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 Abstract - Association rules mining is a most of important tasks 

in data mining research. While most of the existing discovery 

algorithms are dedicated to efficiently mining of frequent patterns, it 

has been noted recently that some of the infrequent patterns can 

provide useful insight view into the data. As a result, indirect 

association rules have been put forward. All the existing algorithms 

for mining indirect association rules need get all frequent itemsets, 

and confined to the traditional static database. Instead of this method, 

we put forward an approach to discover both direct and indirect 

association rules in data streams with a sliding window. Experiments 

on the synthetic data stream are made to show the effectiveness and 

efficiency of the proposed approach. 
 Index Terms - Direct Association Pattern, Indirect Association 

Pattern, Data Streams. 

I.  Introduction 

A data stream is an ordered sequence of elements which 

arrives one by one with positive real time intervals[1]. It is 

often refer to as streaming data. Different from data in 

traditional static datasets, a data stream is continuous, huge, 

fast changing, rapid and infinite. Many applications generate 

large amount of data streams in real time, such as sensor data 

generated from sensor networks, online transaction flows in 

retail chains, Web log and click-streams in Web applications, 

call records in telecommunications, etc. The nature of 

streaming data makes it essential to use online algorithms 

which require only one scan over the data for knowledge 

discovery[2]. 

Association rules mining is a most of important tasks in 

data mining research. A number of algorithms have been 

proposed to improve the running time for generating frequent 

itemsets and association rules since the problem was pointed 

out by R.Agrawal in 1993[3,4]. 

With the further research on the mining of frequent 

patterns, it has been recognized that some infrequent patterns 

can provide very useful insight view into the data set, and a 

new kind of knowledge discovery problems called as indirect 

associations has been proposed[5]. Consider a pair of item x 

and y, which are rarely present together in the same 

transaction. If both items are highly dependent on the presence 

of another itemsets M, then the pair of x and y is said to be 

indirectly associated by M called as mediator. 

II . Related Work  

A . Data Stream Mining  

Due to the characteristics of data streams, the algorithms 

for mining data streams require only one scan over the data 

stream. Consequently, previous multiple-pass data mining 

algorithms studied for static datasets are not feasible for 

mining data streams. 

According to the data stream processing model [2,6,7], 

the research of mining data streams can be divided into three 

categories: landmark windows, sliding windows, and damped 

windows, as described briefly as follows. In the landmark 

window model, knowledge discovery is performed based on 

the values between a specific timestamp called landmark and 

the present. In the sliding window model, knowledge 

discovery is performed over a fixed number of recently 

generated data elements which is the target of data mining. 

Two types of sliding widow, i.e., transaction-sensitive sliding 

window and time-sensitive sliding window, are used in mining 

data streams. The basic processing unit of sliding window of 

first type is an expired transaction while the basic unit of 

sliding window of second one is a time unit, such as a minute 

or an hour. In the damped windows model, knowledge 

discovery is performed over the data set between the beginning 

of data stream and the present. 

B . Indirect Association Mining 

The original indirect association mining approach [5] is 

shown as follows.  

Algorithm: INDIRECT for Mining indirect associations 

1.  Discover all frequent itemsets L1 , L2 ,… , Ln using 

Apriori, Lk (k=1,2, … ,n)where is the set of all 

frequent i-itemsets. 

2.    

3.   for k = 2 to n { 

4.   Ck+1 = join(Lk, Lk); 

5.   k+1 { 

if (sup(x, y)<ts AND dep({x},M)>=td AND 

dep({x},M)>=td) 

6.   SIA = S  

7.         } 

8.        }  

The algorithm is divided into two major phases: (1)get all 

frequent itemsets using Apriori (step 1); (2) discover all 

indirect associations by candidate generation (step 4) and 

candidate pruning (step 5~8).During the candidate generation 

step, frequent itemset Lk is used to generate candidate indirect 

associations Ck+1 for pass k+1.Each candidate in Ck+1 is a 

triplet <x,y,M>, where x and y are the items which are 

indirectly associated by mediator M. Ck+1 is generated joining 

the frequent itemsets in Lk. During the join, a pair of frequent 
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itemsets {x1,x2, … , xk} and { y1,y2, … , yk } are joinable if the 

two itemsets have exactly k-1 items in common.If so,they 

generate a candidate indirect association <x, y, M>, where x 

and y are the different items,one from each k-itemset, and M is 

the set of common items. For example, two itemsets {a,b,c,d} 

and {a,b,d,e} can be joined together to generate a candidate 

indirect association <c,e,{a,b,d}>. Since the candidate indirect 

associations are generated by joining two frequent itemsets, 

they certainly satisfy the mediator support condition. 

