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Abstract

Using our previous work on reflectionless analytic difference operators and a nonlocal
Toda equation, we introduce analytic versions of the Volterra and Kac-van Moerbeke
lattice equations. The real-valued N-soliton solutions to our nonlocal equations corre-
spond to self-adjoint reflectionless analytic difference operators with N bound states.
A suitable scaling limit gives rise to the N-soliton solutions of the Korteweg-de Vries
equation.

1 Introduction

In a recent paper we introduced and studied a large class of analytic difference operators
admitting reflectionless eigenfunctions [1]. Subsequently, we tied in these results on reflec-
tionless analytic difference operators (henceforth AAQOs) with several soliton systems, both
finite-dimensional and infinite-dimensional [2]. In particular, we introduced an analytic
version of the infinite Toda lattice [3, 4, 5]

Gn(t) = exp [qn,l(t) — qn(t)] — exp [qn(t) — an(t)], n € 7, (1.1)
namely,
iU (2,t) = exp[—iVU(z — i,t) + i¥(z,t)] — exp[—iW(z,t) + iV (z +i,1)]. (1.2)

We showed that (1.2) admits N-soliton solutions, established their relation to the rela-
tivistic Calogero-Moser systems introduced in Ref. [6], and used this relation to clarify
their long-time asymptotics.

In this paper we study the nonlocal evolution equation

iF(x,t) = F(x,t)[F(x —i/2,t) — F(x +1i/2,t)], (1.3)
and its logarithmic version

iY(z,t) = exp[Y(x — i/2,t)] — exp|Y (x +i/2,t)], (1.4)
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along similar lines. These equations may be viewed as analytic versions of the infinite
Volterra (or Langmuir) lattice equations [7, 8, 5]

Vi(t) = Vi) [Vicrjo(t) = Vigro(t)], 1€ Z)2, (1.5)

and the infinite Kac-van Moerbeke lattice equations [9]

Ki(t) = exp[K;_1/5(t)] — exp[Ki112(t)], 1 € Z/2. (1.6)

(See also Suris’ forthcoming monograph Ref. [10] for an up-to-date and comprehensive
account of these lattice systems and a host of other ones.)

Little appears to be known concerning the general theory of nonlocal evolution equa-
tions such as (1.2)—(1.4). (Some other special cases are discussed in a review by San-
tini [11].) In particular, we are not aware of results on existence and uniqueness of solu-
tions to a suitably formulated Cauchy problem. Clearly, the latter should involve initial
data and solutions with analyticity properties such that the shifts into the complex plane
make sense. For (1.3) one can, for instance, require that F'(z,0) be meromorphic and look
for solutions F(x,t) that are meromorphic in z for fixed ¢, whereas for (1.2) and (1.4) one
may restrict attention to data and solutions such that exp[i¥(z,t)] and exp[Y (z,t)] are
meromorphic in x for ¢ fixed.

The solutions to (1.2) introduced in Ref. [2] and the solutions to (1.3) and (1.4) con-
structed below all have these meromorphy properties. Moreover, exp[i¥(z,t)] has limit 1
for Rex — oo and limit ¢ € C* for Rex — —o0, whereas F(z,t) and exp[Y (z, t)] have limit
1 as Rex — £o00. The intimate relation to our previous work on (1.2) can be expressed
directly in terms of the solutions F(z,t) to (1.3) at issue here. Indeed, they can all be
written as

F(x,t) = exp[iV(x +i/4,t) —iV(x —i/4,1)], (1.7)

where W(x,t) is a solution to (1.2). It should be emphasized that no such relation is
apparent from a comparison of (1.2) and (1.3). That is, at face value there seems to be no
reason why any solution W(x,t) to (1.2) that is not i-periodic in z would yield a solution
F(z,t) to (1.3) via (1.7) or any other formula.

