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Abstract

Orthogonal separability of finite-dimensional Hamiltonians is characterized by using
various geometrical concepts, including Killing tensors, moving frames, the Nijen-
huis tensor, bi-Hamiltonian and quasi-bi-Hamiltonian representations. In addition,
a complete classification of separable metrics defined in two-dimensional locally flat
Lorenzian spaces is presented.

1 Introduction

This paper continues our study [1, 2] of the problem of Liouville-integrability of a general
Hamiltonian system which exploits an intrinsic characterization of orthogonal separability
due to Benenti [6] by the method of moving frames. We consider a Hamiltonian system
defined by a general Hamiltonian of the form

H = %g”(q)pipj +V(q), i,j=1,...n, (1.1)
where g¥ denote the components of the contravariant metric tensor on a pseudo-Riemannian
n-dimensional base manifold M , V is a scalar field on M and q=(q¢',...,q") denote local
(position) coordinates, while p = (p1,... ,pp) are the corresponding conjugate (momenta)
coordinates. This setting implies that the Hamiltonian vector field X corresponding to
(1.1) is defined with respect to the canonical Poisson bi-vector Po = 3.7, -2 A % in the

i=1 dgt
usual way:
Xu = [Po, H] (1.2)
Here and below, unless otherwise indicated, [, ]| denotes the Schouten bracket [3] which

generalizes the usual Lie bracket of vector fields.
In [1, 2] we combined the classical method of moving frames (see Cartan [4], Olver
[5] as well as the relevant references therein) with the Benenti intrinsic criterion [6] of
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orthogonal separability of the system (1.1). As a result we were able to classify separable
coordinates of the system (1.1) in Riemannian spaces of constant curvature. See [1, 2]
for more details. In this paper we shall employ this idea to classify separable coordinates
in pseudo-Rimannian spaces of constant curvature. We note that this problem has been
studied by other methods (see Benenti and Rastelli [7], Kalnins [8], Miller [9] and Rastelli
[10]). We shall compare our results with the results obtained previously. In addition, we
characterize orthogonal separability by means of appropriate bi-Hamiltonian and quasi-
bi-Hamiltonian representations for the system (1.1).

2 Geometrical preliminaries

The essence of the method of moving frames can be briefly described as follows. At each
point p € M in a given n-dimensional pseudo-Riemannian manifold (M , &), we replace
the natural basis of the cotangent space T]\;[; . (dq',...,dq"™) arising from a coordinate
system (¢',...,q"), by a basis of n pointwise linearly independent one-forms (co-vectors)
EY.... E" ¢ TM;. The advantage of such an arrangement is the freedom to adopt the
basis to the geometrical situation. In the considerations that follow the natural choice is
that in which the metric tensor g takes its algebraic canonical form. In other words, with

respect to the basis E% a=1,... ,n we have
gap = diag(1,...,1,—1,...,—1). (2.1)
The co-frame of one-forms E', ... , E™ is said to be rigid in this case. One can now proceed

to study the relations between the one-forms £¢ € TM; , their exterior derivatives dE* and
the dual basis (F1, ..., E,) of the tangent space TMp independently of local coordinates.
Thus, we can consider an open set A > p and (orthonormal) moving co-frame E',... | E"
of one-forms defined in A, for which the metric tensor g takes the form (2.1). We note that
the elements of the moving co-frame E* and their counterparts F, are connected with the

natural basis associated with local coordinates (¢',... ,¢") about p € A as follows:
E* = h%dq', E,=h i 0 (2.2)
A ) a a Gq’” .

The structure functions C¢y, are defined by
1
[E., BEy] = C°E. or dE® = —§C“bch A E°. (2.3)

Now by (2.2) C° = hci(hajhb’ji — hbjha,ji), a,b,c,i,j = 1,... ,n. Here and below ;
denotes the usual partial derivative with respect to the ¢th coordinate. We introduce the
connection coefficients I' corresponding to the Levi-Civita connection V associated with
Jap as follows:

Ve, Ey=TyE., Vg E'=-T4"E%

The vanishing of the torsion tensor of V is expressed by

I‘bca - I‘cba - Cabc = 07 (24)
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while the curvature tensor of V is given by

R%a = Eclap” + TapTee” — Eal'es® — Ty TG — C%cal'ep”. (2.5)
We now define a one-form valued matrix w®, called the connection one-form by

w® =T *EC. (2.6)

Further, we define
Wab ‘= gacwcb‘

On account of the above the connection one-forms, wg;, are obviously skew-symmetric. The
condition (2.4) and the definition (2.5) may be expressed in the language of differential

forms as

dE® +w*% A E® =0, (2.7)
and

dw + w®e AW, = 0%, (2.8)

where A is exterior multiplication, d the exterior derivative and ©%, := (1/2)R%.qE° A E?
is the curvature two-form.

