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Abstract

We consider an important class of deformations of the genus zero bihamiltonian struc-
ture defined on the loop space of semisimple Frobenius manifolds, and present results
on such deformations at the genus one and genus two approximations.

1 Introduction

The notion of Frobenius manifold was introduced by Boris Dubrovin in [1, 2, 3], it is a
coordinate free formulation of the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations
of associativity which arose in the study of 2D topological field theory (TFT) [4, 5]. The
initial motivation of the study of Frobenius manifolds comes from the idea to reconstruct a
2D TFT starting from its primary free energy, which is a solution of the WDVV equations
of associativity. The bihamiltonian structure on the loop space of the Frobenius manifold
comes into the play when one consider the coupling of the matter sector of the 2D TFT
to topological gravity. It was shown in [1, 2, 3] that at the genus zero (tree level) approx-
imation the procedure of coupling to the topological gravity of the matter sector of a 2D
TFT can be described by a bihamiltonian hierarchy of integrable systems of hydrodynamic
type, this hierarchy of integrable systems is call the genus zero bihamiltonian hierarchy
[6], it is defined for any Frobenius manifold. The genus zero free energy of the 2D TFT
is a particular tau-function of this hierarchy. By assuming the semisimplicity property
of the Frobenius maifold, it was shown in [6] that there is also a universal procedure to
construct the genus one free energy of a 2D TFT starting from its primary free energy.
This procedure is also described by a bihamiltonian hierachy of integrable systems which
is certain deformation of the genus zero one.

It is conjectured that there should exist certain deformation of the genus zero bi-
hamiltonian hierarchy which controls the construction of a full 2D TFT. Such deformed
bihamiltonian hierarchy of integrable systems is known for the special case of 2D topo-
logical gravity. It is shown by the theory of Witten [7, 8] and Kontsevich [9] that the full
genera free energy for the 2D topological gravity is the logarithm of the tau-function of a
particular solution of the (bihamiltonian) KdV hierarchy. For the case of the topological
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minimal models and the CP 1 topological sigma model such deformed hierarchies are con-
jectured to be the Gelfand-Dickey hierarchies and the Toda lattice hierarchy respectively
[1, 10, 11, 12, 13, 14, 15].

We present here some results on an important class of deformations of the genus zero
bihamiltonian structure defined on the loop space of any semisimple Frobenius manifold,
they arise naturally when we study the problem of reconstruction of a 2D TFT from
its primary free energy, and are called the quasitrivial deformations of the genus zero
bihamiltonian structures. The main results of this talk is based on [14] where the notion
of quasitrivial deformation was introduced. We first recall the genus zero bihamiltonian
structure that is defined on the loop space of a Frobenius manifold in section 2 and then
consider its deformations in section 3.

2 The genus zero bihamiltonian structure on the loop space
of a Frobenius manifold

By the definition of Boris Dubrovin [1, 3], a smooth manifold M is called a Frobenius
manifold if on each of its tangent spaces TvM there exists a structure of Frobenius algebra,
i.e., there is defined on TvM an operation of multiplication and a nondegenerate bilinear
form < , > such that TvM forms a commutative and associative algebra with unity e, and
the bilinear form is invariant with respect to this multiplication. The Frobenius algebra
structure is required to depend smoothly on the point v ∈ M and satisfies the following
axioms:

i) The metric < , > is flat, and if we denote by ∇ the Levi-Civita connection of this
metric, then ∇e = 0.

ii) Define the three tensor c(ξ, ζ, ρ) =< ξ · ζ, ρ > on TvM , where ξ, ζ, ρ ∈ TvM , then
the four tensor ∇σc(ξ, ζ, ρ) is symmetric w.r.t. ξ, ζ, ρ, σ ∈ TvM .

iii) There exists a vector field E onM , called the Euler vector field, such that ∇∇E = 0
and

LE c
γ
αβ = cγαβ , LE ηαβ = (2− d) ηαβ , (2.1)

where cγαβ is the structure constants of the Frobenius algebra in local flat coordinates
v1, . . . , vn and ηαβ =< ∂

∂vα ,
∂

∂vβ >.

A Frobenius manifold M is called semisimple if there exists v ∈M such that the algebra
defined on TvM is semisimple.