In Section 2 we define solutions to (1.3) in terms of complex numbers rq,...,ry and
meromorphic i-periodic functions pi(z),...,un(x) satisfying some further restrictions.
Thus, we obtain an infinite-dimensional space of solutions already for N = 1. Following
Section 4 in Ref. [2], we also describe how one obtains N-soliton solutions to the Volterra
lattice equations (1.5) by a suitable analytic continuation of our spectral data and a
subsequent z-discretization. (These soliton solutions were first obtained by Manakov [7].)

In Section 3 we introduce and study N-soliton solutions to our analytic versions (1.3)
and (1.4) of the Volterra and Kac-van Moerbeke lattice equations (1.5) and (1.6). In order
to get ‘traveling wave’ characteristics, we need to choose p,(z),n = 1,..., N, constant.
It is a remarkable fact that some further reality conditions on the spectral data ensure
that these nonlocal Kac-van Moerbeke solitons are real-valued for x and ¢ real. In this
connection we should stress that our solitons cannot be viewed as interpolations of the
lattice solitons. (The distinction is most easily visible from the soliton speed function: In
our case it takes values in (0, 1), whereas it takes values in (1, 00) for the lattice solitons.)
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Just as for the nonlocal Toda solitons (and the soliton solutions to a host of other
equations [6, 12]), our N-soliton solutions to (1.3) and (1.4) can be parametrized by
the canonical coordinates of suitable relativistic N-particle Calogero-Moser systems. This
parametrization ensures that the soliton scattering transformation is a canonical map [12],
and enables us to use results from Ref. [13] to study long-time asymptotics. We were how-
ever unable to prove a conjecture involving a uniform exponential decay bound, cf. (3.43)
below. (Analogs of this conjectured bound hold true in various other cases [13].)

In Section 4 we show that a suitable limit of our analytic Volterra solitons yields the
KdV solitons. It is however far from clear whether this is a general phenomenon. More
precisely, we do not know whether a similar limit holds true for arbitrary solutions. For
(a suitable interpolation of) lattice Volterra solutions, the relevant limit was rigorously
established by Schwarz [14] (he attributes the key substitution for the 1-soliton limit
to M. Kac). Several other aspects of the Volterra lattice — KdV limit are studied in
Refs. [15, 16, 17]. Again, one may ask whether similar results hold true for our analytic
versions.

To conclude this introduction, we would like to mention that this paper (as well as our
previous ones Refs. [1, 2]) owes much to earlier work on the discrete difference (Jacobi)
operator/lattice equation analogs of the analytic objects we study. Indeed, without the
extensive knowledge gathered on the discrete versions, there would have been no clue as
to what might be the case for the analytic analogs at hand. This is especially true for the
result detailed in Section 4, which involves the key idea to make a time-dependent shift of
x (‘Galilei boost’), so as to arrive at the KdV solitons. (We learned about the relation of
the Volterra lattice solitons to their KdV cousins from M. Musette.)

2 Solutions related to reflectionless AAQOs

Our main purpose in this section is to construct and study meromorphic solutions to (1.3)

that depend on N numbers rq, ..., ry satisfying

Imr, € (0,7), n=1,...,N, rx#nr, k#I, (2.1)
and N meromorphic functions p;(x), ..., ux(z) satisfying

pn(z 4 1) = p(z), |Reli1i1looun(a:) =cpn, ¢ €C*, n=1,...,N. (2.2)

The key ingredient for doing so is the meromorphic solution R(r, u; z) to the linear system
(D(r, u2) + C(r)R() = (1,...,1)". (2.3)

Here, C' is the Cauchy matrix

1
C(r)mn=——, myn=1,...,N, (2.4)

e'm —e~n

and D the diagonal matrix

D(r, p;z) = diag(pq (x) exp(—2iri1x), ..., un(z) exp(—2iryx)). (2.5)
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Using the solution R, we introduce two AAQOs of the form
S =T+ V(@)T_i/2, (2.6)

A=T, + Vo(o)T-; + Viy(z), (2.7)

where Ty, is the translation over —a,
T, = exp(—ad,), «ae€C". (2.8)

