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Abstract

Hirota’s bilinear technique is applied to some integrable lattice systems related to
the Bäcklund transformations of the 2DToda, Lotka-Volterra and relativistic Lotka-
Volterra lattice systems, which include the modified Lotka-Volterra lattice system,
the modified relativistic Lotka-Volterra lattice system, and the generalized Blaszak-
Marciniak lattice systems. Determinant solutions are constructed through the result-
ing bilinear forms, especially for the modified relativistic Lotka-Volterra lattice system
and a two-dimensional Blaszak-Marciniak lattice system.

1 Introduction

Nonlinear integrable lattice systems have been studied extensively in various sciences.
Among the most remarkable and well-studied integrable lattice systems are the Toda
lattice (TL) system,

ȧn = an(bn−1 − bn), ḃn = an − an+1, (1.1)

and the Lotka-Volterra (LV) lattice system

u̇n = un(vn − vn+1), v̇n = vn(un−1 − un), (1.2)

where the dot denotes the differentiation with respect to the time variable t.
It is well-known that the algebraic structures in the solution space are very important

in investigating nonlinear integrable systems in all continuous, discrete and full discrete
cases. In this aspect, the so-called τ -function is one of the most fundamental objects which
characterize nonlinear integrable systems [1, 2]. It is known that the TL system (1.1) is
transformed into

τ̈nτn − (τ̇n)2 = τn+1τn−1 − τ2
n, (1.3)
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under the dependent variable transformation

an =
d2

dt2
log τn + 1 =

τn+1τn−1

τ2
n

, (1.4a)

bn =
d

dt
log

τn
τn+1

(1.4b)

and the LV lattice system (1.2) is transformed into

ḞnGn − FnĠn + FnGn = c1Fn+1Gn−1, (1.5a)

FnĠn−1 − ḞnGn−1 + FnGn−1 = c2Fn−1Gn, (1.5b)

under the dependent variable transformation

un =
d

dt
log

(
Fn

Gn

)
+ 1 = c1

Fn+1Gn−1

FnGn
, (1.6a)

vn =
d

dt
log

(
Gn−1

Fn

)
+ 1 = c2

Fn−1Gn

FnGn−1
. (1.6b)

The equations (1.3) and (1.5) are all bilinear, and normally called Hirota’s bilinear forms
of (1.1) and (1.2), respectively. Hirota’s bilinear forms provide us with a powerful tool for
constructing a broad class of exact solutions for nonlinear integrable systems, both contin-
uous and discrete. Moreover, from the τ -function theory of the KP hierarchy or through
the Wronskian (Casoratian) technique [1]-[6], we know that many solutions of nonlinear
integrable systems can be expressed in terms of determinants. It is also worth noting that
lots of important features of nonlinear integrable systems, for example, infinitely many
symmetries and conserved densities, can be shown by use of the elementary properties of
the τ -function.
Let us now mention some other integrable lattice systems. The relativistic Toda lattice

(RTL) equation,

q̈n = (q̇n−1 + c) (q̇n + c)
g2 exp(qn−1 − qn)

1 + g2 exp(qn−1 − qn)

− (q̇n + c) (q̇n+1 + c)
g2 exp(qn − qn+1)

1 + g2 exp(qn − qn+1)
, (1.7)

with c being the light speed and g being the coupling constant, was furnished by Rui-
jsenaars [7], which becomes the ordinary TL system in the limit c → ∞. An approach
for constructing relativistic generalizations of integrable lattice systems was proposed by
Gibbons and Kupershmidt [8, 9], and it is applicable to the whole lattice KP hierarchy.
Suris and Ragnisco proposed a systematic procedure for finding integrable relativistic de-
formations for integrable lattice systems, based on the integrable time discretization, and
presented the relativistic Lotka-Volterra (RLV) lattice system [10]:

u̇n = un (vn − vn+1 + αunvn − αun+1vn+1) , (1.8a)
v̇n = vn (un−1 − un + αun−1vn−1 − αunvn) . (1.8b)
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where α is the coupling constant. By using the same idea as in [10], the modified relativistic
Lotka-Volterra (mRLV) lattice system was also constructed [11]:

ẏn = yn(1 + εyn)
(
zn + αynzn
1− εαynzn

− zn+1 + αyn+1zn+1

1− εαyn+1zn+1

)
, (1.9a)

żn = zn(1 + εzn)
(
yn−1 + αyn−1zn−1

1− εαyn−1zn−1
− yn + αynzn
1− εαynzn

)
. (1.9b)

where α and ε are constants. The integrable time discretization of the RLV system was
also performed by Suris and Ragnisco [10], and the bilinear structure and the determinant
solution of the RLV system were investigated by Maruno and Oikawa [12]. This article
will consider all these same questions for the mRLV system.
Blaszak and Marciniak proposed new integrable lattice systems by using a different

formalism, an r-matrix formalism [13, 14]. They investigated the bi-hamiltonian structure
of lattice hierarchies and the Miura-like gauge transformation between lattice hierarchies.
One of the integrable lattice systems that they presented is the three field lattice system

∂

∂t
An = Cn+1 − Cn−1, (1.10a)

∂

∂t
Bn = An−1Cn−1 −AnCn, (1.10b)

∂

∂t
Cn = Cn(Bn −Bn+1), (1.10c)

which is called the Blaszak-Marciniak (BM) lattice system. For this three field BM lattice
system, the bilinear form and soliton solutions were constructed by Hu and Zhu [15],
and the recursion structure and the master symmetry algebra were furnished under a
systematical skeleton by Fuchssteiner and Ma [16, 17]. Moreover, Hu and Tam proposed
a two-dimensional generalization of the BM lattice system [18]

∂

∂y
An = Cn+1 − Cn−1, (1.11a)

∂

∂y
Bn = An−1Cn−1 −AnCn, (1.11b)

∂

∂x
Cn = Cn(Bn −Bn+1), (1.11c)

and showed that their bilinear equations are equal to the bilinear equations of Leznov’s
two-dimensional ultra-Toda lattice system [19]. This generalization is similar to the two-
dimensional generalization of the Toda lattice system. However, the bilinear equations
presented in [18] are quite complicated, and it is difficult to connect their bilinear equations
with the determinant identity being fundamental in the Sato theory. So we need to search
for some other bilinearization and determinant identity for the generalized BM lattice
system and establish its relationship with other integrable lattice systems.
The contents of this article are twofold. On the one hand, we show an interesting re-

lation among the modified Lotka-Volterra lattice system, the modified relativistic Lotka-
Volterra lattice system, and the full-discrete equations of the Lotka-Voltera and the rela-
tivistic Lotka-Volterra lattice system, through exposing their bilinear forms. On the other
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hand, we consider the bilinear form (or the determinant identity) for the generalized (i.e.,
two- and three-dimensional) Blaszak-Marciniak lattice systems. Our main concerns are
bilinear forms, determinant solutions, and the relationship with other integrable lattice
systems. The bilinear form (or the determinant identity) is of fundament in the mathe-
matical theory of solitons and integrable systems. Throughout the article, we also expose
a few properties for the modified Lotka-Volterra lattice system, the modified relativis-
tic Lotka-Volterra lattice system, and the generalized Blaszak-Marciniak lattice systems,
based on their bilinear forms.

2 Modified Lotka-Volterra lattice system

To exhibit the relation between the discrete and modified equations, let us first consider
the discrete time Lotka-Volterra (dLV) lattice system [20, 11, 21]

ut+1
n (1 + hvt+1

n+1) = ut
n(1 + hv

t
n), vt+1

n (1 + hut+1
n ) = vt

n(1 + hu
t
n−1). (2.1)