We can choose local flat coordinates (v1, . . . , vn) of the metric < , > near any point on
a Frobenius manifold such that e = ∂

∂v1 . We denote

<
∂

∂vα
,
∂

∂vβ
>= ηαβ , (ηαβ) = (ηαβ)−1 . (2.2)

Here (ηαβ) is a constant matrix. The above definition ensures the existence of a function
F = F (v1, . . . , vn) such that

ηαβ =
∂3F

∂v1∂vα∂vβ
, (2.3)
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and the multiplication on TvM is given by the formula

∂

∂vα
· ∂
∂vβ

= cγαβ

∂

∂vγ
(2.4)

with

cγαβ = ηγν ∂3F

∂vν∂vα∂vβ
. (2.5)

Here and henceforth summation over repeated indices is assumed. Axiom (iii) implies the
quasihomogeneity property of the function F . We assume for simplicity that the linear
part of the Euler vector field is diagonalizable, then the local flat coordinates can be chosen
so that the Euler vector field E has the form

E =
n∑

γ=1

Eγ ∂

∂vγ
=

n∑
α=1

(
(1− d

2
− µα)vα + rα

)
∂

∂vα
, (2.6)

where d, µα, rα are some constants which has the property that rα = 0 if 1− d
2 − µα �= 0,

and

(µα + µβ)ηαβ = 0. (2.7)

Then the function F satisfies

∂EF = (3− d)F +
1
2
Aαβ v

α vβ +Bαv
α + C, (2.8)

for some constants Aαβ , Bα and C. We call F the potential of the Frobenius manifold,
it satisfies the WDVV equations of associativity. In 2D TFT it is called the primary free
energy and in quantum cohomology it is called the Gromov-Witten potential.

The genus zero bihamiltonian structure on the loop space of the Frobenius manifold

L(M) = {(v1(x), . . . , vn(x))
∣∣x ∈ S1}

is induced by a linear pencil of flat metrics on the Frobenius manifold. This linear pencil
of flat metrics is composed of the flat metric < , > and a second flat metric given by
the intersection form on the cotangent bundle of the Frobenius manifold. In the local flat
coordinates of the metric < , > the intersection form is given by the formula

gαβ(v) = (dvα, dvβ) = Eγ cαβ
γ , (2.10)

where

cαβ
γ = ηαν cβνγ (2.11)

and cβνγ are defined in (2.5). The genus zero bihamiltonian structure is given by the
following two compatible Poisson brackets

{vα(x), vβ(y)}1 = ηαβ δ′(x− y) , (2.12a)

{vα(x), vβ(y)}2 = gαβ(v(x)) δ′(x− y) + Γαβ
γ (v(x)) vγ

x δ(x− y) , (2.12b)
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here Γαβ
γ are the coefficients of the Levi-Civita connection of the second metric ( , ) which

has the following expression

Γαβ
γ = −gαν Γβ

νγ =
(
1
2
− µβ

)
cαβ
γ . (2.13)

The compatibility of the above two Poisson brackets means that for any parameter λ, the
following combination of them

{vα(x), vβ(y)}2 − λ {vα(x), vβ(y)}1 (2.14)

also defines a Poisson bracket.

Example 1. Let M be the one dimensional Frobenius manifold, it has the potential

F =
1
6
(v1)3 . (2.15)

The Euler vector field is given by

E = v1
∂

∂v1
, (2.16)

and the genus zero bihamiltonian structure has the form

{v1(x), v1(y)}1 = δ′(x− y) , (2.17a)

{v1(x), v1(y)}2 = v1(x) δ′(x− y) + 1
2
v1x δ(x− y) . (2.17b)

Example 2. Let M be a two dimensional Frobenius manifold with potential

F =
1
2
(v1)2 v2 + exp(v2) . (2.18)

The Euler vector field is given by

E = v1
∂

∂v1
+ 2

∂

∂v2
(2.19)

and the genus zero bihamiltonian structure has the form

{v1(x), v1(y)}1 = {v2(x), v2(y)}1 = 0 , (2.20a)

{v1(x), v2(y)}1 = δ′(x− y) , (2.20b)

{v1(x), v1(y)}2 = 2 ev
2(x) δ′(x− y) + v1x ev

2(x) δ(x− y) , (2.20c)