Specifically, the potentials V and V,, V} are defined in terms of the auxiliary functions

N
Arypiz) =1+ Y €™ Ry(r, p; ), (2.9)
n=1
N
S(r,pmix) =Y Ra(r, pi ), (2.10)
n=1
namely as
V(r, pyx) = My ps ) /A (r, iy +14/2), (2.11)
Va(r, gy ) = V(r, s )V (7, s 0 41/2) = M, ps ) /A (r, g 2+ 9), (2.12)
Vo(r, i) = B(r, pyz — i) — B(r, 5 @). (2.13)

For the special case N = 1 one can easily verify directly that V' admits an alternative
representation

Vi(r,pyz) = E(r, sz —i/2) — S(r, gy ) + 1. (2.14)
As a consequence, one obtains the relation
S(r,n)? = A(r, p) + 2. (2.15)

As a matter of fact, these equalities hold true for arbitrary N. Moreover, the reflectionless
wave function

W(r, w; z,p) = e*P (1 - iv: M) , (2.16)
S ep — e
is an eigenfunction of S and A:
SW = 2ch(p/2)WW, AW = 2ch(p)WV. (2.17)

(This can also be readily checked for N = 1.)
The assertions made in the previous paragraph are proved in Theorem 3.3 of Ref. [1].
Next, we introduce time-dependent multipliers

pn(rr; 2, t) = pn(x) exp(itfe™ —e ™)), n=1,...,N, (2.18)
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and invoke results from Ref. [2]. From now on we prefix equations from the latter articles
by I and II, resp.

The time dependence (2.18) is the same as that considered in Ref. [2], cf. II(2.10). (The
key restriction compared to loc. cit. is that we require all r; to have positive imaginary
part—this is necessary for our proof of the relation (2.14).) We may therefore invoke
I1(2.26) to obtain the time derivative

Sz, t) = i[l — Va(, t)]. (2.19)

(Here and below, the time dependence arises by taking p,(x) — pn(rp;x,t).) From (2.14)
and (2.12) we now deduce

Viz,t) = —iVa(x —1i/2,t) +iV,(x,t)
= V(x,t)[V(x+i/2,t) — V(z—1/2,t)]. (2.20)
We have, therefore, obtained an extensive class of solutions to the nonlocal Volterra

equation (1.3). Before discussing these in more detail, it is of interest to observe that any
solution to (2.20) gives rise to a solution of the coupled nonlocal evolution equations

Va(z,t) = iVo(z, t)[Vi(z + i, t) — Vi(z,1)], (2.21)

Vi(z,t) = iVy(,t) — iVy(z — i, 1). (2.22)
Indeed, for a given solution V'(x,t), we need only set

Valz,t) =V (z,t)V(z+1i/2,t), Vp(z,t)=V(e—i/2,t)+V(x,t) -2, (2.23)

to obtain (2.21) and (2.22) as a corollary of (2.20).

Now the ‘spectral data’ (r, 1) satisfying (2.1) and (2.2) not only give rise to solutions
of (2.20), but also to solutions ¥(z,t) of the nonlocal Toda type evolution equation (1.2).
Specifically, we may take

U(x,t) =iln\(z, 1), (2.24)

cf. 11(2.41), (2.42). As we have just shown, a more general solution V(x,t) to (2.20) gives
rise to a solution to the Flaschka type system (2.21), (2.22). In turn, from solutions to the
latter one can try and construct solutions to (1.2) by solving first the analytic difference
equation

iW(x +14,0) — i¥(z,0) = In Vy(z,0), (2.25)

and then setting
t
U(a, 1) = / Vi (. 5)ds + Uz, 0). (2.26)
0

In the absence of information on the Cauchy problem for the nonlocal evolution equations
at hand, it is however not clear that this yields a solution to (1.2).
Returning to the special solutions introduced above, we define

