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Bäcklund Transformations on Coadjoint Orbits of

the Loop Algebra g̃l(r)

Yuri FEDOROV

Department of Mathematics and Mechanics, Moscow Lomonosov University,
Moscow 119 899 Russia
E-mail: fedorov@mech.math.msu.su

Received October 15, 2001

Abstract

There is a wide class of integrable Hamiltonian systems on finite-dimensional coadjoint
orbits of the loop algebra g̃l(r) which are represented by r × r Lax equations with a
rational spectral parameter. A reduced complex phase space is foliated with open
subsets of Jacobians of regularized spectral curves. Under some generic restrictions
on the structure of the Lax matrix, we propose an algebraic geometrical scheme of a
discretization of such systems that preserve their first integrals and is represented as
translations on the Jacobians. A generic discretizing map is given implicitly in the form
of an intertwining relation (a discrete Lax pair) with an extra parameter governing
the translation. Some special cases when the map is explicit are also considered. As
an example, we consider a modified discrete version of the classical Neumann system
described by a 2 × 2 discrete Lax pair and provide its theta-functional solution.

1 Introduction

Many finite-dimensional integrable systems, as well as finite-gap reductions of some inte-
grable PDE’s, can be regarded as flows on finite-dimensional coadjoint orbits of the loop
algebra g̃l(r) described by r × r Lax equations with a spectral parameter λ ∈ C,

L̇(λ) = [L(λ),M(λ) ] , L = Y +
Ni

λ− ai
, L,M ∈ gl(r), (1.1)

where Y ∈ gl(r) is a constant matrix and a1, . . . , an are arbitrary distinct constants (see
[1, 3]). For simplicity, in the sequel we assume that rankNi = 1. (The case of higher rank
is only notationally more complicated).

As shown in [1], these equations naturally arise in connection with so called rank r
perturbations of the constant matrix A = diag(a1, . . . , an), which generates Lax pairs of
a series of integrable systems. In this case L(λ) takes the form

L = Y + GT (λIn −A)−1F ≡ Y +
n∑

i=1

p̄i ⊗ q̄i
λ− ai

, (1.2)
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where In is the n× n unit matrix and G,F are n× r matrices of rank r,

G = ||q̄1 · · · q̄n||, F = ||p̄1 · · · p̄n||, q̄j , p̄j ∈ C
r .

An important class of systems which admit the Lax pair (1.1), (1.2) is given by so
called binary constrained flows (BC flows) of various soliton equations [17]. In this case

q̄i = Ψ(ai), p̄i = Ψ∗(ai),

where Ψ(λ) ∈ C
r is a vector solution to the r × r matrix spectral problems

∂

∂x
Ψ = U(λ, u)Ψ,

∂

∂t
Ψ = V (λ, u)Ψ, U, V ∈ g̃l(r),

whose compatibility condition generates a PDE for a set of dependent variables u =
(u1, . . . , ul), and Ψ∗(λ) ∈ C

r is a solution to the adjoint spectral problem. Following
[1, 17], BC flows are algebraic completely integrable Hamiltonian systems in the space
(G,F ) = C

2rn endowed with the symplectic structure Ω = tr (dF ∧ dGT ). Their generic
theta-functional solutions q̄i(x, t), p̄i(x, t) give rise to finite-gap solutions of the related
PDE.

In particular, for the standard KdV equation one has r = 2 and, as noticed in [18],
upon the identification

x = (q̄11, . . . , q̄n1)T , y = (q̄12, . . . , q̄n2)T ,

ξ = (p̄12, . . . , q̄n2)T , η = −(p̄11, . . . , p̄n1)T

the binary constrained x-flow coincides with the well-known Garnier system ([11])

ẋi = yi, ẏi = (ai + u)xi, ξ̇i = ηi, η̇i = (ai + u)xi,

u =
n∑

i=1

xiξi, i = 1, . . . , n

that admit the above Lax pair with

Y =
(

0 0
1 0

)
, M =

(
0 1

−λ− u 0

)
.

For the standard Boussinesq equation ([22, 1]) and the three wave interaction equation
([14, 6, 16]) we have r = 3 and

Y =


0 0 0

0 0 0
1 0 0


 , respectively, Y =


γ1 0 0

0 γ2 0
1 0 γ3


 , γi = const.

Binary constrained flows admit a Hamiltonian symmetry group R generated by scalings

Rj : (q̄j , p̄j) → (νj q̄j , ν
−1
j p̄j), νj ∈ C

∗, j = 1 . . . , n,

which leave the Lax matrix L(λ) invariant. Following [3], by making a Marsden–Weinstein
reduction of the BC flows with respect to the action of R, namely, factoring (G,F ) by Sj
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and fixing values of the Hamiltonians generating the scaling flows, one obtains integrable
Hamiltonian systems on a finite-dimensional coadjoint orbit ON in the loop algebra g̃l(r).
The symplectic structure on ON is induced by Ω. If Y is nonzero, then dim ON =
2(g+r−1), where g is the genus of the regularized spectral curve C̃ of the Lax matrix (1.2).
The entries of Ni play the role of abundant coordinates on ON . It is natural to call the
reduced BC flows as mono constrained flows. Their complex generic invariant manifolds are
open subsets of (g+r−1)-dimensional generalized Jacobian varieties, algebraic extensions
of the customary Jacobian Jac(C̃) by the product of r−1 copies of C

∗, which we denote as
Jac(C̃,∞) (see, e.g., [8, 10]). The mono constrained flows evolve linearly on the generalized
Jacobians.

Next, as shown in [1, 3], the flows possess r−1 extra Hamiltonian linear symmetry fields
that are independent and commute. Performing a further Marsden–Weinstein reduction
with respect to the fields, one arrives at flows on 2g-dimensional reduced orbit Ored evolving
linearly on open subsets of g-dimensional varieties Jac(C̃).

Contents of the paper. In given paper, assuming that Y is nonzero and all its eigenval-
ues are distinct, we propose a scheme of a discretization of the reduced mono constrained
flows on Ored represented as a family of maps Bλ∗ : Ored → Ored, which preserve the first
integrals and whose restriction to Jac(C̃) are translations governed by a complex parame-
ter λ∗. In an appropriate limit λ∗ → ∞, the translation gives rise to a vector flow, whose
restriction to the Jacobian is tangent to one of the infinite points of the curve C̃ ⊂ Jac(C̃).
In the whole space Ored, the vector field coincides with one of the above reduced mono
constrained flows.