{v1(x), v2(y)}2 = v1(x) δ′(x− y) , (2.20d)

{v2(x), v2(y)}2 = 2 δ′(x− y) . (2.20e)

Associated to the bihamiltonian structure (2.12) we have the following genus zero bi-
hamiltonian hierarchy of integrable systems:

∂vα

∂tβ,q
= Kα

β,q(v; vx) = {vα(x), Hβ,q}1 , α, β = 1, . . . , n; q ≥ 0 , (2.21)
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the Hamiltonians

Hβ,q =
1
2π

∫ 2π

0
θβ,q+1(v(x))dx, α = 1, . . . , n; q ≥ −1 (2.22)

are defined by the recursion relations

θ1,0 = v2, θ2,0 = v1 ,

∂2θβ,q+1

∂vγ∂vν
= cξγν

∂θβ,q

∂vξ
, α, β = 1, . . . , n; q ≥ 0 ,

∂Eθβ,q = (q + 1− d
2
+ µβ) θβ,q +

q∑
k=1

(Rk)
γ
β θγ,q−k . (2.23)

Here Rk are constant matrices satisfying

[µ,Rk] = k Rk, (Rk)γα ηγβ = (−1)k+1 (Rk)
γ
β ηγα , (2.24)

they are part of the monodromy datas of the Frobenius manifold M at origin [1, 3]. For
the one dimensional Frobenius manifold given in Example 1, we have Rk = 0, k ≥ 1 and
for Frobenius manifold given in Example 2, we have (R1)αβ = 2 δα,2 δβ,1, Rk = 0, for
k ≥ 2.

The genus zero bihamiltonian hierarchy (2.21) satisfies the bihamiltonian recursion
relations

{vα(x), Hβ,q−1}2

= (q + µβ +
1
2
) {vα(x), Hβ,q}1 +

q∑
k=1

(Rk)
γ
β {vα(x), Hγ,q−k}1 , (2.25)

α, β = 1, . . . , n, q ≥ 0 .

Since

∂vα

∂t1,0
=
∂v

∂x
, (2.26)

we identify t1,0 with the spatial variable x.
The bihamiltonian hierarchies related to the bihamiltonian structures (2.17) and (2.20)

of the above two examples are the dispersionless KdV hierarchy and the dispersionless
Toda lattice hierarchy respectively. The dispersionless Toda lattice hierarchy is usually
called the long wave limit of the Toda lattice hierarchy.

The genus zero bihamiltonian hierarchy (2.21) possesses an important property that
the one form defined by

Ω =
∑
θα,p(v)dtα,p (2.27)

is closed, this property together with (2.26) is called a tau-structure of the bihamiltonian
hierarchy (2.21) in [14]. It ensures [3, 14] that for any solution v(t) = (v1(t), . . . , vn(t)) of
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the hierarchy (2.21) there exists a function τ(t), called the tau-function of this solution,
such that

θα,p(v(t)) =
∂2 log τ(t)
∂x∂tα,p

. (2.28)

As it was shown in [1, 2, 3], the genus zero free energy of a 2D TFT is the logarithm of
the tau-function of a particular solution v(0)(t) = (v1(t), . . . , vn(t)) of the hierarchy (2.21),
this solution is uniquely determined by the following conditions:

vα(t)
∣∣∣
tβ,q=0, q≥1

= tα,0 , (2.29)

∑
tβ,q ∂v

α

∂tβ,q
=
∂vα

∂t1,1
. (2.30)

We denote this tau-function by τ (0)(t). In the setting of 2D TFT, the time variables tα,0

and tα,p, p ≥ 1 are the coupling constants of the primary fields and their gravitational
descendents respectively. These variables constitute the big phase space of the 2D TFT.
The genus zero free energy F0(t) = log τ (0)(t) yields the primary free energy (i.e., the
potential of the Frobenius manifold) F (v) if we restrict F0(t) to the small phase space
tα,0 = vα, vβ,q = 0, q ≥ 1. From the identity (2.28) we know that the component v(0)

α
(t)

of the above particular solution of the genus zero bihamiltonian hierarchy coincides with
the following genus zero two point correlation functions:

ηαγ ∂2F0

∂t1,0∂tγ,0
. (2.31)