F(z,t) =V(x —1/4,t). (2.27)
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Clearly, F'(z,t) obeys (1.3). In view of (2.11) it is related to the Toda solution (2.24) by
(1.7). The point of the z-shift in (2.27) is that F'(x,t) takes values in [0, oo] for x,t real
whenever r, u satisfy

rn €4(0,7), mn=1,...,N, (2.28)

iexp(—rp)pn(zr) €R, z€R, n=1,...,N, (2.29)

in addition to (2.1) and (2.2).
To explain why this remarkable feature holds true, we recall from Ref. [1] that the
conditions (2.28), (2.29) entail

A(z) = 1/A\(2), (2.30)

cf. I(D.17). (Here, the % denotes the conjugate, i.e., \*(x) = \(Z),z € C.) From (2.11) we
then have

F(x,t) = ANz —i/4,1)]*,  (2,t) € R?, (2.31)

whence nonnegativity is evident.
At this point we would like to remark that the relation

Vi(x) =V(z—i/2), (2.32)

which follows from (2.30), is the necessary and sufficient condition for the AAO S (2.6)
to be formally self-adjoint on L?(R,dz), cf. also Appendix D in Ref. [1]. (But we can
only prove self-adjointness in a rigorous, functional-analytic sense when the functions
p1(z), ..., pun(x) are constant in addition to the requirements (2.1), (2.2), (2.28) and
(2.29), cf. [18].) Furthermore, (2.30) entails that the nonlocal Toda solution ¥(x,t) (2.24)
can be chosen real-valued for x,t real.

In the next section we shall show that further restrictions on r, u yield solutions F'(z,t)
that are not only positive for real x, ¢, but that may also be viewed as N-soliton solutions.
To conclude this section, we sketch how a quite different class of solutions to the nonlo-
cal, analytic equations (1.3) gives rise to the N-soliton solutions of the Volterra lattice
equations (1.5).

The pertinent class is defined by spectral data

rj=e"k;,  pi(r) =exp(ry)/v;, j=1,...,N. (2.33)
Here, we fix
0<ky<--<EKi, V,...,uvNy€(0,00), (2.34)

and we make the connection to (1.5) via the | 0 limit. Thus, r1,...,ry converge to
the lower boundary of the strip in (2.1). We have already studied this limit for the (more
general) Toda case in Section 4 of Ref. [2], so we only indicate how the reasoning detailed
there is to be supplemented.

The main extension that is needed consists in replacing n € Z in loc. cit. by | €
Z/2. Since we are dealing here with the special case N_ = 0, all of the quantities z; =
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exp(—k;),j = 1,...,N, are positive. Therefore, the matrix L?(l),l € Z/2, given by
I1(4.17), is still similar to a positive matrix, which entails that all of our arguments extend
to the lattice Z/2. (Note the typo in 11(4.20) and I1(4.21): On the rhs ¢ should be replaced
by 1.)

In this way one obtains two ‘non-communicating’ Toda systems, namely, one for [ € Z
and one for | € Z 4+ 1/2. (Of course, the second one can just as well be viewed as living
on the lattice Z, by changing the normalization coefficients v; to v;z;, cf. 11(4.19).)

The relation between these two systems arises from a consideration of the limits of
V(z) and S. Specifically, combining (2.11) and (the [ € Z/2 version of) 11(4.23), one gets

11?01 Viie™) = XD/ (1+1/2) = V2, 1€Z/2, (2.35)
n

and the S-limit yields the discrete difference equation

W (1 =1/2,p) + VAW (1 +1/2,p) = 2cos(p/2)W7 (I,p), 1€ Z/2. (2.36)
In view of (2.12)—(2.14) and 1I(4.24), (4.25), one also gets

2a(1) = ViVisryz,  26(1) = V210 + V7 — 2. (2.37)

Making the similarity transformation I1(4.37) (with n — [ € Z/2), one winds up with
the self-adjoint discrete difference operator

Dy f)) = Vieao f (L= 1/2) + Vif (L +1/2), (2.38)

on [*(Z/2). The operator D% ,,/2—1 leaves the subspaces [*(Z) and [*(Z+1/2) invariant.
Thus it gives rise to two self-adjoint Jacobi operators with nonzero diagonal and off-
diagonal elements b(l) and a(l), where [ € Z and | € Z + 1/2, respectively.