Finally, the equations satisfied by a valence two, symmetric, covariant Killing tensor K
can be written in frame components as

Kabe) = 0, (2.9)
where ; denotes the covariant derivative defined by

Kape = EcKop — Kgpleo® — Kgal'op®. (2.10)
We shall use these formulas to study orthogonal separability of the Hamiltonian systems

(1.1) defined in pseudo-Rimannian manifolds of arbitrary curvature.

3 Orthogonal separability

Recall that coordinates (q!,... ,¢") are called separable if the Hamilton-Jacobi equation
1, 0W oW
= ——— 4+ V(q) =F
39 o o T (a)

corresponding to (1.1) admits a complete solution in the following separable form:
Wi(aq,c) = Wl(qlv c)+ -+ Wp(q" ),

where ¢ = ¢y,. .. , ¢, are the constants of integration. Moreover, if the metric g of (1.1) is
diagonal in these coordinates, they are also said to be orthogonal and the system defined
by the Hamiltonian (1.1) is said to be orthogonally separable (see, for example, [6] for more
details). The next theorem provides a coordinate-free criterion of orthogonal integrability
of a Hamiltonian system defined by (1.1).
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Theorem 1 (Benenti). A Hamiltonian system defined by (1.1) is orthogonally separable
iff there exists a valence two Killing tensor K with pointwise simple and real eigenvalues,
orthogonally mtegmble etgenvectors and such that d(KdV) = 0, where the linear operator
K is given by K := Kg (or in the index form Kl = ng[ ).

Note the existence of a Killing tensor satisfying the condition of Theorem 1 implies the
existence of a second first integral of (1.1) of the following form.

F = K(q)pip; + U(q), (3.1)

We propose a criterion for orthogonal separability of a general Hamiltonian system (1.1)
in Cartesian coordinates.

Theorem 2. The following statements are equivalent.

(a) The Hamiltonian system defined by (1.1) is orthogonally separable with respect to

Cartesian coordinates (z*,... 2™, y', ... y").

(b) The associated pseudo-Riemannian manifold (M, g) admits a valence two covariant
Killing tensor K with pointwise simple and real eigenvalues and vanishing Nijenhuis
tensor Ny, where K := Kg.

(¢) The Hamiltonian system defined by (1.1) admits a bi-Hamiltonian representation

Xup =[P, H| =[P, F (3.2)
with respect to two constant Poisson bi-vectors Py and P defined by
n n
0 0
P = -\ — 3.3
! ; oxt " Oy’ E:: i 8:6I oyz’ (3:3)
where A\;, i = 1,... ,n are constant and F is given by (3.1) with K having real and

distinct ergenvalues.

Proof. The equivalence (a) < (b) was proven in [1, 2] based on the properties of the
Nijenhuis tensor. Let us prove now the equivalence (a) < (c¢). The part (a) = (c¢)
is straightforward: If a Hamiltonian system defined by (1.1) is orthogonally separable
with respect to Cartesian coordinates (x!,...,z" y',...,y™) then by Theorem 1 and
the equivalence (a) < (b) we conclude that in these coordinates the metric g of (1.1)
and the valence two Killing tensor K of (3.1) take the forms g = diag(ey,... ,€e,) and
K = diag(e1 A1, ... , €n\n) respectively, where ¢, = £1,i = 1...n and Aq,..., )\, are real
and distinct constants. The result then follow by a direct substitutuion. Assume (c),
that is that in some coordinates (x!,..., 2" y',... ,y") the Hamiltonian system defined
by (1.1) admits a bi-Hamiltonian representation given by (3.2) and (3.3). Substituting
(1.1), (3.1) and (3.3) into (3.2), we arrive at two sets of conditions for the components
of g and K. The first is ¢ = \; K% = )\jKij,z‘ # j4,14,5 =1,... ,n. Which means that
g7 = K% = 0,i # j, that is the separability is orthogonal. The second set of conditions
concerns the diagonal elements of the matrices defining g and K: ¢ = 1/\K%, or
K% = )\g",i=1,...,n. Taking into account that both K and g are diagonal in this case
along with the characteristic equation |K“ — A\g"/| = 0, we conclude that the constants
AL, ..., A are the eigenvalues of the valence Killing tensor K of (3.1) and the result follows
from (a) < (b). This completes the proof. [ |
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In general, however, the situation is more complex and finding a complete set of sep-
arable coordinates is a very complicated problem. To approach this problem we employ
the method of moving frames, described in the preceeding section, along with Theorem 1
as follows. In an orthonormal frame of eigenvectors of the Killing tensor K of (3.1), both
the Killing tensor and metric of (1.1) are diagonal:

gap = diag(ey,... ,e,), € =1, a=1,...,n, (3.4)
Kab = )\agaba (35)
where A\, a = 1,...,n are the eigenvalues of K. Using the Frobenius theorem and
integrability of the eigenvectors Ey,...,E, of K, we derive the separable coordinates