The above two examples correspond respectively to the 2D topological gravity and the
CP 1 topological sigma model. X-Mozilla-Status: 0000

3 Deformations of the genus zero bihamiltonian structure

We consider deformations of the genus zero bihamiltonian structure (2.12) with the fol-
lowing form:

{wα(x), wβ(y)}i = {wα(x), wβ(y)}(0)
i +

∑
k≥1

εk {wα(x), wβ(y)}(k)
i , (3.1)

i = 1, 2; α, β = 1, . . . , n ,

where ε is the deformation parameter, {wα(x), wβ(y)}(0)
i are defined by (2.12) with vγ , vγ

x ,
γ = 1, . . . , n replaced by wγ , wγ

x, and {wα(x), wβ(y)}(k)
i have the form

{wα(x), wβ(y)}(k)
i =

k+1∑
l=0

Pαβ
i,k;l(w;wx, . . . , ∂

l
xw) δ

(k+1−l)(x− y) . (3.2)

Here Pαβ
i,k;l(w;wx, . . . , ∂

l
xw) are differential polynomials of degree l, i.e., they are polyno-

mials in ∂j
xwγ , j ≥ 1 with coefficients being smooth functions of wγ , and the total degree
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of derivatives with respect to x in each monomial equals l. Examples of such kind of
deformations can be readily obtained by any Miura type transformation of the form

wα = vα +
∑
k≥1

εk Ak(v; vx, . . . , ∂mk
x v), (3.3)

with Ak being differential polynomials of degree k. We call deformation (3.1) that is
obtained in this way a trivial deformation [14]. We will be interested in a class of nontrivial
deformations of the genus zero bihamiltonian structure (2.12), these deformations have the
form (3.1) and are also obtained by Miura type transformation of the form (3.3), however,
instead of being differential polynomials the functions Ak(v; vx, . . . , ∂mk

x v) are smooth
functions of the independent variables vγ , ∂j

xvγ , 1 ≤ j ≤ mk. For most of our interesting
examples these coefficients are in fact rational functions in vγ

x , . . . , ∂mk
x vγ . In [14] such

kind of Miura type transformation is called a quasi-Miura transformation, and the resulting
deformation of the genus zero bihamiltonian structures is called a quasitrivial deformation.
If a deformation (3.1) of the genus zero bihamiltonian structure is considered only at the
approximation up to εk, then we call it a genus k

2 deformation; if a genus
k
2 deformation is

obtained by a quasi-Miura transformation at the approximation up to εk, then it is called
a genus k

2 quasitrivial deformation. Two (genus k
2 ) quasitrivial deformations of the genus

zero bihamiltonian structure (2.12) are said to be equivalent if they are related by a usual
Miura type transformation.

Quasitrivial deformations of the genus zero bihamiltonian structure appear naturally
when we consider the possibility of the existence of a bihamiltonian hierarchy of integrable
systems that is satisfied by the full genera two point correlation functions

∂2F(t)
∂x∂tα,0

(3.4)

of a 2D TFT. It is conjectured in [16] that the genus g free energy is a function of the
genus zero two point correlation functions, this means that Fg should have the form

Fg(t) = Fg(v, vx, . . . , ∂3g−2
x v)

∣∣∣
v=v(0)(t)

, (3.5)

where Fg(v, vx, . . . , ∂
3g−2
x v) are smooth functions of v, vx, . . . , ∂

3g−2
x v and v(0)(t) is the par-

ticular solution of the genus zero bihamiltonian hierarchy (2.21) given in the last section.
On the other hand, the free energy F(t) can be expressed in the genus expansion form

F(t) =
∑
g≥0

ε2g−2Fg(t) , (3.6)

the parameter ε here is called the string coupling constant. So the full genera two point
correlation functions (3.4) have the expressions

∂2

∂x∂tγ,0

∑
g≥0

ε2g Fg(v, vx, . . . , ∂3g−2
x v)

∣∣∣
v=v(0)(t)

. (3.7)

This leads us to consider the following quasi-Miura transformation

wα = vα + ηαγ ∂2

∂x∂tγ,0

∑
g≥1

ε2g Fg(v, vx, . . . , ∂3g−2
x v) . (3.8)
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The hypothetical bihamiltonian hierarchy that is related to the 2D TFT in full genera is
expected to be a quasitrivial deformation of the genus zero one under such a quasi-Miura
transformation.

