q = 0
and u satisfies the Liouville equation u,zz̄ + 1

2λ
2eu = 0 which can be solved exactly. (c)

Developable Surfaces , K = 0, Q = Q̄ = 1
2He

u and Hzz̄ + 1
2H

3eu = 0. Here u is a constant
on the surface. Similarity solutions of the cubic nonlinear equation for H can be solved
exactly in terms of the Jacobi elliptic functions. (d) Torus. In [11] Willmore mentions an
exact special torus solution and mentions also his conjecture (the Willmore conjecture)
that W (S) ≥ 2π2 for all tori. Explicit torus solution in the above conformal gauge and
also other solutions will be communicated later.

This work is partially supported by the Scientific and Technical Research Council of
Turkey (TUBITAK) and Turkish Academy of Sciences (TUBA).
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