The bilinear equations for the above dLV lattice system,

c1F
t+1
n+1G

t
n−1 = c2G

t
nF

t+1
n − 1

h
Gt+1

n F t
n, (2.2a)

c3F
t
n−1G

t+1
n = c4F

t
nG

t+1
n−1 −

1
h
F t+1

n Gt
n−1, (2.2b)

are obtained by use of the dependent variable transformation

ut
n = c1

F t+1
n+1G

t
n−1

Gt+1
n F t

n

= c2
Gt

nF
t+1
n

Gt+1
n F t

n

− 1
h
, (2.3a)

vt
n = c3

Gt+1
n F t

n−1

F t+1
n Gt

n−1

= c4
F t

nG
t+1
n−1

F t+1
n Gt

n−1

− 1
h
, (2.3b)

where the ci’s are arbitrary constants. This dependent variable transformation (2.3) can
be easily obtained through the singularity confinement test [22].
The modified Lotka-Volterra (mLV) lattice system [11, 21, 23]

ẏn = yn(1 + εyn)(zn − zn+1), żn = zn(1 + εzn)(yn−1 − yn), (2.4)

is transformed into two semi-discrete bilinear equations

Ġk
n−1F

k
n −Gk

n−1Ḟ
k
n = εc2c3G

k
nF

k
n−1 +G

k
n−1F

k
n , (2.5a)

Ḟ k
n−1G

k
n−1 − F k

n−1Ġ
k
n−1 = εc1c4F

k
nG

k
n−2 + F

k
n−1G

k
n−1, (2.5b)

and two full discrete bilinear equations

c1F
k+1
n+1G

k
n−1 = c2G

k
nF

k+1
n − 1

ε
Gk+1

n F k
n , (2.6a)

c3G
k+1
n F k

n−1 = c4F
k
nG

k+1
n−1 −

1
ε
F k+1

n Gk
n−1, (2.6b)
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if we introduce the following dependent variable transformation

yn = c1
F k+1

n+1G
k
n−1

Gk+1
n F k

n

= c2
Gk

nF
k+1
n

Gk+1
n F k

n

− 1
ε
, (2.7a)

zn = c3
Gk+1

n F k
n−1

F k+1
n Gk

n−1

= c4
F k

nG
k+1
n−1

F k+1
n Gk

n−1

− 1
ε
. (2.7b)

We point out that the transformation (2.7) is equal to the transformation (2.3) if we set
k = t, ε = h. Therefore, the systems (2.1) and (2.4) belong to the same class of integrable
lattice systems, and they are related to the Bäcklund transformation of the LV lattice
system. In fact, from the bilinear equations, we know that the independent variables t
and k in the dLV and mLV lattice systems are parameters of the Bäcklund transformation
of the LV lattice system.

3 Modified Relativistic Lotka-Volterra lattice system

In the previous section, we found an interesting relation between the dLV lattice system
and the mLV lattice system. Now let us consider the question of whether the RLV lattice
system also has such an interesting relation.
The RLV lattice system [i.e., (1.8)],

u̇n = un (vn − vn+1 + αunvn − αun+1vn+1) , (3.1a)
v̇n = vn (un−1 − un + αun−1vn−1 − αunvn) , (3.1b)

and the discrete-time relativistic Lotka-Volterra (dRLV) lattice system,

ut+1
n

1 + hvt+1
n+1

1− hαut+1
n+1v

t+1
n+1

= ut
n

1 + hvt
n

1− hαut
nv

t
n

, (3.2a)

vt+1
n+1

1 + hut+1
n+1

1− hαut+1
n+1v

t+1
n+1

= vt
n+1

1 + hut
n

1− hαut
nv

t
n

, (3.2b)

are proposed by Suris and Ragnisco [10, 11, 21].
The transformation can be taken as

ut
n = −1

h
+ c1

F t−1
n+1G

t
n

F t
n+1G

t−1
n

= β1
F t−1

n Gt
n+1

F t
n+1G

t−1
n

, (3.3a)

vt
n = −1

h
+ c2

F t
nḠ

t
n+1

F t−1
n Ḡt+1

n+1

= β2
F t

n+1Ḡ
t
n

F t−1
n Ḡt+1

n+1

, (3.3b)

where the ci’s and βi’s are arbitrary constants [12]. Substituting (3.3) into (3.2), we readily
obtain the following bilinear equations,

−(1/h)F t
n+1G

t−1
n + c1F t−1

n+1G
t
n = β1F

t−1
n Gt

n+1, (3.4a)