Assume that we have a quasitrivial deformation (3.1) of the genus zero bihamiltonian
structure, then the genus zero bihamiltonian hierarchy (2.21) also acquires a deformation.
In the new coordinates w1, . . . , wn defined by the quasi-Miura transformation (3.3) the
deformed hierarchy has the form

∂wα

∂T β,q
= Kα

β,q(w;wx) +
∑
k≥1

εkWα
k;β,q(w;wx, wxx, . . . ) = {wα, Hβ,q}1. (3.9)

It is characterized by the deformed bihamiltonian structure and the deformation of the
Hamiltonians

Hβ,q =
1
2π

∫ 2π

0
θβ,q+1(v; vx, . . . )dx =

1
2π

∫ 2π

0
θ̃β,q+1(w;wx, . . . )dx

=
1
2π

∫ 2π

0
(θβ,q+1(w) +

∑
k≥1

εk θ
(k)
β,q+1(w;wx, . . . ))dx. (3.10)

The hierarchy (3.9) is called a quasitrivial deformation of the genus zero hierarchy (2.21)
ifWα

k;β,q are differential polynomials of the x-derivatives of wγ . Moreover, if we can choose
the densities θ̃β,q for the deformed hierarchy (3.9) so that they are differential polynomials
of the x-derivatives of wγ and satisfy the properties: 1) θ̃β,0 = wβ = ηβγ w

γ , 2) the one
form Ω =

∑
θ̃β,qdt

β,q is closed, then for any solution of the deformed bihamiltonian hier-
archy there also exists a tau-function, in this case we call that the quasitrivial deformation
of the genus zero bihamiltonian structure inherits the tau-structure of the genus zero bi-
hamiltonian hierarchy (2.21). The deformations of the genus zero bihamiltonian structure
(2.12) that we are most interested in are the quasitrivial deformations which inherits the
tau-structure due to their important applications in 2D TFT.

We have the following theorem [14]:

Theorem 1. If a quasitrivial deformation (3.1) inherits the tau-structure of the genus
zero bihamiltonian hierarchy (2.21), then it is equivalent to a quasitrivial deformation
with quasi-Miura transformation of the form

wα = vα +
∑
k≥1

εk
∂2F k

2

∂t1,0∂tα,0
, (3.11)

where the functions F k
2
depend at most on the variables vγ , vγ

x , . . . , ∂
3 [ k

2
]−2

x vγ , γ = 1, . . . , n.
Conversely, if a quasitrivial deformation (3.1) corresponds to a quasi-Miura transforma-
tion of the form (3.11), and 1

2 + µβ + q �= 0 for 1 ≤ β ≤ n, q ≥ 1, then it inherits the
tau-structure of the genus zero bihamiltonian hierarchy.

From the above theorem we see that a genus 1
2 quasitrivial deformation (3.1) that

inherits the tau-structure of the genus zero bihamiltonian hierarchy is always trivial. Now
let us consider the genus one quasitrivial deformations of the genus zero bihamiltonian
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structure for semisimple Frobenius manifold, we require that these deformations inherit
the tau-structure of the genus zero bihiamiltonian hierarchy. Due to the above theorem
we can assume that the corresponding quasi-Miura transformation have the form

wα = vα + ε2
∂2

∂t1,0∂tγ,0
F1(v; vx) +O(ε3) . (3.12)

On a semisimple Frobenius manifold, we can choose local coordinates u1, . . . , un such that
in the basis ∂

∂ui , i = 1, . . . , n the multiplication on TxM takes the simple form

∂

∂ui
· ∂
∂uj

= δij
∂

∂ui
. (3.13)

Such local coordinates are called the canonical coordinates of the semisimple Frobenius
manifold. X-Mozilla-Status: 0000

The following theorem is proved in [14]:

Theorem 2. For any semisimple Frobenius manifold, a quasi-Miura transformation of the
form (3.12) defines a genus one quasitrivial deformation of the genus zero bihamiltonian
structure (2.12) iff

F1(v; vx) =
n∑

i=1

ai log(ui
x) + g(u) . (3.14)

Here ai are arbitrary constants, and g(u) is any smooth function of u1, . . . , un.