E® = f,dz®, or alternatively, F, = ( fa)_la%a. The connection coefficients take the form
TCoap = —€a(fafp) ™t 9fa while the metric of (1.1) is as follows.

Oxb?

ds® = e1 f2(dz')> 4 - + en f2(da™)?. (3.6)

The Killing tensor equations are found [13] to be

O
o=, (3.7)
N 9

axb - (Aa - Ab)m(lnfa% <38)

with the corresponding integrability conditions [13]:

ok 0

0
—_— 2 —_—
0x20xb (In fa) + Oxa (

S fd) =0, a#b, (3.9)

In f7)

9 2

o .0
W(lnfa) - w(lﬂfa)

o0x¢

(In f2) +

0

0 0 0
@(lnf(f)&rc axc(lnfg)w(lnff) = 0, a#bFc#a

For the the potential V' of (1.1), using the condition d(KdV') = 0 of Theorem 1, we derive

the following equation in coordinates z!, ..., 2™

(3.10)
(In f7) +

VieMag) + AaVjay) =0,
which after removing derivatives )\, using the Killing equation, yields
Vb + Va(ln f3) 5+ Vp(n f7) .0 = 0 (3.11)

with the corresponding equation for the function U of (3.1): U, = AV, (see [6] for more
details). We observe that in the orthogonal case the eigenvalues for the Killing tensor, the
metric functions, the potential V' and the function U are independent of the signature of
the pseudo-Riemannian metric g of (1.1).
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4 Two dimensional pseudo-Riemannian manifolds

In this section we apply the above analysis to classify the separable cases for the Hamilto-
nian system (1.1) defined in a pseudo-Riemannian manifold (M, g) of dimension two. We
proceed by solving the integrability conditions (3.10) to obtain the form of the metric in
canonical separable coordinates and the Killing tensor equations (3.7) and (3.8) to obtain
A1 and Mg in separable coordinates, seeking the general solution. Next we solve (3.11)
to obtain the forms of the separable potential and the corresponding equation for the
function U of the first integral. Finally, we write down the form of the general separable
Hamiltonian (1.1) and corresponding second first integral F' (3.1). To study the separable
cases in locally flat pseudo-Riemannian spaces we employ the following formula for the
Riemann curvature tensor in frame components.

Rig12 = E1T921 — Esl91 — €1(T'112)? — €a(T21)*. (4.1)

Solving the integrability conditions (3.10) along with the Killing tensor equations (3.7),
(3.8), we use the derived eigenvalues A; and Ay of K (as its invariants) to classify the
separable coordinates. It is natural to consider the following Separable Cases (SC). SC1:
A1 and Ay both constant; SC2: A1 constant, Ay non-constant (or, alternatively, the other
way around) and, finally, SC3: A\; and Ay both non-constant. Performing the analysis
outlined above, we arrive at the following formulas in each case for the corresponding
metric g of (1.1), Killing tensor K of (3.1), Hamiltonian (1.1) and second first integral
(3.1) as well as the Riemann curvature tensor in SC2 and SC3.

SC1.
Metric:

ds® = erdu® + exdv?. (4.2)

Killing tensor:

Kqp = diag(e1A1, e2X2). (4.3)
Hamiltonian:
1
H = 5 (epy + epy) + C(u) + D(v). (4.4)

First integral:

F = 61)\1]95 + 62)\2])72} + Z(AlC(u) + )\QD(U)). (4.5)
SC2.
Metric:

ds* = erdu® + e2g%(u)dv?. (4.6)

Killing tensor:

Ky = diag(el)\l, 62(A1 + mgQ(u))) (4.7)
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Hamiltonian:

a= %(61]03 +eg 2 (w)py) + 97 (w)D(v) + C(u). (4.8)
First integral:

F = ep? +2D(v). (4.9)
Riemann curvature tensor:

Rig12 = —629%- (4.10)

SC3 (General Case).
Metric:
ds® = (A(u) + B(v))(erdu® + exdv?). (4.11)