Finally, taking the time dependence into account, one should take ¢ — it (just as in
loc. cit.), so as to obtain positive N-soliton solutions V;(t) to the Volterra lattice (1.5),
which depend on the numbers (2.34). Their logarithms Kj(¢) then yield real-valued N-
soliton solutions to the Kac-van Moerbeke lattice (1.6).

3 A study of the N-soliton solutions

We begin this section by studying the general N = 1 solution. From (2.3)—(2.5) we have

Ri(z,t) = (1 (2, t) exp(—2iri1z) + [QShrl]*l)fl .

(3.1)
Using (2.14) and (2.18) we now calculate

V(z,t)—1 = Ri(x—1i/2,t) — Ri(x,t)
= 2shry[1 4 2sh(ry)py (@ — i/2) exp(—2iry (x — i/2) 4 2itshry)]
—2shry[1 + 2sh(ry)p1 () exp(—2ir x + 2itshry)] 7L (3.2)

Obviously, this function is not of the traveling wave form f(z — vt) unless we choose
w1 (z) constant. Doing so, we also set

r=ia, ac€(0,7), pi(xr)=-exp(—2ary)/2ie “sina, =z € R, (3.3)
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so that (2.28) and (2.29) are satisfied. Then we get
F(z,t) = V(x—i/4,t)
1+ 2isinaf(1+ e "2 exp[2a(x — x0) — 2tsina]) ™!
—(1 4 €2 exp[2a(z — x0) — 2tsina]) 7. (3.4)
Defining a velocity function

v(a) = Sil;a, o € (0,7), (3.5)

this can be rewritten as

B 2sin(a) sin(a/2)
cos(a/2) + ch[2a(x — xg — v(a)t)]

F(z,t) =1 (3.6)

The upshot is that F(x,t) — 1 has the usual characteristics of a soliton. Moreover, the
function F(z,t),(x,t) € R?, takes values in [0,1) for all a € (0,7) and has no zeros for
a # 27/3, whereas for a = 27/3 and ¢ fixed it has a unique zero. Thus,

Y(z,t) =InF(x,t), x,teR, (3.7)

takes values in [—00,0). When we let # move into the complex plane, the function Y (x,t)
becomes multi-valued, but the 27i-multiples play no role in the Kac-van Moerbeke type
evolution equation (1.4) it obeys.

Next, we fix N > 1 and specialize to spectral data

rn=1lap, n=1...,N, 0<ap < <ay<2n/3, (3.8)

pn, = —iexp(ion)Yn, Yn € (0,00), mn=1,...,N. (3.9)

As we have seen in the previous section, this ensures that F(z,t) is nonnegative for real
x and t, cf. (2.31). In fact, this is still the case when we replace 27/3 in (3.8) by 7. But
we need (3.8) to guarantee absence of zeros,

F(z,t) € (0,00), V¥(z,t) € R% (3.10)

a feature that will be proved shortly.

Taking (3.10) for granted, we obtain a real-valued function Y (z,t) via (3.7), whose
(multi-valued) analytic continuation satisfies the nonlocal Kac-van Moerbeke equation
(1.4). As we will show, it can be viewed as an N-soliton solution.