Our discretization map is lifted to the coadjoint ON and is described by an intertwining
relation (so called discrete Lax pair)

L̃(λ)M(λ|λ∗) = M(λ|λ∗)L(λ), (1.3)

where L(λ) is defined in (1.2) and L̃(λ) depends on new coordinates on ON in the same
way, as L(λ) depends on the original ones, whereas M(λ|λ∗) is a matrix polynomial in λ,
whose coefficients depend on the original, as well as on the new coordinates. Hence, the
map Bλ∗ given by (1.3) is generally implicit and, as we show below, r-valued. However,
it may become explicit and single-valued in some important special cases which we also
consider separately.

We notice that in the case L ∈ s̃l(2), when the spectral curve becomes hyperelliptic,
algebraic geometrical and symplectic properties of Bλ∗ has been already discussed in detail
in [13, 15], where the map was refereed to as a Bäcklund transformation due to its similarity
to the analogous procedure for soliton PDE.

On the other hand, for a fixed algebraic curve C of arbitrary type and genus, a wide
class of algebraic addition laws in a ring of meromorphic functions on Jac(C) that describe
a translation has been found in [5].

In Section 2, combining the above two approaches and following the generic idea of [6, 3],
we describe the structure of zeros and poles of normalized eigenvectors of matrices L(λ)
and L̃(λ), which enables us to recover the structure of the operator M(λ|λ∗) (Theorems
2.2, 2.4.). Then we consider a continuous limit of (1.3) and mention possible natural
generalizations of our scheme.
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In Section 3 we briefly discuss the simplest case L ∈ s̃l(2) and, as an example, give
algebraic geometrical interpretation and theta-functional solution to a modified discrete
version of the classical Neumann system found in [23, 24]. A description of a more refined
example corresponding to L ∈ g̃l(3) is left for another publication.

2 Bäcklund transformation via discrete Lax pair

First we recall necessary algebraic geometrical properties of the continuous systems gen-
erated by the Lax pair (1.1), (1.2) (see e.g., [6, 3]). The Lax matrix L̂(λ) = a(λ)L(λ) is
polynomial in λ, and the spectral curve C = {|L̂(λ)−µI| = 0} ⊂ (λ, µ) = C

2 has the form

F ≡ (−µ)r + (−µ)r−1tr L̂(λ) +
r−2∑
j=0

(−µ)jaj−1(λ)Hj(λ) = 0, (2.4)

Hj(λ) = λnHj0 + λn−1Hj1 + · · · + Hjn,

tr L̂(λ) = a(λ)

(
trY +

n∑
i=1

(q̄i, p̄i)
λ− ai

)
.

(2.5)

The leading coefficients of tr L̂(λ), and Hj(λ) are trivial constants determined entirely
by symmetric invariants of Y , whereas n integrals (q̄i, p̄i) that appear in tr L̂(λ) generate
the scaling transformations Ri described in Introduction. Now factoring the space (G,F )
by the action of R and fixing values of the integrals, one obtains a coadjoint orbit ON of
dimension 2n(r−1). The factorization can be made by imposing the constraints (q̄i, q̄i) = 1.
Hence

ON = {(F,G) | (q̄i, q̄i) = 1, (q̄i, p̄i) = fi = const},

which is diffeomorphic to the product of n cotangent bundles of (r − 1)-dimensional unit
spheres. The symplectic structure on ON is induced by the 2-form Ω on (G,F ) via the
Dirac formalism.

On the other hand, let C̄ ∈ P
2 be compactification of the curve C represented as r-fold

ramified covering of C̄ = {λ} ∪∞. Under the assumption that Y is diagonalizable and its
eigenvalues γ1, . . . , γr are distinct, C̄ has r distinct infinite points ∞1, . . . ,∞r such that
in a neighborhood of ∞k with a local parameter τ (τ(∞k) = 0), the following expansions
hold

λ = 1/τ, µ = γkτ
−n + O(τ−n+1).

The curve C̄ is singular at some points over λ = ai. As indicated in [3], the regularized
curve C̃ is smooth of genus g = (r− 1)(n− 1). Thus dimension of ON equals 2(g + r− 1).

Following the general idea introduced in [21], ON can be regarded as a fiber bundle
over (g + r− 1)-dimensional space of regularized curves (2.4) parameterized by nontrivial
coefficients of the polynomials Hj(λ) whose fibers are (g + r− 1)-dimensional generalized
Jacobians Jac(C̃,∞).

Further, the integrals H1,1, . . . ,Hr−1,1 in (2.5) are bilinear in q̄i, p̄i and generate r − 1
linear Hamiltonian symmetry fields Tj on ON . Performing Marsden–Weinstein reduction
with respect to Tj , i.e., imposing some r − 1 extra constraints on the components of Ni

that are transversal to the orbits of the action and fixing some values of Hs1, we arrive
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at reduced coadjoint orbit Ored of dimension 2g foliated by customary Jacobian varieties
Jac(C̃). The whole sequence of phase spaces and reductions is represented by the diagram

(G,F ) R−−−−→ ON
T−−−−→ Ored.

Now let K(λ, µ) be the classical adjoint matrix of (L̂(λ) − µI) such that

(L̂(λ) − µI)K(λ, µ) = det(L̂(λ) − µI) I. (2.6)

The columns of the restriction of K(λ, µ) onto C̃ give sections of eigenvector line bundle
C̃ → P

r−1 solving the spectral problem L̂(λ)ψ(P ) = µψ(P ), P = (λ, µ) ∈ C̃. Next,
following [7], for any fixed (i.e., independent of P ) vector V ∈ C

r, r algebraic equations

K(λ, µ)V = 0 (2.7)

define a divisor of g + r − 1 points Pj = (λj , µj) on the curve C̃, which corresponds to a
point z in Jac(C̃) via the Abel–Jacobi map

z = A(P1) + · · · + A(Pg+r−1), A(P ) =
∫ P

P0

ω,

where ω = (ω1, . . . , ωg)T is a basis of holomorphic differentials and P0 is a fixed basepoint
on C̃.