−(1/h)F t−1
n Ḡt+1

n+1 + c2F
t
nḠ

t
n+1 = β2F

t
n+1Ḡ

t
n, (3.4b)

Gt−1
n Ḡt+1

n+1 − γGt
nḠ

t
n+1 = (β1β2hα)Gt

n+1Ḡ
t
n, (3.4c)
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where γ is an arbitrary constant. Conversely, we can readily obtain the dRLV lattice
system (3.2) from the bilinear equations (3.4). Thus, solutions of the bilinear equations
(3.4) generate solutions of the dRLV lattice system (3.2). The Casorati determinant
solution can be obtained directly from these bilinear equations [12].
From the continuous limit of the discrete dependent variable transformation, the fol-

lowing continuous dependent variable transformation is suggested,

un = c1 +
d

dt

(
log

Gn

Fn+1

)
= β1

FnGn+1

Fn+1Gn
, (3.5a)

vn = c2 +
d

dt

(
log

Fn

Ḡn+1

)
= β2

Fn+1Ḡn

FnḠn+1
. (3.5b)

Substituting this transformation into the RLV lattice system (3.1), we obtain the bilinear
equations

Fn+1Ġn − Ḟn+1Gn + c1Fn+1Gn = β1FnGn+1, (3.6a)

ḞnḠn+1 − Fn
˙̄Gn+1 + c2FnḠn+1 = β2Fn+1Ḡn, (3.6b)

Gn
˙̄Gn+1 − ĠnḠn+1 − (β1β2α)Gn+1Ḡn = γGnḠn+1, (3.6c)

where γ is an arbitrary function of t. We need, however, to take γ(t) as −(β1β2α), if we
want to get soliton solutions.
The mRLV lattice system [i.e., (1.9)]

ẏn = yn(1 + εyn)
(
zn + αynzn
1− εαynzn

− zn+1 + αyn+1zn+1

1− εαyn+1zn+1

)
, (3.7a)

żn = zn(1 + εzn)
(
yn−1 + αyn−1zn−1

1− εαyn−1zn−1
− yn + αynzn
1− εαynzn

)
, (3.7b)

is transformed into two semi-discrete bilinear equations

Fn+1Ġn − Ḟn+1Gn = c2β1FnGn+1 + c3Fn+1Gn, (3.8a)

ḞnG̃n+1 − Fn
˙̃Gn+1 = c1β2Fn+1G̃n + c4FnG̃n+1, (3.8b)

and three full discrete bilinear equations

−(1/ε)F k
n+1G

k−1
n + c1F k−1

n+1G
k
n = β1F

k−1
n Gk

n+1, (3.9a)

−(1/ε)F k−1
n G̃k

n+1 + c2F
k
n G̃

k−1
n+1 = β2F

k
n+1G̃

k−1
n , (3.9b)

Gk−1
n G̃k

n+1 − γGk
nG̃

k−1
n+1 = (β1β2εα)Gk

n+1G̃
k−1
n , (3.9c)

with γ being an arbitrary constant, if we introduce the following dependent variable trans-
formation

yn = β1
F k−1

n Gk
n+1

F k
n+1G

k−1
n

= −1
ε
+ c1

F k−1
n+1G

k
n

F k
n+1G

k−1
n

, (3.10a)

zn = β2
F k

n+1G̃
k−1
n

F k−1
n G̃k

n+1

= −1
ε
+ c2

F k
n G̃

k−1
n+1

F k−1
n G̃k

n+1

. (3.10b)
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We note that (3.10) is equal to (3.3) if we set G̃k
n = Ḡt+1

n , k = t, ε = h. This fact shows
that the mRLV lattice system and the dRLV lattice system are related to the Bäcklund
transformations of the RLV lattice system, and both of them belong to the same class
of integrable lattice systems. In fact, from the bilinear equations, we know that the
independent variables t and k in the dRLV and mRLV lattice systems are parameters of
the Bäcklund transformation of the RLV lattice system.
The N-soliton solution of the mRLV lattice system (3.7) can then be expressed by the

Casorati determinant as

yn = β1
F k−1

n Gk
n+1

F k
n+1G

k−1
n

, zn = β2
F k

n+1G̃
k−1
n

F k−1
n G̃k

n+1

, (3.11)

where F k
n , G

k
n and G̃

k
n are given by

F k
n =

∣∣∣∣∣∣∣∣∣∣

φ
(k)
1 (n) φ

(k+1)
1 (n) · · · φ

(k+N−1)
1 (n)

φ
(k)
2 (n) φ

(k+1)
2 (n) · · · φ

(k+N−1)
2 (n)

...
... · · · ...