Turning to the details, it is convenient to trade the parameters a, and =, for the
generalized positions g, and momenta 6,, of suitable relativistic Calogero-Moser systems.
Comparing to the general setup in Section 5 of Ref. [2], we see that we should first set

qn = In(cot(a,/2)), n=1,...,N. (3.11)
Defining now

Va@)= [ leothl(gn — au)/2]l (3.12)
1<k< N k#n
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we should choose
0n = In(2v,Vi(q)/chgyn), n=1,...,N. (3.13)

Next, we recall how the key quantity A(r, u;x) (2.9) can be expressed in terms of the
relativistic Calogero-Moser Lax matrix

L(q,0) =C(q)D(q,9), (3.14)
where

Cir = 1/chl(gy — @)/ Gk =1,...,N, (3.15)

D = diag(exp(61)Vi(q), - - ., exp(6n) VN (q))- (3.16)
To this end we quote the definition of the 7-function

7(r,psx) = [y + C(r)D(r, s 2) 7| (3.17)
(cf. II(2.32)), and the relation

A(r,ps ) = 7(ry s o — 1) /7(r, p; @), (3.18)

which follows from I(C.30). We now replace p, by u,exp(—2tsina,,), and switch from
(a,7y) to (g,0). Moreover, we set

On(z,t) = 0, — 20, (q) [z —v(an(g))t], mn=1,...,N, (3.19)

an(q) = 2Arctan(exp(—¢n)), n=1,...,N. (3.20)
Employing the self-adjoint Lax matrix

Ly(w,t) = D(g,0(x,1)"*C(q)D(q, 6(x. )" /?, (3.21)
we now get

T(x,t) = [1n + Le(x +i/2,1)], (3.22)

cf. 11(6.1), (6.2).
Combining (2.27), (2.11), (3.18) and (3.22), we obtain

An o+ Le(m 4 3i/4,6)|[1n + Lo(z — 3i/4, )]

F(z,t) = : , . 3.23
OO iy T L i/ DIy + Lalz — /4.0 529
Introducing
U = diag(exp(—ia1/2),...,exp(—iayn/2)), (3.24)
this can be rewritten as
1y + L 31 3L,
F(ﬂ?,t) _ | N+ (l‘,t)u H N+U (ZL‘,t)| (325)

© An + Ls(x, U|AN + U Ls(z,t)|

With these reparametrizations in effect, we proceed to prove the positivity property (3.10).

Recalling (2.31), we see that it suffices to prove invertibility of the matrices 1y +
Lg(x, t)U* k = 1,3. Now Lg(x,t) is not only self-adjoint, but also regular. (This follows
from Cauchy’s identity.) Thus we are entitled to invoke the following lemma.
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Lemma 3.1. Assume L is a self-adjoint regular N x N matriz and D a diagonal matriz
of the form

D = diag(exp(im),...,exp(inn)), nn € (—m,0), n=1,...,N. (3.26)
Then the matriz 15 + LD is regular.

Proof. Clearly, we need only show that the matrix L=! + D is regular. Assume it is
singular. Then there exists a nonzero ¢ € CV such that (L~! + D)¢ = 0. Since L™! is
self-adjoint, we obtain

N
0=Im (¢, (L™ + D)¢) = Im (¢, Dg) = > |¢n|* sinny,. (3.27)
n=1

But since 71, € (—m,0), we have sinn, < 0. Hence ¢ = 0, a contradiction. [

From this lemma we see that |1y + Ls(z, t)U|, (x,t) € R?, has no zeros even when we re-
place 27 /3 in (3.8) by w. But we need this restriction to ensure that |1 x+Ls(x, t) U3, (x,t) €
R?, cannot vanish either. Indeed, for the special case N = 1 we have already seen that
the choice a@ = 27/3 does give rise to zeros, cf. (3.6). With N > 1 and 27/3 replaced by
7 in (3.8), it is quite likely that zeros occur for ay > 27/3. We require ay < 27/3, since
we would like to avoid such nongeneric zeros, which are hard to control.

We continue by studying the long-time asymptotics of the above positive functions
F(z,t). To this end we introduce the ‘one-soliton function’

~ 2sin(a)sin(a/2)
cos(a/2) + ch(2ax — 6)’

flg,0;z) =1 a = 2Arctan(e™?), (3.28)
and proceed along the same lines as in Section 6 of Ref. [2]. (Actually, most of the
results that follow might also be obtained as corollaries of loc. cit. This is a consequence
of the relation (1.7) between F(z,t) and the nonlocal Toda N-soliton solution W¥(x,t)
corresponding to the initial point (g, ) in the relativistic Calogero-Moser phase space.)