In the sequel we assume Y = diag(γ1, . . . , γr). As noticed in [3], if V is an eigenvector
of Y , then equations (2.7) have at most g finite solutions, whereas the rest consists of
r − 1 points over λ = ∞. In particular, for V = (0, . . . , 0, 1)T , the solutions of (2.7) are
P1 = (λ1, µ1), . . . , Pg = (λg, µg), ∞1, . . . ,∞r−1. Via the Abel–Jacobi map, the divisor
P1, . . . , Pg uniquely defines a point z in Jac(C̃) and therefore in the reduced orbit Ored.
Moreover, according to [3], the pairs λ1, ζ1 = µ1/a(λ1), . . . , λg, ζg = µg/a(λg) form a
complete set of Darboux coordinates on Ored with respect to the induced Poisson structure,
which provide separating variables for the reduced flows.

On the other hand, as seen from (2.6), the restriction of the first row of K(λ, µ) on C̃
denoted as φ(P ) = (φ1, . . . , φr) solves the transposed spectral problem

φ(P )L̂(λ) = µφ(P ). (2.8)

Let us normalize φ(P ) by assuming φr ≡ 1. Then, as follows from the structure of Y, L̂(λ)
and the results of [2],

φ1(P ) =
K11(λ, µ)
K1r(λ, µ)

∣∣∣∣
(λ,µ)∈C̃

, . . . , φr−1(P ) =
K1,r−1(λ, µ)
K1r(λ, µ)

∣∣∣∣
(λ,µ)∈C̃

,

are meromorphic functions on C̃ whose divisors of zeros and poles have the form

(φk) = Q
(k)
1 + · · · + Q(k)

g + ∞r − P1 − · · · − Pg −∞k , (2.9)

k = 1, . . . , r − 1

with some generally finite points Q(k)
i .
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Transformation of eigenvectors. Now we want to describe a (generally multi-valued)
map Bλ∗ : Ored → Ored, which leaves the fibers (Jacobians) invariant and whose restric-
tion to each fiber is represented by a shift governed by a set of parameters λ∗. Further, we
demand that the map lifts to unreduced orbits ON , and the shift results in a set of alge-
braic addition formulas for the entries of Ni as meromorphic functions on the generalized
Jacobians Jac(C̃,∞). In this connection we assume that B∗

λ admits the r × r intertwin-
ing relation (1.3), where M(λ|λ∗) is a matrix polynomial in λ whose leading coefficient
must commute with Y . Due to the structure of (1.3), for any nonzero scalar function χ,
operators M and χM define one and the same map.

Let φ̃(P ) = (φ̃1, . . . , φ̃r) be a row vector solving the transposed spectral problem asso-
ciated to the new Lax matrix, φ̃(P )L̃(λ) = µφ̃(P ). Then, according to (1.3), it is related
to the original row vector φ(P ) in (2.8) as follows

φ(P ) = κ φ̃(P )M(λ) and φ̃(P ) = κ
′ φ(P )M−1(λ), (2.10)

where κ,κ′ are nonzero factors. Under the assumption φr ≡ 1, the latter relation implies

φ̃r(P ) = α1φ1(P ) + · · · + αr−1φr−1(P ) + αr, αk =
(
M−1

)
rk
. (2.11)

In the sequel we also assume that αk are constants on C̃ and without loss of generality we
put α1 = 1, κ

′ = 1. Then, in view of (2.9), (2.11), the divisor of φ̃r(P ) has the form

(φ̃r) = D − P1 − · · · − Pg −∞1 − · · · −∞r−1, (2.12)

where D is a positive divisor of degree g + r − 1 and, as above, P1, . . . , Pg are poles
of φ(P ). Note that by an appropriate choice of the coefficients αk, r − 1 points of D
can be moved to any points S1, . . . , Sr−1 chosen in advance, so that D takes the form
D1 + · · · + Dg + S1 + · · · + Sr−1.

We assume D1 + · · · + Dg to be a new divisor representing a new point z̃ = A(D1) +
· · · + A(Dg) on Jac(C̃) and therefore in Ored.

Since φ̃r(P ) is a meromorphic function on C, then modulo the periods of Jac(C̃),

A(P1 + · · · + Pg + ∞1 + · · · + ∞r−1) ≡ A(D1 + · · · + Dg + S1 + · · · + Sr−1),

hence the new point z̃ is obtained from the original z = A(P1) + · · · + A(Pg) by the shift
by the vector

S = −
∫ S1

∞1

ω − · · · −
∫ Sr−1

∞r−1

ω ∈ C
g. (2.13)

Remark 1. In view of (2.9), in the case {S1, . . . , Sr−1} = {∞1, . . . ,∞r} \ ∞k, the new
divisor D1, . . . , Dg coincides with Q

(k)
1 , . . . , Q

(k)
g , the finite zeros of φk.

Given arbitrary fixed points Sk = (λ∗k, µ
∗
k), k = 1, . . . , r − 1, from the conditions

φ̃r(S1) = · · · = φ̃r(Sr−1) = 0
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representing a system of linear equations with respect to α2, . . . , αr, we find

φ̃r(P ) =
1

∆K1r(P )

∣∣∣∣∣∣∣∣∣

K11(λ∗1, µ
∗
1) · · · K1r(λ∗1, µ

∗
1)

...
...

K11(λ∗r−1, µ
∗
r−1) · · · K1r(λ∗r−1, µ

∗
r−1)

K11(P ) · · · K1r(P )

∣∣∣∣∣∣∣∣∣
, (2.14)

and

αs = (−1)s∆s/∆, s = 2, . . . , r, (2.15)

∆ =

∣∣∣∣∣∣∣
K12(λ∗1, µ

∗
1) · · · K1r(λ∗1, µ

∗
1)

...
...