Theorem 2 indicates that the space of the equivalent classes of the genus one quasitrivial
transformations of (2.12) that inherit the tau-structure form a finite dimensional linear
space, so the property of quasitriviality and the preservation of the tau-structure imposes
a rather strong restriction on the deformations of the genus zero bihamiltonian structure.

An important special case of the above theorem was proved in [6], where the coefficients
ai take the value

ai =
1
24
, i = 1, . . . , n . (3.15)

In this case the function F1 has the following expression:

F1 =
n∑

i=1

ai log(ui
x) + g(u) =

1
24

log det(cαβγ v
γ
x) + g(u). (3.16)

If g(u) is taken to be the G-function, a special function defined in [6, 17], then (3.16)
coincides with the formula of the genus one free energy for topological sigma models.
For the Frobenius manifold given in Example 1 and Example 2 of the last section, the
G-functions are given by G = 0 and G = −v2

24 respectively.
The genus one deformed bihamiltonian structure under the quasi-Miura transformation

(3.12) with F1 defined by (3.16) was explicitly given in [6]. To present them in a concise
form, let’s denote by LieX{ , }(0)

i , i = 1, 2 the infinitesimal deformatiom of the i-th genus
zero Poisson bracket in (2.12) under the usual Miura type transformation

wα = vα + εXα(v; vx, . . . ) +O(ε2) , (3.17)
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where Xα are differential polynomials. That means that under the above Miura type
transformation the first genus zero Poisson bracket (2.12a), for example, is tranformed to
the form

{wα(x), wβ(y)}1 = ηαβ δ′(x− y) + εLieX{wα(x), wβ(y)}(0)
1 +O(ε2) . (3.18)

Under this notation, we have

Theorem 3. Let’s define the vector fields X and Y by

Xα =
1
24
∂2

x(c
αν
ν ), Y α = Aα

γ v
γ
xx +

1
2
Bα

γν v
γ
x v

ν
x, (3.19)

where

Aα
γ =

1
48
cαγνc

νλ
λ +

1
24
cνγλ ∂νg

αλ, Bα
γν = ∂νA

α
γ + ∂γA

α
ν − ηνξ p

ξα
γ (3.20)

with

pαβ
γ =

1
12

(
1
2
− µβ) c

αβ
νξ c

νξ
γ − 1

24
cαξ
νξ Γ

νβ
γ +

1
24

Γαβ
ξ cξν

γν . (3.21)

and cαβ
νξ = ∂cαβ

ν

∂vξ . Then, at the approximation up to ε2, the genus zero bihamiltonian
structure (2.12) acquires the following deformation under the quasi-Miura transformation
(3.12) with F1 defined by (3.16) and g(u) = 0:

{wα(x), wβ(y)}1 = {wα(x), wβ(y)}(0)
1 + ε2 LieX{wα(x), wβ(y)}(0)

1 +O(ε4) (3.22)

{wα(x), wβ(y)}2 = {wα(x), wβ(y)}(0)
2 + ε2 LieY {wα(x), wβ(y)}(0)

1

+ ε2 LieX{wα(x), wβ(y)}(0)
2 +O(ε4) . (3.23)

It can be shown for semisimple Frobenius manifolds that a genus 3
2 quasitrivial deforma-

tion (3.1) of the genus zero bihamiltonian structure (2.12) that inherits the tau-structure
is equivalent to a genus one quasitrivial deformation. Let us consider now the genus two
deformation. An immediate question then arises: whether it is possible to extend the
genus one quasitrivial deformations of the genus zero bihamiltonian structure (2.12) given
in Theorem 2 to genus two quasitrivial deformations? Below we present some evidences
that support a positive answer to the above question at least for certain class of the genus
one quasitrivial deformations given in Theorem 2.

We first consider the quasitrivial deformation of the genus zero bihamiltonian structure
for the one dimensional Frobenius manifold given in (2.17). For this, let us define the
following quasi-Miura transformation:

w = v +
∂2

∂x2

(
ε2 F1 + ε4 F2

)
+O(ε6) , (3.24)

where we have denoted v1, w1 simplify by v, w, and the functions F1, F2 are given by

F1 =
1
24

log(vx),
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F2 =
1
24

(
v3xx

15 v4x
− 7 vxx v

(3)

80 v3x
+
v(4)

48 v2x

)
.