Therefore, in the candidate pruning step, only the itempair 

support condition and mediator dependence condition are 

needed to be checked. 

III . Problem definition 

Let I = {i1, i2, …, im} be a set of items. A transaction T = 

(tid, x1，x2， 。。。， xn), xi

n is called the size of the transaction, and tid is the unique 

identifier of the transaction. A non-empty subset of I is called 

itemset. An itemset containing k items is called k-itemset.  

Definition 1: A transaction data stream TDS = T1, T2, …, 

TN is a continuous sequence of transactions, where N is the tid 

of latest incoming transaction TN. 

A transaction-sensitive sliding window in the 

transaction data stream is a window that slides forward for 

every transaction. The window at each slide has a fixed 

number, w, of transactions, and w is called the size of the 

window. Hence, the current transaction-sensitive sliding 

window is TransSWN-w+1 = [TN−w+1, TN−w+2, …, TN], where 

N−w+1 is the id of current window SW.  

Definition 2: The support of an itemset X in SW, 

denoted as sup(X)
SW

, is the number of transactions in SW 

containing X as a subset. Itemset. 

Definition 3: An itemset X is called a frequent if 

sup(X)
SW

 ≥ , where s is a user-defined minimum support 

threshold, c is a user-defined minimum confidence. The value 

 is called the frequent threshold of SW.  

Definition 4: Given a transaction-sensitive sliding 

window SW, and a user-defined minimum support threshold s, 

The form (X,Y) is a association rules in window SW,, if and 

only if sup(X Y)
SW

≥  and Conf(X,Y
 SW

 

/sup(X)
 SW

 ≥c. 

Definition 5: Given a transaction-sensitive sliding 

window SW, the form ({x, y} | M) is an indirect association 

rule in window SW if the following conditions are satisfied: 

(1) sup({x,y})
 SW

 <ts; 

(2) There exists a non-empty set M such that: 

(a)  SW
 >=tf

 SW
 >=tf, 

(b) dep({x},M)
 SW

 >=td, dep({x},M)
 SW

 >=td. 

Where the thresholds ts、 tf and td are called itempair 

support threshold, mediator support threshold, and dependence 

threshold, respectively. We usually set tf >= ts in practice. 

IV . Mining both direct and indirect association rules 

According to the definitions of direct association and 

indirect association rules in last section, we propose a 

algorithm to discover both direct and indirect association rules 

in data stream called MDIAR-SW (Mining Direct and Indirect 

Association Rules in a Sliding Window). In the proposed 

algorithm, for each item X in the current sliding window SW, 

we construct a bit-sequence with w bits denoted as Bit(X). If 

an item X is in the i-th transaction of current window SW, the 

i-th bit of Bit(X) is set to be 1; otherwise, it is set to be 0. The 

process is called bit-sequence transform.  
For example, in TABLE I, the first sliding window SW1 

consists of three transactions: <Tid1, (abd) >, <Tid2, (bcd) >, 

<Tid3, (be) > and <Tid4, (bde)>, the window SW2 consists of 

transactions: <Tid2, (bcd) >, <Tid3, (be) >, <Tid4, (bde)> 

and<Tid5, (bd)> . Because item a only appears in the 1st 

transactions of window SW1, the bit-sequence of a, Bit(a), is 

1000. Similarly, Bit(b) = 1111, Bit(c) = 0100, Bit(d) = 1101, 

and Bit(e) = 0011. 

TABLE I    Bit-sequences of items in window initialization phase of SW 

Window-id Transactions Bit-Sequences of items 

SW1 <Tid1, (abd) > Bit(a)=1000, Bit(b)=1111 

 <Tid2, (bcd) > Bit(c)=0100,Bit(d)=1101 

 <Tid3, (be) > Bit(e)=0011 

 <Tid4, (bde)>  

The proposed algorithm MDIAR-SW is described as 

follows: 

Algorithm MDIAR-SW 
 

Input: TDS (a transaction data stream), minimum support 

threshold: s;the minimum confidence threshold: c; itempair 

support threshold: ts ; mediator support threshold: tf ; 

dependence threshold and td; the user-specified sliding window 

size w.  
Output: Set of direct temporal association patterns: DAP; 