K12(λ∗r−1, µ
∗
r−1) · · · K1r(λ∗r−1, µ

∗
r−1)

∣∣∣∣∣∣∣ ,
where ∆s is obtained from the determinant ∆ by replacing the (s − 1)-th column by(
K11(λ∗1, µ

∗
1), . . . ,K11(λ∗r−1, µ

∗
r−1)

)T .
Now let φ̄(P ) = (φ̄1, . . . , φ̄r) be the normalized row vector associated to the new divisor

D1, . . . , Dg, such that φ̄r ≡ 1. By analogy with (2.9),

(φ̄k) = Q̃
(k)
1 + · · · + Q̃(k)

g + ∞r −D1 − · · · −Dg −∞k , k = 1, . . . , r − 1 (2.16)

with some new positive divisors Q̃(k)
1 , . . . , Q̃

(k)
g . The normalized and the non-normalized

vectors represent the same point in P
r−1, hence they are related as φ̃(P ) = φ̃r(P )φ̄(P ).

Then, in view of (2.12), (2.16) the divisor of zeros and poles of the non-normalized com-
ponent ψ̃k(P ) has the form

(φ̃k) = (φ̄k) + (φ̃r) = Q̃
(k)
1 + · · · + Q̃(k)

g + S1 + · · · + Sr−1 + ∞r

− P1 − · · · − Pg −∞1 − · · · −∞r−1 −∞k. (2.17)

This divisor determines the meromorphic function ψ̃k(P ) up to multiplication by a con-
stant factor.

In the sequel we restrict ourselves to two special cases of the translation vector S, which
however generate any translation on the Jacobian by taking their appropriate composition.

In case (i) the points S1, . . . , Sr−1 have one and the same finite coordinate λ = λ∗,
i.e., Sk = (λ∗, µ∗k), and are all distinct if there are no ramification points over λ∗. If
R = (λ∗, µ+) is a ramification point joining m branches of C̃, then at most m points Sk

can lie at R. In case (ii) all the points are infinite as described in Remark 1.

Case (i). Let S∗ = (λ∗, µ∗) be the extra point over finite λ∗ such that

(λ− λ∗) = S1 + · · · + Sr−1 + S∗ −∞1 − · · · −∞r. (2.18)

Since (λ − λ∗) is a divisor of a meromorphic function, modulo the period lattice of the
Jacobian of C̃ one has ∫ S1

∞1

ω + · · · +
∫ Sr−1

∞r−1

ω +
∫ S∗

∞r

ω = 0

and, in view of (2.13), the translation vector S reduces to the single integral
∫ S∗
∞r

ω.
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Proposition 2.1. Under the above assumption on S1, . . . , Sr−1, the components of φ̃ can
be represented in form

φ̃k(P ) = (γk − γr)(λ− λ∗)φk(P ) + Zkφ̃r(P ), (2.19)

Zk = φ̄k(S∗) =
K̃1k(λ∗, µ∗)
K̃1r(λ∗, µ∗)

, k = 1, . . . , r − 1,

where K̃ is the adjoint matrix to L̃(λ) − µI.

Proof. As follows from the structure of divisors of zeros and poles indicated in (2.9), (2.12),
and (2.18), for any nonzero constant κ, the sum Σ = κ(λ−λ∗)φk +Zkφ̃r has simple poles
at ∞1, . . . ,∞r−1, except ∞k, where is has a double pole, as well as at P1, . . . , Pg, and
it has no poles elsewhere. By the same reasoning, Σ has zeros at S1, . . . , Sr−1. Next,
according to (2.9) and (2.12), the functions (λ − λ∗)φk(P ) and φ̃r(P ) are both nonzero
and finite at ∞r. Then, for an appropriate choice κ

∗ of κ, the sum Σ vanishes at ∞r.
Hence, in view of (2.17), the sum Σ∗ = κ

∗(λ− λ∗)φk + Zkφ̃r has the same poles on C̃
as φ̃k(P ) and the same zeros as φ̃k(P ) must have. Hence Σ∗ and φ̃k(P ), as functions on
the curve C̃, are different only by a constant multiplier. On the other hand, at the point
P = S∗ the both functions are nonzero and, due to the definition of Zk, coincide. Finally,
matching the coefficients at the highest powers of λ and µ in Σ∗ and φ̃k(P ), we conclude
that κ

∗ must equal γk − γr. This establishes the proposition.

Since M−1(λ|λ∗) and ξM−1(λ|λ∗) define one and the same map, in the sequel we replace
M−1 by the adjoint matrix of M(λ|λ∗). Now comparing expressions (2.11), (2.19) with
the second form of the transposed spectral problem (2.10), we obtain the following result.

Theorem 2.2. The adjoint matrix of M(λ) in the intertwining relation (1.3), (1.2) that
defines the shift by

∫ S∗
∞r

ω on Jac (C̃) has the form

detM(λ|λ∗)M−1(λ|λ∗) =




1
α2
...
αr


 (Z1 · · · Zr−1 1) + (λ− λ∗)(Y − γrI) , (2.20)

where Y = diag(γ1, . . . , γr) and αs, Zk are specified in (2.15) and (2.19) respectively.

Remark 2. Formulas (2.20), (2.15), and (2.19) describing the entries of M−1(λ) include
the coordinate µ∗, which depends on λ∗ and on the moduli of the spectral curve. Hence,
Theorem 2.2 only indicates the structure of the operators M−1(λ) and M(λ). As soon
as the structure is known, the entries of M−1(λ) can explicitly be expressed in terms of
the original and new values of the phase variables on Ored by expanding the both sides of
(1.3) in λ and matching some of the leading matrix coefficients. This shows that the map
Bλ∗ given by the discrete Lax pair is implicit.

Moreover, since a generic parameter λ∗ alone gives rise to r distinct points S∗ on
the curve C̃ and therefore, via the Abel map, to r distinct translation vectors S∗ on the
Jacobian, the map Bλ∗ is multi-valued (at most r-valued). The sum of all possible r vectors
S∗ equals

∫ ∞k

∞s
ω for some s, k. Using this fact, one can show that the N -th iteration of Bλ∗

has (r− 1)N + (N + 1)N/2 images, not rN images as in the case of generic nonintegrable
maps.
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Case (ii). Expression (2.20) is obviously not applicable when λ∗ = ∞. This leads us
to the second case described in Remark 1, namely {S1, . . . , Sr−1} = {∞1, . . . ,∞r} \ ∞k,
which results in the translation vector S =

∫ ∞k

∞r
ω for a certain index 1 ≤ k ≤ r − 1. We

denote the corresponding map by B∞k
.