Then under the transformation (3.24) the genus zero bihamiltonian structure (2.17) is
transformed to

{w1(x), w1(y)}1 = δ′(x− y) +O(ε6) , (3.25a)

{w1, w1(y)}2 = w1(x) δ′(x− y) + 1
2
w1

x δ(x− y) +
ε2

8
δ′′′(x− y) +O(ε6) . (3.25b)

The functions F1, F2 correspond to the genus one and genus two free energy of the pure
topological gravity. By the theory of Witten [7, 8] and Kontsevich [9] we know that
the bihamiltonian hierarchy that controls the topological recursion relations of the pure
topological gravity is the KdV hierarchy, it has the following bihamiltonian structure

{w1(x), w1(y)}1 = δ′(x− y) , (3.26a)

{w1, w1(y)}2 = w1(x) δ′(x− y) + 1
2
w1

x δ(x− y) +
ε2

8
δ′′′(x− y) . (3.26b)

It is proved in [14] that this bihamiltonian structure is in fact a quasitrivial deformation
of the genus zero one (2.17).

Let us finally consider the genus two quasitrivial deformation of the genus zero bihamil-
tonian structures for two dimensional Frobenius manifolds. In [14] it was shown that for
any generic two dimensional Frobenius manifold there exists a genus two quasitrivial de-
formation, the quasi-Miura transformation has the form

wα = vα + ηαγ ∂2

∂x∂tγ,0

(
ε2 F1 + ε4 F2

)
, (3.27)

where F1 is defined as in (3.16) with g(u) being the G-function,
and F2 is defined through the genus two Virasoro constraints. It was conjectured by

Eguchi, Hori and Xiong [18] that the partition function exp(
∑

g≥0 ε
2g−2Fg) of a topological

sigma model is annihilated by an infinte set of linear differential operators Lm, m ≥ −1
of the coupling constants tα,p, i.e.,

Lm exp(
∑
g≥0

ε2g−2Fg) =


∑

g≥0

Am,g ε
2g−2


 exp(

∑
g≥0

ε2g−2Fg) = 0. (3.28)

The system of equations

Am,g = 0, m ≥ −1 (3.29)

is called the genus g Virasoro constraints, the equationAm,g = 0 only involves the functions
F0, . . . ,Fg. In [19] these Virasoro constraints are generalized to any Frobenius manifold,
and it was proved that the genus zero free energy F0 defined in the last section for any
Frobenius manifold satisfies the genus zero Virasoro constraints; under the assumption
that the Frobenius manifold is semisimple, the genus one free energy F1 was also proved
to satisfy the genus one Virasoro constraints. The validity of the genus zero Virasoro
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constraints for the topological sigma models was proved in [20]. Under some restrictions
on the quantum cohomology of the target space, the validity of the genus one Virasoro
constraints for the topological sigma models was proved in [21, 22]. The function F2 in
the quasi-Miura transformation (3.27) is uniquely determined by the condition that the
functions F0,F1,F2 defined by (3.5) satisfies the genus two Virasoro constraints [14].

To illustrate the genus two quasitrivial defromations of the genus zero bihamiltonian
structures for two dimensional Frobenius manifolds, let us write down here the genus two
quasitrivial deformation of the bihamiltonian structure (2.20) for the CP 1 topological
sigma model that is given in [14]. Introduce the notations

Vα1,...,αk
=

∂k−1Vα1

∂tα2,0 . . . ∂tαk,0
, k = 1, 2, . . . , (3.30)

(Mα
β ) = (cαβγ v

γ
x), (M−1)αβ = (M−1)αγ η

γβ , (3.31)

and denote

Q1 = V1,α1,α2,α3,α4 (M
−1)α1α2 (M−1)α3α4

Q2 = V1,α1,α2,α3 Vα4,α5,α6 (M
−1)α1α4 (M−1)α2α5 (M−1)α3α6 ,

Q3 = V1,α1,α2 Vα3,α4,α5,α6 (M
−1)α1α3 (M−1)α2α4 (M−1)α5α6 ,

Q4 = V1,α1,α2 Vα3,α4,α5 Vα6,α7,α8 (M
−1)α1α3 (M−1)α2α6 (M−1)α4α7 (M−1)α5α8 .