Proposition 3.2. Fizing xg,so € R, one has

&%im F(zo+ sot,t) =1, 5o ¢ {v(a1),...,v(an)}, (3.29)
6Pm F(xo + Sot,t) = f(ijej;mO + 6Aj(q)/4aj)v S0 = ’U(Oéj), j=1,...,N, (3.30)

where § = 4+, — and

Aj(q) = (Y= ) n(coth®[(qj — @1)/2)), j=1,....N. (3.31)

k<j k>j

Proof. We only detail the case § = +, since the case § = — can be handled in the same
way. We begin by introducing

M™ = Ly(x,00U3, M~ = Lg(xo,0)U, (3.32)

D = diag(2a1[v(a1) — sol, - . -, 2an[v(an) — so]). (3.33)
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Using (3.25), we then obtain

Flao + sot, 1) = Q)P (3.34)
with

Q) =|1n + MTeP| /1y + M—eP). (3.35)

We are now in the position to invoke Lemma 6.2 in Ref. [2]. The pertinent principal
minors can be written as

M| = |Lq(20,0)n| exp(—3i Y _ av;/2), (3.36)
j=1
M| = |Ls (w0, 0)n] exp(—i ) j/2). (3.37)
Jj=1

For sg # v(a),j =1,..., N, we can use (cf. I1(6.25))
lim Q(t) = M1/ |M; |, (3.38)

to infer that Q(t) tends to a phase as t — oo. Hence (3.29) is clear from (3.34). For
so = v(ant1),n € {0,..., N — 1}, we have (cf. I1(6.27))

Jim Q(t) = (1M + [M7 D/ (1M + (M), (3.39)

Calculating the principal minors |Lg(xg,0);| via Cauchy’s identity, we now arrive at (3.30)
forj=n+1. O

For the 1-soliton solution (3.6) we have F(x,t) < 1 for all (x,t) € R?. In view of the
asymptotics just proved, this might be true for the N-soliton solution, too. In any event,
we have already shown F(z,t) > 0 for all (z,t) € R?, so that we have

Y(z,t) =InF(z,t) € R, V(x,t) € R (3.40)
Moreover, Proposition 3.2 has the corollary

lim Y (zo + sot,t) =0, so ¢ {v(a),...,v(an)}, (3.41)

dt—o00

&%im Y (zo+ sot, t) =In f(qj,0;; 20 +0A;(q)/4e;), so=0v(ej), j=1,...,N. (3.42)
—00

Just as for the nonlocal Toda solitons studied in Section 6 of Ref. [2], we believe that
the long-time asymptotics of Y (z,t) can be sharpened considerably. To be specific, we
expect

sup |Y (z,t) — YO (z,t)| = O(exp(=6tr)), ot —o0, 6=+,—, (?) (3.43)
x€ER
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where
N
YO(z,t) =) "In f(g5, 0552 + 68;(q) [Aa; — v(ay)t), (3.44)
j=1
r= 1§jniikn§N(2aj [v(aj) — v(ow)])- (3.45)

We can also follow the reasoning after the proof of Prop. 6.1 in Ref. [2] to obtain global
soliton space-time trajectories, with asymptotics

1 1
v 5 0= g0 (575800 +ola)e + Oy, 1t (340
N-j+1 Q;
ri = 151;?(2ak|v(ak) —v(ay)]), j=1,...,N. (3.47)

Indeed, Theorem 7.1 in our paper Ref. [13] may be invoked in the same way as for the
nonlocal Toda solitons.