φ
(k)
N (n) φ

(k+1)
N (n) · · · φ

(k+N−1)
N (n)

∣∣∣∣∣∣∣∣∣∣
, (3.12a)

Gk
n =

∣∣∣∣∣∣∣∣∣∣

ψ
(k)
1 (n) ψ

(k+1)
1 (n) · · · ψ

(k+N−1)
1 (n)

ψ
(k)
2 (n) ψ

(k+1)
2 (n) · · · ψ

(k+N−1)
2 (n)

...
... · · · ...

ψ
(k)
N (n) ψ

(k+1)
N (n) · · · ψ

(k+N−1)
N (n)

∣∣∣∣∣∣∣∣∣∣
, (3.12b)

G̃k
n =

∣∣∣∣∣∣∣∣∣∣

ψ̃
(k)
1 (n) ψ̃

(k+1)
1 (n) · · · ψ̃

(k+N−1)
1 (n)

ψ̃
(k)
2 (n) ψ̃

(k+1)
2 (n) · · · ψ̃

(k+N−1)
2 (n)

...
... · · · ...

ψ̃
(k)
N (n) ψ̃

(k+1)
N (n) · · · ψ̃

(k+N−1)
N (n)

∣∣∣∣∣∣∣∣∣∣
. (3.12c)

In the above formulas, the functions involved are defined by

φ
(k)
i (n) = epitpk

i (1− api)−n(1− d1/pi)−l−1(1− d2/pi)−m

+eqitqk
i (1− aqi)−n(1− d1/qi)−l−1(1− d2/qi)−m, (3.13a)

ψ
(k)
i (n) = epitpk

i (1− api)−n(1− d1/pi)−l(1− d2/pi)−m−1

+eqitqk
i (1− aqi)−n(1− d1/qi)−l(1− d2/qi)−m−1, (3.13b)

ψ̃
(k)
i (n) = epitpk−1

i (1− api)−n(1− d1/pi)−l(1− d2/pi)−m

+eqitqk−1
i (1− aqi)−n(1− d1/qi)−l(1− d2/qi)−m, (3.13c)

where the pi’s are arbitrary constants and

qi = (−d1 + d2 + bd1d2 − bd2pi)/(b(d2 − pi)), (3.14a)

b = α1ha, d1 =
1

hα2a
, d2 =

1
γa
, (3.14b)

g =
1

α1 − β1
=

1
α2 − β2

, α =
1− γ

β1β2h
. (3.14c)
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The variables l and m are two free parameters of the Bäcklund transformations. The
proof can be given by using the Laplace expansion of determinants, which is a standard
technique in the bilinear theory.
It is interesting to note that this determinant solution is also a solution of the dRLV

lattice system shown in [12].

4 Generalized Blaszak-Marciniak lattice systems

Let us start from the two-dimensional Blaszak-Marciniak (2DBM) lattice system, i.e.,
(1.11). We just change the dependent variables of the original 2DBM lattice system from
lower case to upper case, in order to clearly exhibit a relation with the Toda lattice system.
The 2DBM lattice system [i.e., (1.11)]

∂

∂y
An = Cn+1 − Cn−1, (4.1a)

∂

∂y
Bn = An−1Cn−1 −AnCn, (4.1b)

∂

∂x
Cn = Cn(Bn −Bn+1), (4.1c)

is decomposed into

DxDyτn · τn = 2λτn+1τn−1 − 2λτ2
n, (4.2a)