Set of indirect temporal association patterns: IAP;  
Begin 

SW = Null; /* Window SW consists of w transactions */  
Repeat: 

for each incoming transaction Ti in SW 
do  

if SW = Full then 
Do bitwise-shift on bit-sequences of all items in 

SW; 

else 
for each item X in Ti do  

Do bit-sequence transform(X);  
Endfor  

Endif 

Endfor 

for each bit-sequence Bit(X) in SW do  
if sup(X) = 0 then  

Drop X from SW;  
Endif 

Endfor  
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/* The following is the frequent and infrequent itemsets 

generation phase. */ 

F1 = {frequent 1-itemsets};  

for (k=2; FIk−1≠ Null; k++) do 

Ck = Candiate_Gen(Fk-1) 

Do bitwise AND to find the supports of Ck;  

Fk = { ck k | sup(ck)
SW

  

Sk = Ck k; 

k do 

x = last_item(S); y = secondlast_item(S ); M = S – 

{x,y}; 

if (sup(x, y)
 SW

 <ts AND dep({x},M)
 SW

 >=td AND 

dep({x},M)
 SW

 >=td) 

IAP = IAP  {<{x, y}|M>}; 

Endfor 

FreS = FreS  Fk; 

  Endfor 

  DAP = Construct(FreS); 

End 

The proposed MFI-TransSW algorithm consists of four 

phases, window initialization phase, window sliding phase, 

and frequent, infrequent itemsets generation phase and direct 

and indirect association rules generation phase. Since the 

approach to generate direct association rules is the same with 

well known algorithm Apriori, and the method to generate 

indirect association rules is straightforward, the description of 

direct and indirect association rules generation phase is 

omitted in this paper. 

(1) Window Initialization Phase 

The phase is processed when the number of transactions 

come into the current window so far is less than or equal to a 

user-predefined sliding window size w. In this phase, each 

item in the new incoming transaction is transformed into its 

bit-sequence representation. Before this phase, for each item X 

in I, the bit-sequence Bit(X) is initialized with 0. 

For example, in TABLE I, the first sliding window SW1 

contains four transactions: Tid1, Tid2, Tid3 and Tid4. The bit-

sequences of items of SW1 in the window initialization phase 

are shown in TABLE II. 

TABLE II  Bit-sequences of items in window initialization phase of SW1 

Tid Items bit-sequence transformation in SW1 

Tid1 (abd) 
Bit(a)=1000, Bit(b)=1000, 

Bit(c)=0000,Bit(d)=1000,Bit(e)=0000 

Tid2 (bcd) 
Bit(a)=1000, Bit(b)=1100, 

Bit(c)=0100,Bit(d)=1100,Bit(e)=0000 

Tid3 (be) 
Bit(a)=1000, Bit(b)=1110, 

Bit(c)=0100,Bit(d)=1100,Bit(e)=0010 

Tid4 (bde) 
Bit(a)=1000, Bit(b)=1111, 

Bit(c)=0100,Bit(d)=1101,Bit(e)=0011 

 (2) window sliding phase 

The phase is activated after the number of transactions in 

the sliding window SW is w. Before a new incoming 

transaction is appended to the sliding window, the oldest 

transaction is removed from the window. 

For removing the oldest transaction, a simple method is 

used in the proposed algorithm. Since the MDIAR-SW 

algorithm use bit-sequence representation, we can uses the 

bitwise left shift operation to remove the oldest transaction 

from the current sliding window.  

For appending a new transaction, the same as Window 

Initialization Phase, bit-sequence transformation is processed. 

After sliding the window phase, an effective pruning 

method, called Item-Prune, is used to improve the memory 

usage. The pruning method is that an item X in the current 

sliding window is dropped if and only if sup(X)SW = 0. 

For example, in Figure 1, before the fifth transaction 

<Tid5, (bd)> is processed, the first transaction Tid1 must be 

removed from the current window using bitwise left shift on 

the set of items. Hence, Bit(a) is modified from 1000 to 0000. 

Similarly, Bit(b)= 1110,Bit(c)= 1000, Bit(d)= 1010, and 

Bit(e)= 0110. Then, the new transaction <T4, (be)> is 

processed by bit-sequence transform. The result is shown in 

TABLE III . 