For concreteness, in the sequel we set k = 1. Then, in view of Remark 1, instead of the
linear transformations (2.11), (2.14), we have a simple relation

φ̃r(P ) = φ1(P ), (2.21)

Proposition 2.3. In case of the map B∞1, the other components of φ̃(P ) can be repre-
sented in the form

φ̃1(P ) = (γ1 − γr)(λ− u)φ1(P ) +
r∑

k=2

δkφk(P ), (2.22)

φ̃s(P ) = βsφs(P ) + φ̄s(∞1)φ1(P ), s = 2, . . . , r − 1, (2.23)

where u, δk, βs are some uniquely defined constants on C̃.

The proof is similar to that of Proposition 2.1. In view of (2.9), (2.21), divisors of zeros
and poles of non-normalized row eigenvector φ̃(P ) = φ̃r(P )φ̄(P ) are

(φ̃1) = (φ̄1) + (φ1) = Q̃
(1)
1 + · · · + Q̃(1)

g + 2∞r − P1 − · · · − Pg − 2∞1,

(φ̃s) = (φ̄s) + (φ1) = Q̃
(s)
1 + · · · + Q̃(s)

g + 2∞r − P1 − · · · − Pg −∞1 −∞s,
(2.24)

where, as before, Q̃(k)
1 , . . . , Q̃

(k)
g are some positive divisors.

On the other hand, for generic constants βs, the right hand sides of (2.23) have simple
poles at P1, . . . , Pg,∞1,∞s and at least a simple zero at ∞r. Then one can choose con-
stants βs such that these expressions have a double zero at ∞r. These can be found from
equations

βs
∂φs(P )
∂τ

∣∣∣∣
P=∞r

+
∂φ1(P )
∂τ

∣∣∣∣
P=∞r

= 0, s = 2, . . . , r − 1,

where τ is a local coordinate on C̃ near ∞r. Since φ1(P ), φs(P ) have only a simple pole
at ∞r, the above equations have unique solutions. Then, in view of (2.24), the right
hand sides of (2.23) have the same poles and zeros as φ̃s must have, therefore they can
be different from φ̃s only by constant multipliers. These multipliers are units because
quotients of both sides of (2.23) by φ1(P ) are nonzero, finite and coincide at P = ∞1.

Next, according to (2.9), for generic constants u, δk, the right hand side of (2.22) have
simple poles at P1, . . . , Pg,∞2, . . . ,∞r, and a double pole at ∞1. The conditions for
the sum (λ − u)φ1(P ) +

∑r
k=2 δkφk(P ) to have a double zero ∞r and not to have poles

at ∞2, . . . ,∞r−1 give rise to r independent linear equations, from which u, δk are found
uniquely. Due to (2.24), for these special values of the constants, the sum is different from
φ̃1 only by multiplication by a constant factor. Finally, matching the coefficients at the
highest powers of λ and µ of both sides of (2.22) proves this relation.

As above, comparing expressions (2.21)–(2.23) with the transposed spectral problem
(2.10), we obtain the following result.
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Theorem 2.4. The adjoint matrix of M(λ) in the discrete Lax pair (1.3), (1.2) defining
the translation by

∫ ∞1

∞r
ω on Jac (C̃) has the form

detM(λ|λ∗)M−1(λ|λ∗) =




(γ1 − γr)(λ− u) φ̄2(∞1) · · · φ̄r−1(∞1) 1
δ2 0
... B

...
δr−1 0
δr 0 · · · 0 0


 ,

(2.25)

B = diag (β2, . . . , βr−1),

where u, δk, βs are some functions on Ored.

Like in the generic case λ∗ �= ∞, expression (2.25) only fixes the structure of M−1(λ)
and M(λ). Then the entries of M(λ) can effectively be computed in terms of the original
and new variables on Ored by matching some leading coefficients in the expansion of (1.3)
in λ.

Remark 3. In contrast to the generic map Bλ∗ , for the maps B∞k
the translations vectors∫ ∞k

∞r
ω are specified in a unique way, hence the maps themselves are single-valued.

Remark 4. Clearly, the inverse map B−1
λ∗ represented on Jac (C̃) as the shift by

∫ S∗
∞r

ω =

−
∫ S∗
∞r

ω is described by the discrete Lax pair (1.3) with L(λ) and L̃(λ) interchanged. Like
the direct map Bλ∗ , the map B−1

λ∗ is generally r-valued. Further, for any finite numbers
λ∗, ξ∗, the composition B−1

ξ∗ ◦ Bλ∗ is generally r2-valued and its restriction to Jac (C̃) is

given by one of the translation vectors
∫ (λ∗,µ∗)
(ξ∗,η∗) ω, where (ξ∗, η∗), (λ∗, µ∗) ∈ C̃. On the

contrary, the composition B−1
∞k

◦Bλ∗ is only r-valued and is represented by the translation

vector
∫ (λ∗,µ∗)
∞k

ω.

Continuous limit. Now we go back to the generic case λ∗ �= ∞ and assume that S∗

tends to ∞r. The translation vector on the Jacobian Jac(C̃) has the expansion S =
υ(∞r)τ +O(τ2), where, as above, τ = 1/λ∗ is the local coordinate on C̃ near this infinite
point and υ(τ) is the vector of the coefficients of the holomorphic differentials ω, such that
ω = υ(τ)dτ .

On the other hand, for sufficiently small τ , the new Lax matrix L̃(λ) in (1.3) can be
represented in the form L(λ) + L1(λ)τ +O(τ2). Then one can define a limit flow on Ored

with an independent variable x,

d

dx
L(λ) = lim

τ→0

L̃− L

τ
= L1(λ),

whose restriction onto Jac(C̃) is represented by the translationally invariant vector field
υ(∞r), which is thus tangent to C̃ ⊂ Jac(C̃) at ∞r.