Q5 = V1,α1,α2

∂2G

∂tα3,0∂tα4,0
(M−1)α1α3 (M−1)α2α4 ,

Q6 =
∂3G

∂x∂tα1,0∂tα2,0
(M−1)α1α2 ,

with

G = − 1
24
v2 ,

then

F2 =
1

1152
Q1 − 1

360
Q2 − 1

1152
Q3 +

1
360

Q4 − 11
240

Q5 +
1
20
Q6 +

7
5760

v2xx,

and the deformed bihamiltonian structure has the expression

{w1(x), w1(y)}1 = {w2(x), w2(y)}1 = 0 ,

{w1(x), w2(y)}1 = δ′ − ε2 1
12
δ′′′ + ε4

1
240

δ(5) ,

{w1(x), w1(y)}2 = 2 ew
2(x) δ′ + w1

x e
w2(x) δ

+ε2 ew
2(x)

[
1
6
δ′′′ +

1
4
w2

x δ
′′

+
(

1
12

(w2
x(x))

2 +
1
4
w2

xx

)
δ′ +

(
1
12
w2

xw
2
xx +

1
12
w2

xxx

)
δ

]

+ε4 ew
2(x)

[
− 1
360

δ(5) − 1
144

w2
x δ

(4) +
1
180

w2
xx δ

′′′
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− 1
120

(w2
x)

2δ′′′ +
11
720

w2
xxxδ

′′ +
1
240

w2
xxw

2
xδ

′′ − 1
180

(w2
x)

3δ′′ +
1
90
∂4

xw
2δ′

+
1
120

w2
xxxw

2
xδ

′ +
7
720

(w2
xx)

2δ′ − 1
720

w2
xx(w

2
x)

2δ′ − 1
720

(w2
x)

4δ′

+
(

1
288

w2
x (w

2
xx)

2 +
1
360

w2
x ∂

4
xw

2 +
1
144

w2
xxw

2
xxx +

1
360

∂5
xw

2

)
δ

]
,

{w1(x), w2(y)}2 = w1(X) δ′ − ε
2

12
(
w1(x) δ′′′ + w1

x δ
′′)

+ε4
1
240

w1(x) δ(5) +
1
120

w1
x δ

(4) +
1
180

w1
xx δ

′′′ +
1
720

w1
xxx δ

′′ ,

{w2(x), w2(y)}2 = 2 δ′ − ε4 1
120

δ(5) .

Here δ(k) = δ(k)(x− y). In [15] it was shown that at the approximation up to ε4 the above
bihamiltonian structure coincides with that of the Toda lattice hierarchy, this suggests that
the bihamiltonian structure of the Toda lattice hierarchy is a quasitrivial deformation of
that of the dispersionless Toda lattice hierarchy (2.20), and that the bihamiltonian hierar-
chy that controls the CP 1 topological sigma model should be the Toda lattice hierarchy,
as was conjectured in [1, 11, 12, 13].

4 Conclusion

We have considered an important class of deformations of the genus zero bihamiltonian
structure defined on the loop space of a semisimple Frobenius manifold. Such deformations
are obtained by quasi-Miura transformations of the form (3.11). They have close relations
with the tau-structure and Virasoro symmetries of the genus zero bihamiltonian hierarchy.
It is conjectured in [14] that there exists a unique quasitrivial deformation of the genus
zero bihamiltonian structure (2.12), the corresponding deformed bihamiltonian hierarchy
possesses the tau-structure and admits a unique tau-function that is invariant under the
the Virasoro symmetries, i.e., Lmτ = 0. This tau-function plays the role of the partition
function in the setting of 2D TFT. In the case of one dimensional Frobenius maifold this
quasitrivial deformation of the genus zero bihamiltonian structure (2.17) is the well known
bihamiltonian structure of the KdV hierarchy, the tau-function that is invariant under the
Virasoro symmetries is just the partition function of the pure topological gravity. A deep
exploration of the of the relations between the tau-structure, the Virasoro constraints and
the quasitrivial deformations of the genus zero bihamiltonian structure on the loop space
of a semisimple Frobenius manifold was given in [14].
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