TABLE III Bit-sequences of items in window sliding phase of SW2 

Window-id Transactions Bit-Sequences of items 

SW2 <Tid2, (bcd) > Bit(a)=0000, Bit(b)=1111 

 <Tid3, (be) > Bit(c)=1000,Bit(d)=1011 

 <Tid4, (bde)> Bit(e)=0110 

 <Tid5, (bd)>  

Note that item a is dropped since Bit(a)=0000, i.e., 

sup(a)SW = 0. 

(3) frequent and infrequent itemsets generation phase 

In this phase, MDIAR-SW algorithm uses a level-wise 

method to generate the set of candidate itemsets Ck from the 

frequent itemsets Fk−1 according to the Apriori [1]. The step 

is called Candiate_Gen. Then, the proposed algorithm uses the 

bitwise AND operation to count the support of these 

candidates in order to find the frequent and infrequent k-

itemsets Fk and Sk. The process is stopped until no new 

candidates are generated.  

For instance, consider the bit-sequences of SW2 in 

Figure 3, and let the minimum support threshold s, itempair 

support threshold ts and mediator support threshold tf to be 

0.5，05 and 0.6 respectively. Hence, an itemset X is frequent 

if sup(X)SW ≥ 0.5*4 = 2. In the following, we discuss the step 

of frequent and infrequent itemset mining of TransSW2.  

Firstly, MDIAR-SW algorithm find out frequent 1-

itemset F1={(b),(d),(e)}, then generates three candidate 2-

itemsets, (bd), (be) and (de), by combining frequent 1-

itemsets: (b), (d) and (e), where Bit(b) = 1111, i.e., sup(b) = 4, 

Bit(d) = 1011, i.e., sup(d) = 3, and Bit(e) = 0110, i.e., sup(e) = 

2. 1-itemset (c) is an infrequent itemset, since its Bit(c) = 

1000, i.e., sup(c) = 1. After using bitwise AND operations to 

count the supports of these candidates, (bd) and (be) are 

frequent, (de) is infrequent, because the Bit(bd) =1011, 

sup(bd) = 3, Bit(be)=0110, sup(be) = 2, Bit(de) =0010, 

341

app:ds:straightforward


sup(de) = 1. Secondly, MDIAR-SW generates one candidate 

3-itemset (bde) and uses bitwise AND operation to count the 

sup(bde) = 1, i.e., Bit(bd) AND Bit(be) = 0010. The 3-itemset 

(bde) is infrequent. Because no new candidates are generated, 

the generation of frequent and infrequent itemset process is 

stopped. Hence, there are five frequent itemsets, (b), (d), (e), 

(bd), (be), infrequent itemsets, (c), (bde), generated by 

MDIAR-SW algorithm in TransSW2.  

V . Experiment 

In this section, we evaluate the performance of our 

proposed algorithm for mining indirect temporal sequential 

patterns. The computation environments are i5-3470, 4G 

RAM, Windows 7 operating system. The algorithm is 

implemented with C++. The synthetic experiment data set is 

generated by Assocgen[4]. 

The synthetic data stream, denoted as T5I4D1000K, of 

size 1 million transactions (D1000K) has an average 

transaction size of 5 items (T5) with average maximal frequent 

itemset size of 4 items (I4). In the experiments, the 

transactions of T5I4D1000K are looked up in sequence to 

simulate the environment of an online data stream. 

The size of a sliding window w, the minimum support 

threshold s itempair support threshold ts , mediator support 

threshold tf, dependence threshold and td are set to 20,000, 

0.1% ,0.1%, 0.2% and 50%, respectively. As shown in these 

experiments, the processing times of MDIAR-SW algorithm 

are shown in Figures 1 and 2. 

Fig.1 shows the processing time of window initialization 

phase under different window sizes from 20,000 (200K) 

transactions to 100,000 (1,000K) transactions. Fig.2 shows the 

total time of window sliding time and pattern mining time at 

each 100K transactions using various window sizes from 200K 

transactions to 1000K transactions. As shown in Figures 1 and 

2, MDIAR-SW algorithm. 
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Fig.1 Running time in window initialization phases of algorithm MDIAR-SW 

under different window size. 
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Fig.2  Running time including window sliding time and rule generation time 

of algorithm MDIAR-SW under different window size 200K transactions. 

VI . Conclusions and Future Works  

In this paper, we proposed an efficient one-pass 

algorithm, called MDIAR-SW, for mining direct and indirect 

association rules over online data streams with a sliding 

window. Experiments show that the proposed algorithm is 

efficient and scalable. 
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