Note that the metric (4.11) has the general Liouwville form.
Killing tensor:

K, = diag(e1 B(v), —e2 A(u)). (4.12)
Hamiltonian:
H = (A(w) + B()) " [(ep} +ep) + C(u) + D(v)]. (4.13)

First integral:
F = (A(u) + B(v))™" [elB(v)pg — ey A(u)p? + 2(B(v)C(u) — A(u)B(v))] L (414)

Riemann curvature tensor:

(A(u) + B(v))(e24"(u) + e1B" (v)) — e2(A'(w))* — &1 (B'(v))?
2(A(u) + B(v))3 '

Ris12 = — (4.15)

It was shown in [11] that separability in the Cartesian coordinates when ¢; = €3 = 1
was equivalent to the existence of certain bi-Hamiltonian and Lax representations of fixed
types. The first part of this result was generalized in Theorem 2 for arbitrary n. For the
case of two degrees of freedom the above result can be generalized for the arbitrary case
without making any assumption on either the type of separable coordinates or signature
of the corresponding metric. Recall that the bi-Hamiltonian property (3.2) is in general a
very restrictive condition which does not hold true in general for any system of coordinates
for a Liouville-integrable sysem defined by (1.1). Recall also that a Hamiltonian system
is said to be quasi-bi-Hamiltonian (QBH) if its vector field X r enjoys the following
representations

1

Xy, r =[P, H] p Py, F], (4.16)
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where Py and P are compatible Poisson bi-vectors and p is a function. If p = — ;" p,
where p;, ¢ = 1,...,n are eigenvalues of the operator A = PP, ! assuming A is of
minimal degeneracy (i.e., it has exactly n distinct eigenvalues) and P; is invertible, the
QBH system (4.16) is called Pfaffian (see, for instance [12]). We use this concept to
complete the characterization of orthogonally separable Hamiltonian systems with two
degrees of freedom in the following theorem.

Theorem 3. The following statements are equivalent.

(a) The pseudo-Riemannian manifold (M,g) defined by (4.17) admits a valence two
Killing tensor K with real and distinct eigenavlues.

(b) There exist coordinates (u,v) with respect to which the metric takes the form (4.11)

(¢) The Hamiltonian system defined by
H = 59" (@pipj +V(a), i,j=12 (4.17)

in the pseudo-Riemannian manifold (M,g) can be integrated by separation of vari-
ables.

(d) The completely integarable Hamiltonian system defined by (4.17) with a second first
integral of the type (3.1) defines a QBH of the Pfaffian type (4.1A6) with p = —A(u)B(v),
where A(u), B(v) are the eigenvalues of the linear operator K = Kg.

Proof. The (b) < (¢) was proven first in 1881 using local coordinates by Morera [14],
who also extracted the four separable systems of coordinates in the Euclidean flat space.
The (a) < (c) part is simply a restatement of Theorem 1 and (a) < (b) follows from the
above considerations. The implication (¢) = (d) follows from Proposition 2 [12]. Indeed,
it is shown in [12] that there exists a system of coordinates with respect to which a general
Pfaffian quasi-bi-Hamiltonian system with two degrees of freedom admits the Gantmakher
form [15] and is separable as such. It follows from the above, that the Hamiltonian systems
defined by (1.1) in this case are Liouville, since both H and F' are quadratic in momenta.
The converse statement can be verified by a straghtforward calculation using the formula
(4.16) for Py = 0y A Op, + 0y A Op, and Po = A(u)0y A0y, + B(v)0y A Op, , along with (4.13)
and (4.14). [

The following corollary characterizes admissible coordinates in a locally flat Riemannian
space via Pfaffian quasi-bi-Hamiltonian structures.

Corollary 1. Let a Hamiltonian system with two degrees of freedom defined by (1.1) in
a locally flat Riemannian space be Pfaffian quasi-bi-Hamiltonian in some system of coor-
dinates (u,v) with respect to the following Poisson bi-vectors: Py = 0y A Op, + Oy A Op,
and Py = A(uw)0y A Op, + B(v)0y A Op, with p=—A(u)B(v). Then this system of coordi-
nates is one of the following three types: Polar, parabolic or elliptic-hyperbolic. Moreover,
in the degenerate case when the system is bi-Hamiltonian defined by the constant Poisson
bi-vectors with —B(v) = A(u) = 1 in Py , then the system of coordinate (u,v) is Cartesian.
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5 Two-dimensional locally flat pseudo-Riemannian spaces

In this section we give a complete classification of the canonical separable coordnate sys-
tems and the corresponding metrics for the case when Rjs10 = 0. We also present the
coordinate transformations relating these coordinates to Cartesian coordinates. The forms
of the Hamiltonian and first integral in each case will not be explicitly written, since they
can be obtained directlty from the relevant formulas of the preceeding section, once the
metric has been derived.