In order to calculate Lax pair of the limit flow, we first take the matrix M(λ|λ∗)/(λ−
λ∗)r−1. In view of Theorem 2.2, it is finite for infinite λ∗ and its expansion with respect
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to τ has the form

1
(λ− λ∗)r−1

M(λ|λ∗) = ΓI+ M(λ)τ + O(τ2),

where Γ is a constant. Substituting this, as well as the expansion for L̃(λ) into (1.3), at
the first order we obtain Lax equations d

dxL(λ) = [L(λ),M(λ)] describing the above flow.
In this sense, the map Bλ∗ can be regarded as its discretization with τ playing the role of
a time step.

Possible generalizations. Our approach can be modified to construct maps on the
orbits Ored for other types of matrix Y in (1.2), when the number of infinite points of the
corresponding spectral curve is less than r, in particular for the case of r-gonal curves (only
one infinite point), which arise in connection with finite-gap solutions of soliton equations
of the KP hierarchy ([22]).

Next, since the operator M(λ|λ∗) defines a transformation of an eigenvector φ of a r×r
spectral problem, it can be used to construct Bäckund transformations of the solution u
of the corresponding PDE (for r = 2, examples of such transformation can be found,
amongst others, in [19]).

On the other hand, it is possible to construct a more general Bäcklund transformation
B : ON → ON , whose restriction to generalized Jacobians Jac(C̃,∞) acts nontrivially on
their fibers (C∗)r−1 and which does not preserve the extra r− 1 constraints defining Ored.
In this case the coefficients αk in (2.11) become dependent on the coordinates λ, µ. For
the case L ∈ sl(2), such a transformation depending on two governing parameters was
described in [9].

3 The case s̃l(2)

Following many publications, in the simplest case r = 2 the coadjoint orbit ON is defines
by the following 2n independent constraints on the 4n-dimensional space (G,F )

(q̄11, . . . , q̄n1) = (p̄12, . . . , q̄n2), (q̄12, . . . , q̄n2) = −(p̄11, . . . , p̄n1),

which are equivalent to conditions

(q̄i, p̄i) ≡ q̄1p̄1 + q̄2p̄2 = 0, q̄i2 + p̄i1 = 0, i = 1, . . . , n.

Further, we assume γ1 = −γ2 = γ. Then the Lax matrix (1.2) takes the form

L(λ) =

(
γ +

∑n
i=1

qipi

λ−ai

∑n
i=1

q2
i

λ−ai

−
∑n

i=1
p2

i
λ−ai

−γ −
∑n

i=1
qipi

λ−ai

)
∈ s̃l(2), (3.26)

where we set q = (q̄11, . . . , q̄n1)T , p = (p̄11, . . . , p̄n1)T . The components of q, p play the role
of local coordinates on 2n-dimensional orbit ON and the restriction of the 2-form Ω onto
ON coincides with the standard symplectic form

∑n
i=1 dqi ∧ dpi. Dynamical systems on

ON that are described by the Lax pairs with the matrix (3.26) are sometimes refereed to
as Gaudin magnets (see,e.g., [13]).
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The spectral curve C̃ becomes a hyperelliptic curve of genus g = n− 1 with two infinite
points ∞1,∞2 and is defined by equation

µ2 = a2(λ)


−γ2 −

n∑
i=1

piqj
λ− ai

−
n∑

i<j

(qipj − qjpi)2

(λ− ai)(λ− aj)




≡ a(λ)(−γ2λn + H1λ
n−1 + · · · + Hn), (3.27)

H1, . . .Hn being integrals of motion, which are in involution with respect to the constrained
Poisson bracket on the orbit ON . The complexification of ON is foliated with open subsets
of n-dimensional generalized Jacobians Jac(C̃,∞1,2) = Jac (C̃) × C

∗.
Up to an additive constant, the integral H1 in (3.27) equals (p, q). A Marsden–Weinstein

reduction with respect to the flow generated by the Hamiltonian H1 is equivalent to im-
posing constraints (p, q) = f , (q, q) = 1. They confine a 2g-dimensional reduced orbit Ored

foliated by open subsets of customary Jacobians Jac(C̃), which, in tun, can be regarded
as reduction of Jac(C̃,∞1,2) by the above flow.

In order to describe the map Bλ∗ : Ored → Ored, we represent the Lax matrix in the
polynomial form

L̂(λ) = a(λ)L(λ) =
(
V (λ) U(λ)
W (λ) −V (λ)

)
, (3.28)

U(λ) = λg + u1λ
g−1 + · · · + ug, V (λ) = γλg+1 + v1λ

g + · · · + vg+1,

W (λ) = w0λ
g + w1λ

g−1 + · · · + wg. (3.29)

Then the adjoint matrix to a(λ)L(λ) − µI equals

K =
(
−V (λ) − µ −U(λ)
−W (λ) V (λ) − µ

)
,

and the transposed spectral problem (2.10) has normalized solution

φ(P ) =
(

(V (λ) + µ)/U(λ), 1
)∣∣∣∣

(λ,µ)∈C̃
.

In view of (3.29) and the behavior of the coordinates λ, µ near the infinite points, the
divisor of zeros and poles of the component φ1(P ) has the form

V + µ

U

∣∣∣∣
(λ,µ)∈C̃

= Q1 + · · · + Qg + ∞1 − P1 − · · · − Pg −∞2, (3.30)

where λ(Pi) and λ(Qi) give zeros of U(λ) and W (λ) respectively.
Next, introduce hyperelliptically involutive finite points S1 = (λ∗,−µ∗), S∗ = (λ∗, µ∗) ∈

C̃. Then, according to Theorem 2.2, the map Bλ∗ representing translation by the vector∫ (λ∗,µ∗)
∞2

ω is given by the intertwining relation

L̃(λ)M(λ|λ∗) = M(λ|λ∗)L(λ) , L̃(λ) =
(
Ṽ (λ) Ũ(λ)
W̃ (λ) −Ṽ (λ)

)
, (3.31)

detM(λ|λ∗)M−1(λ|λ∗) =
(

2γ(λ− λ∗) + Z 1
αZ α

)
,

M(λ|λ∗) =
(

α −1
−αZ 2γ(λ− λ∗) + Z

)
,
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where the coefficients of the polynomials Ũ(λ), Ṽ (λ), W̃ (λ) are new coordinates on Ored

and, in view of (2.15), (2.19), the coefficients α,Z are defined in a rather symmetric manner

α = α2 =
−µ∗ + V (λ∗)