Dzτn+1 · τn−1 = τ2
n − µτn+1τn−1, (4.2b)

DyDzτn · τn = − 2
λ
τn+1τn−1 +

2
λ
τ2
n, (4.2c)

if we introduce the following dependent variable transformation

An =
1
2
DxDyτn+1 · τn+1

τnτn+2
= λ− λ

τ2
n+1

τnτn+2
, (4.3a)

Bn =
(
ln

τn
τn+1

)
x

, (4.3b)

Cn =
τn+2τn
τ2
n+1

= 1− λ

2
DyDzτn+1 · τn+1

τ2
n+1

, (4.3c)

where λ and µ are arbitrary parameters and z is the auxiliary variable, and Dx, Dy and
Dz are Hirota’s D-operators defined by

Dn
xD

m
y D

l
zf · g

= (∂x − ∂x′)n
(
∂y − ∂y′

)m (∂z − ∂z′)
l f(x, y, z)g(x′, y′, z′)|x′=x,y′=y,z=z′ . (4.4)

The bilinear equations (4.2) are different from ones in Hu and Tam [18]. It is convenient
to construct the determinant solution by using this bilinear form. We note that (4.2a)
and (4.2c) are the bilinear forms for the two-dimensional Toda lattice system, and (4.2b)
comes from the bilinear form for the Bäcklund transformation of the two-dimensional Toda
lattice system. So we can readily construct the determinant solution of the 2DBM lattice
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system by using the standard Wronskian (Casoratian) technique in Hirota’s bilinear theory
[4, 24]. The τ -function can be written as the following determinant

τn =

∣∣∣∣∣∣∣∣

φ1(n) φ1(n+ 1) · · · φ1(n+N − 1)
φ2(n) φ2(n+ 1) · · · φ2(n+N − 1)
· · · · · · · · · · · ·

φN (n) φN (n+ 1) · · · φN (n+N − 1)

∣∣∣∣∣∣∣∣
, (4.5)

where the functions involved satisfy

∂φi(n)
∂x

=
1
λ
φi(n+ 1),

∂φi(n)
∂y

= −φi(n− 1), ∂φi(n)
∂z

= λφi(n− 1), 1 ≤ i ≤ N.

(4.6)

Soliton solutions of the one-dimensional BM lattice system (1.10) can be constructed by
the reduction procedure from the τ -function (4.5). The Miura transformation to Toda’s
variables an and bn:

Bn = bn, Cn = an+1, (4.7)

can be derived immediately by observing the τ -function. This transformation is valid in
both the 1D case and the 2D case.
Naturally, the Blaszak-Marciniak lattice system (1.10) can also be generalized into the

following three-dimensional version:

∂

∂z
An = Cn+1 − Cn−1, (4.8a)

∂

∂y
Bn = An−1Cn−1 −AnCn, (4.8b)

∂

∂x
Cn = Cn(Bn −Bn+1). (4.8c)

Replacing An, Bn and Cn in (4.8) with

An =
1
2
DxDyτn+1 · τn+1

τnτn+2
= λ− λ

τ2
n+1

τnτn+2
, (4.9a)

Bn =
(
ln

τn
τn+1

)
x

, (4.9b)

Cn =
τn+2τn
τ2
n+1

= 1− λ

2
DxDzτn+1 · τn+1

τ2
n+1

, (4.9c)

we obtain the following three bilinear equations

DxDyτn · τn = 2λτn+1τn−1 − 2λτ2
n, (4.10a)

Dxτn+1 · τn−1 = τ2
n − µτn+1τn−1, (4.10b)

DxDzτn · τn = − 2
λ
τn+1τn−1 +

2
λ
τ2
n, (4.10c)

where λ and µ are arbitrary parameters. Similarly, we can easily construct the determinant
solution of the above 3DBM lattice system by using the Wronskian technique.