Taking into account the condition Rjo12 = 0 in the general case, we arrive at the
following separable cases. We have used the available coordinate freedom to eliminate
inessential constants of integration in order to obtain the simplest possible canonical forms
for the metric in each case.

SC1.
Metric:

ds® = e;du® + eadv®. (5.1)
SC2.

ds* = Edu’® + exu?dv®. (5.2)
Locally flat Riemannian space: €; = e = 1.
Metric:

ds* = du® + u?dv®. (5.3)

Coordinate transformation:

r=wucosv, y=usinv, u>0,0<wv <27 (5.4)
Locally flat Lorentzian space: €1 = —eg = 1.
Metric:

ds® = du® — u?dv®. (5.5)

Coordinate transformation:
t =wucoshv, 1z =wusinhv. (5.6)

We note that the case A; is non-constant, Ay is constant is equivalent to SC3 in both
locally flat Riemannian and Lorentzian spaces.

SC3.
Separating the equation (4.15), we get

A/// B///

R T
where « is constant. The Riemannian and Lorenzian cases must now be considered sepa-
rately.
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Locally flat Riemannian space. Without loss of generality we may set o = p?, where
> 0. The case p = 0 leads to the following metric and coordinate transformation.
Metric:

ds® = (u? 4+ v?)(du® + dv?). (5.7)

Coordinate transformation (two parabolic coordinate systems):

Loy

x = i(u —v?), y=uw. (5.8)
The case of p > 0 yields, after solving (4.15).
Metric:

ds® = a*(cosh? u — cos? v)(du? + dv?). (5.9)

Coordinate transformation (two elliptic-hyperbolic coordinate systems):

x = acoshucosv, y=asinhusinv. (5.10)
Locally flat Lorentzian case. In this case we must set o = eu?, where €2 = 1 and p > 0.
This transforms the equation (4.15) as follows.

A///_B///_ 9
A

Now the case of = 0 leads to the following metrics and coordinate transformations.
Metric:

ds® = (u+ v)(du® — dv?). (5.11)

Coordinate transformation:

1 , 1 1 , 1
== “(u — S —(u — ). A2
t 4(u+v) +2(u v), 4(u+v) +2(u v) (5.12)
Metric:
ds* = (u? — v?)(du® — dv?). (5.13)

Coordinate transformation:

1

t= é(u2 +0?), = =uw. (5.14)
When g > 0,e = —1, we derive
Metric:

ds* = b(sinu + sinv) (du® + dv?). (5.15)

Coordinate transformation:

t =2v2bcos (% + %) cos (% + %), x = 2v/2bsin (g + %) sin (g + z). (5.16)
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Finally, for ;4 > 0,e = 1, we derive the following remaining inequivalent metrics.
Metric:

ds® = (e + e¥)(du? — dv?). (5.17)
Coordinate transformation:

t + 2 = 2sinh (%(u—v)), t— gz = d4es(wH), (5.18)
Metric:

ds® = (e* — e¥)(du® — dv?). (5.19)
Coordinate transformation:

t 4+ = 2cosh (%(u—v)), t—z = 4ea(®tv), (5.20)
Metric:

ds® = b(sinhu + sinhv)(du® — dv?), b >0 (5.21)
Coordinate transformation:

t+ 2 = 2V2bcosh (%(u + U)), t — 2 = 2V/2bsinh (%(u — v)) (5.22)
Metric:

ds* = b(coshu + coshv)(du® — dv?), b> 0. (5.23)
Coordinate transformation:

t = 2v/2bsinh g cosh g, x = 2v/2b cosh g sinh g (5.24)
Metric:

ds* = b(coshu — coshv)(du® — dv?®), b> 0. (5.25)

Coordinate transformation:
t = 2v/2bcosh g cosh g, & = 2v/2bsinh g sinh g (5.26)

This completes the classification. We note that our classification differs somewhat from the
classification obtained previously by Kalnins [8] employing other methods. More specif-
ically, the forms of the metrics (5.21), (5.23) and (5.25) found here contain an arbitrary
positive parameter b, which, we believe, is essential and cannot be dispensed with. It is
analogous to the parameter a that appears in the flat metric (5.9) in the Riemannian case.
Recall that a is interpretable as the (half) distance between the foci of the ellipses of the
elliptic-hyperbolic coordinate system.
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