U(λ∗)
, Z = Z1 =

µ∗ + Ṽ (λ∗)
Ũ(λ∗)

(3.32)

(that is, α and Z pass into each other under the involution I : µ∗ → −µ∗, U, V → Ũ , Ṽ ).
Notice that v1 in (3.29) appears as coefficient in the equation of the spectral curve,

hence it is invariant under the transformation: v1 = ṽ1.
The intertwining relation (3.31) together with expressions (3.32) were already found in

[15] as a result of a direct analysis of divisors of zeros and poles of the polynomials (3.29).
Now, comparing coefficients of leading powers of λ in both sides of (3.31), we obtain

αZ = w0, v1 + ṽ1 + α + Z = ũ1 − λ∗, (3.33)
w1 − w0λ

∗ + 2αZ v1 = αw̃0 + Zw0.

which imply the following expressions of α,Z in terms of the original and new coordinates
on Ored

α =
w1 − w0ũ1

w̃0 − w0
, Z =

w0(w0 − w̃0)
w1 − w0ũ1

. (3.34)

Relations (3.31), (3.34) describe the map Bλ∗ in an implicit form. According to Remark
4 above, it is a two-valued map.

Limit cases. Now let S∗ tend to the infinite point ∞2 with a local coordinate τ = 1/λ∗.
In view of (3.32), (3.29), and (3.33), in a neighborhood of ∞2 the following expansion hold

α(λ∗) =
−2γτ−1 − 2v1 + O(τ)

1 + u1τ + O(τ)
= −2γ

τ
+ 2γu1 − 2v1 + O(τ), (3.35)

1
λ− λ∗

= −(τ + λτ2 + O(τ3)),
α(λ∗)
λ− λ∗

= 2γ + (2γλ− 2γu1 + 2v1)τ + O(τ2),

Z(λ∗) = −w0

2γ
τ + O(τ2). (3.36)

As a result, we get the following expansion

1
λ− λ∗

M(λ|λ∗) = 2γI+M(λ)τ +O(τ2), M(λ) =
(

2γλ− 2γu1 + 2v1 1
w0 0

)
. (3.37)

Hence, for τ → 0, the intertwining relation (3.31) has the continuous limit d
dx L̂(λ) =

[L̂(λ),M(λ)] describing the integrable x−flow on Ored given by equations

d

dx
U(λ) = 2V (λ) − (2γλ− 2γu1 + 2v1)U(λ),

d

dx
V (λ) = w0U(λ) −W (λ),

d

dx
W (λ) = (2γλ− 2γu1 + 2v1)W (λ) − 2w0V (λ).
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By the above derivation, the restriction of the flow onto Jac(C̃) is tangent to C̃ at ∞2.

In the opposite special case S∗ = ∞1, according to Theorem 2.4 and formula (2.25),
the map B∞1 is described by relation

L̃(λ)M(λ|∞) = M(λ|∞)L(λ), (3.38)

where

detM(λ|λ∗)M−1(λ|∞) =
(

2γ(λ− u) 1
δ2 0

)
, and M(λ|∞) =

(
0 −1

−δ2 2γ(λ− u)

)

with some coefficients u, δ2. This yields

Ũ(λ) =
1
δ2
W (λ), Ṽ (λ) + V (λ) − 2γ(λ− u)Ũ(λ) = 0.

Comparing these equalities with expansions (3.29), we find 2γu = 2γũ1−v1− ṽ1, δ2 = w0.
Since v1 = ṽ1, we obtain

M(λ|∞) =
(

0 −1
−w0 2γλ− (2γũ1 − 2ṽ1)

)
. (3.39)

The matrix M(λ|∞) describes an explicit map (U(λ), V (λ),W (λ)) → (Ũ(λ), Ṽ (λ), W̃ (λ)),
hence B−1

∞1
and therefore B∞1 are explicit and single valued maps.

Remark 5. The matrix M(λ|∞) can also be obtained directly from M(λ|λ∗) in (3.31),
(3.32) by calculating its limit at ∞1 similarly to (3.35), (3.36). The fact that α and Z
transform to each other under the involution I leads to the following property: M(λ|∞)
is the adjoint of M(λ) in (3.37) with u1 replaced by ũ1.

Example. A discrete Neumann system. A first integrable discretization of the
classical Neumann system describing the motion of a point on the unit sphere Sn−1 =
{(q, q) = 1}, q = (q1, . . . , qn) under the action of a quadratic potential was found by Veselov
[27] in the form of a Lagrangian correspondence (q(N − 1), q(N)) → (q(N), q(N + 1)),
N ∈ N being the discrete time. As shown in [26], by an appropriate introduction of the
momentum p = (p1, . . . , pn), this correspondence is represented as a two-valued canonical
map (p, q) → (q̃, p̃), which has the same first integrals as the classical system on T ∗Sn−1.

Another integrable discretization of the Neumann problem, was proposed by Ragnisco
in [23, 24]. It has different first integrals, although, for some limiting initial conditions,
passes to its continuous counterpart. In this discretization, the canonical variables q, p ∈
R

n are subject to constraints

(q, q) = 1, (p, q) = 1/2 (3.40)

and the corresponding map preserving the constrained symplectic structure has the fol-
lowing explicit form

q̃ =
1
Λ

(aq − uq − p), p̃ = Λq, (3.41)
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where

u = (q,aq) − 1, Λ2 = (aq − uq − p)2 a = diag(a1, . . . , an). (3.42)

The latter can be extended to the map ψ : F → F of the (2n− 1)-dimensional manifold
F = {p, q|(q, q) = 1} to itself, if we replace u by expression (q,aq) − 2(p, q). In this case
the product (p, q) becomes a first integral of ψ.

As shown in [25], up to the action of the discrete group generated by reflections
(qi, pi) → (−qi,−pi), the extended mapping can be written in 2 × 2 discrete Lax form

L(λ)M(λ) = M(λ)L̃(λ), M(λ) =
(

0 −1
Λ2 λ− (q,aq) + 2(p, q)

)
, (3.43)

where L(λ) has the form (3.26) with γ = 1/2 and L̃(λ) depends on the new variables
q̃, p̃ in the same way as L(λ) depends on q, p. It follows that generic complex invariant
manifolds of the map ψ are coverings of open subsets of Jacobian varieties of hyperelliptic
curves (3.27) of genus g = n− 1.