136 K Maruno and W X Ma

It follows from the above result that we can transform the other two two-dimensional
generalizations of the BM lattice system into bilinear form. The one is

∂

∂x
An = Cn+1 − Cn−1, (4.11a)

∂

∂y
Bn = An−1Cn−1 −AnCn, (4.11b)

∂

∂x
Cn = Cn(Bn −Bn+1). (4.11c)

Replacing An, Bn and Cn in (4.11) with

An =
1
2
DxDyτn+1 · τn+1

τnτn+2
= λ− λ

τ2
n+1

τnτn+2
, (4.12a)

Bn =
(
ln

τn
τn+1

)
x

, (4.12b)

Cn =
τn+2τn
τ2
n+1

= 1− λ

2
DxDzτn+1 · τn+1

τ2
n+1

, (4.12c)

we obtain the following two bilinear equations

DxDyτn · τn = 2λτn+1τn−1 − 2λτ2
n, (4.13a)

Dzτn+1 · τn−1 = τ2
n − µτn+1τn−1, (4.13b)

DxDzτn · τn = − 2
λ
τn+1τn−1 +

2
λ
τ2
n, (4.13c)

where λ and µ are arbitrary parameters and z is the auxiliary variable. The other one is
∂

∂z
An = Cn+1 − Cn−1, (4.14a)

∂

∂x
Bn = An−1Cn−1 −AnCn, (4.14b)

∂

∂x
Cn = Cn(Bn −Bn+1). (4.14c)

Replacing An, Bn and Cn in (4.14) with

An =
1
2
D2

xτn+1 · τn+1

τnτn+2
= λ− λ

τ2
n+1

τnτn+2
, (4.15a)

Bn =
(
ln

τn
τn+1

)
x

, (4.15b)

Cn =
τn+2τn
τ2
n+1

= 1− λ

2
DxDzτn+1 · τn+1

τ2
n+1

, (4.15c)

we obtain the following three bilinear equations

D2
xτn · τn = 2λτn+1τn−1 − 2λτ2

n, (4.16a)

Dxτn+1 · τn−1 = τ2
n − µτn+1τn−1, (4.16b)

DxDzτn · τn = − 2
λ
τn+1τn−1 +

2
λ
τ2
n, (4.16c)

where λ and µ are arbitrary parameters. The detailed construction of determinant solu-
tions of these two systems will also be discussed elsewhere.



Bilinear forms of integrable lattice systems 137

5 Concluding Remarks

We have presented the bilinear forms for some integrable lattice systems related to the
Bäcklund transformations of the Toda, Lotka-Volterra and relativistic Lotka-Volterra lat-
tice systems. We also have shown that solutions of these integrable lattice systems can be
constructed by using determinants.
On the one hand, our results especially show that the mRLV lattice system is related

to the dRLV lattice system in the τ -function level. We also realized that the mRLV lattice
system and the dRLV lattice system belong to the same class of integrable lattice systems,
and they form the Bäcklund transformation of the RLV lattice system. This mysterious
fact was pointed out first by Suris in the Lax formalism [11]. We remark that we can
furnish a similar relation between the discrete relativistic Toda lattice system and the
modified relativistic Toda lattice system.
On the other hand, our results show that the 2DBM lattice system (4.1) is decom-

posed into three bilinear equations (i.e., two two-dimensional Toda lattice systems and its
Bäcklund transformation). This situation is similar to that in the relativistic Toda lattice
system [25]. Moreover, the BM lattice system was generalized to the three-dimensional
situation, and the resulting lattice system was decomposed into three bilinear equations.
It is very easy to construct various determinant solutions of the 3DBM lattice system
by using the Wronskian technique, starting from our bilinear form. The other two two-
dimensional generalizations of the BM lattice system are just two reductions of the 3DBM
lattice system (4.8).
We remark that it also should be interesting to make integrable time discretizations for

the BM lattice system. We guess that it is a good way to start from our bilinear equations
to construct full-discrete BM lattice systems. Our bilinear form would be a resource of
our future research to present the time discretization of the BM lattice system and the
determinant solution.
Finally, we point out that there is an integrable four field BM lattice system [13], for

which the bilinear form and the Bäcklund transformation were constructed [26]. For the
generalized four field BM lattice system, a natural exploitation also should be done for
the bilinear form, the determinant solution, and the relation with other integrable lattice
systems.
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