Just as in Ref. [2], we should add that we are not aware of ‘l-soliton superposition’
formulas analogous to Eqgs. (7.10)—(7.14) in Ref. [13]. As already mentioned in Ref. [2],
the problem is that Ls(z,t) is multiplied by g-dependent phase matrices, which change
the spectrum in a way that is difficult to control. Indeed, it is only because we bypass this
snag via Lemma 6.2 in Ref. [2] that the ‘correctness’ of the trajectory asymptotics (3.46)
can be established, in the sense that it coincides with the locations of the minima of the
pertinent 1-soliton functions for asymptotic times, cf. Prop. 3.2.

4 The relation to the KAV solitons

In Section 3 of Ref. [2] we have already detailed how a suitable scaling limit of the AAOs
S and wave functions W(z,p) gives rise to the well-known reflectionless Schrodinger op-
erators

(Hf)(x) = —f"(x) + Va(2)f(2), (4.48)
and wave functions satisfying
(HWy)(z,p) = p"Wa (x, p), (4.49)
and
exp(ixp), T — 00,
Wa(@.p) ~ { B (5;;:2) -exp(izp), x — —00, 0<Ky <---<Kj. (4.50)

For the time dependence in (2.18) to have a finite limit as the scale parameter [ tends to
0, one should substitute ¢ — ¢/3. Indeed, starting from the spectral data

exp(ifkn)

i, exp(—2tsin(Bky,)), (4.51)

Ty = 13kKn, /«Ln(l'at) =
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and then taking t — t/3, the § — 0 limit gives rise to a time dependence v,, —
Vp exp(2kpt) in 11(3.18). Thus one gets a space-time dependence z — t, corresponding
to a trivial translation type flow.

There exists however a more sophisticated starting point that leads to the N-soliton
solutions of the KdV equation. As already mentioned in the introduction, the idea to
obtain this relation appears to date back to Ref. [14], where the discrete Volterra equation
(1.5) is tied in with the KdV equation.

Roughly speaking, this idea amounts to shifting x in a t-dependent fashion and scaling
t in a different way than we did above, so as to get rid of the linear term in the G-expansion
of sin(fky, ), leaving the cubic dependence needed for KAV solitons. Turning to the details,
let us start from residue functions

Rgn(z,t) = BIR, (B e — 2457, —245731), (4.52)

where R, (x,t) denotes the solution to (2.3) with data (4.51). Thus, we have

(ivp) " exp <2/¢naﬁ + i0kn + 48;;75 (Sinﬁ(i’jn) - 1>> Rg(z,t)

N
ﬂ = —
+; exp(ifkn) — exp(_iﬂﬁj)Rﬁ,j(%t) =1, n=1,...,N. (4.53)

From this we deduce that the functions Rg,(x,t) are holomorphic at 5 = 0 for generic
x,t, with 3 — 0 limits R (z,t) satisfying

Ui (1 — AR21 |
oxp[2fn (¢ — 4y, >]R5(x,t)+z+3f(x,t):1, n=1,...,N.  (4.54)
iKn,
7j=1

W, + ik

This time-dependent N x N system amounts to the well-known system for KdV solitons,
cf. e.g. [19, 20, 21]. To be specific, the function

N
Vi(z,t) = =20 Y 0, R (x,1) (4.55)

n=1

solves the KdV equation
o = 6udyu — du, (4.56)

and is an N-soliton solution. It can be obtained directly from the nonlocal Volterra N-
soliton solution in the following way. Put

Fy(x,t) = V(B 'e — 243873 —i/4,—243731)
N
= B [Rgn(z—3iB/4,t) — Rgp(x —if/4,t)] + 1. (4.57)
n=1

For fr1 < 27/3 and real z,t, this function is positive, cf. Section 3. Since Rg,(z,t) is
meromorphic in x and t, F(z,t) is holomorphic at 8 = 0 for generic z,t. In particular, it
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is holomorphic at 8 = 0 for x,t real, and satisfies

N
. Fﬂ (.7,', t) -1 . H
lim ———5— = —-2i ) 0;R, (vt
(B2 2 OBl
This is the announced relation between our nonlocal Volterra solitons and the KdV soli-
tons.
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