Now comparing the Lax matrix (3.26) for γ = 1/2 with its polynomial form (3.28), we
calculate

u1 − 2v1 = (q,aq) − 2(p, q), −w0 = (p, p), −w̃0 = (p̃, p̃) = Λ2.

It follows that the above operator M(λ) coincides with the matrix M(λ|∞) in the discrete
Lax pair (3.38), (3.39) describing the special single-valued map B∞1 , if we replace the new
(tilded) variables with the original ones and vise versa. Since L(λ) and L̃(λ) in (3.43) and
in (3.38) are interchanged, we conclude that the Ragnisco map ψ is the inverse of B∞1 .
Thus we arrive at the following proposition.

Proposition 3.1. The restriction of the map ψ onto Jac(C̃) is a translation by the vector
ζ = A(∞1) −A(∞2).

This proposition together with some simple observations enables one to construct ex-
plicit theta-functional solutions for the discrete Neumann system (3.41). Namely, let
λ1, . . . , λn−1 and λ̃1, . . . , λ̃n−1 be the roots of the polynomials U(λ) and W (λ) respec-
tively, or, equivalently, spheroconic coordinates on Sn−1, such that

q2
i =

(ai − λ1) · · · (ai − λn−1)∏
j �=i(ai − aj)

, p2
i = −w0

(ai − λ̃1) · · · (ai − λ̃n−1)∏
j �=i(ai − aj)

, (3.44)

i = 1, . . . , n.

Let Pk = (λk, µk), Qk = (λ̃k, µ̃k), k = 1, . . . , g be the corresponding point divisors on the
hyperelliptic spectral curve (3.27) and

z =
g∑

k=1

A(Pk), z̃ =
g∑

k=1

A(Qk)

be their images in Jac(C̃) under the Abel-Jacobi map with a basepoint P0. Suppose P0 is a
branch point. Then, comparing (3.44) with the standard theta-functional expressions for
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so called root functions (Wurzelfunktionen) in the case of even order hyperelliptic curves
(see e.g., [4, 8]), we find

q2
i = κi

θ2[δ + η(i)](z)
θ[δ](z − ζ/2) θ[δ](z + ζ/2)

, (3.45)

p2
i

w0
= νi

θ2[δ + η(i)](z̃)
θ[δ](z̃ − ζ/2) θ[δ](z̃ + ζ/2)

, (3.46)

where θ[δ + η(i)](z), θ[δ](z) are theta-functions with the Riemann matrix B related to the
curve (3.27) and appropriate half-integer theta-characteristics

δ = (δ′′, δ′)T , η(i) = (η′′(i), η
′
(i))

T ∈ R
2g/2R

2g,

such that modulo the period lattice of C̃ the following relations hold

2π
√
−1 η′′(i) + Bη′(i) =

∫ (ai,0)

P0

ω, 2π
√
−1 δ′′ + Bδ′ = K, (3.47)

K being the vector of the Riemann constants. Then, for any positive divisor D of degree
g − 1, θ[δ](A(D)) = 0 (see e.g., [10, 20]). Finally, κi, νi are constant factors depending on
the moduli of the curve only.

According to relation (3.30), the above arguments z, z̃ are different by the constant
vector ζ: z̃ = z − ζ.

Since a meromorphic function on C̃ is determined by its divisor of zeros and poles
uniquely up to a constant factor, in view of (3.30) and of a known theorem on its theta-
functional representation (see e.g., [20]), we have

V (λ) + µ

U(λ)

∣∣∣∣
(λ,µ)∈C̃

=
W (λ)

V (λ) − µ

∣∣∣∣
(λ,µ)∈C̃

= f(z)
θ[δ](A(P ) − z̃)
θ[δ](A(P ) − z)

θ[δ](A(P ) − e−A(∞1))
θ[δ](A(P ) − e−A(∞2))

, (3.48)

where P = (λ, µ), f(z) is constant on C̃, and e ∈ C
g is any constant vector such that

θ[δ](e) = 0.
The factor w0 = −(p, p) in (3.46) is a meromorphic function on Jac(C̃). In order to find

its theta-functional expression, we notice that in a neighborhood of the infinite points with
a local coordinate τ = 1/λ the following expansions hold (compare with (3.35), (3.36) )

near ∞1:
W (λ)

V (λ) − µ
= w0τ + O(τ2), near ∞2:

V (λ) + µ

U(λ)
=

1
τ

+ O(1).

Matching them with corresponding expansions of the right hand side of (3.48), we find

w0 = ξ
θ[δ](z∗ − ζ) θ[δ](z∗ + ζ)

θ2[δ](z∗)
, z∗ = z − ζ/2,

ξ being a constant independent of z. This, together with formulas (3.45), (3.46) and the
relation between z and z̃, gives us a complete theta-functional parameterization of the
squared components q2

i , p
2
i .

Now, as above, let q(N), p(N) denote the result of N -th iteration of the map ψ. Ap-
plying Proposition 3.1, we arrive at the following result.



Bäcklund transformations 45

Theorem 3.2. Generic solution to the discrete Neumann system (3.41) has the form

q2
i (N) = κi

θ2[δ + η(i)](z + Nζ)
θ[δ](z + Nζ − ζ/2) θ[δ](z + Nζ + ζ/2)

, (3.49)

p2
i (N) = εi

θ[δ](z + ζ/2 + Nζ) θ2[δ + η(i)](z + (N − 1)ζ)
θ3[δ](z + Nζ − ζ/2)

, (3.50)

i = 1, . . . , n, N ∈ Z,

where now z plays the role of a constant phase vector of a discrete Neumann trajectory
and κi, εi = ξνi are constant factors depending on the moduli of the spectral curve.

The factors can be found by applying these formulas to the initial conditions. It is seen
that q2

i has simple poles along two translates of the theta-divisor Θ ⊂ Jac(C̃), whereas p2
i

has a triple pole along one of the translates.

I am grateful to V. Kuznetsov for useful discussions of the problems related to this
paper. The research was partially supported by INTAS grant 00-221.
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