
Discovery of both Direct and Indirect Association Rules in

Data Streams with a Sliding Window

Weimin Ouyang, Qinhua Huang

Modern Education Technology Center, Shanghai University of Political Science and Law, Shanghai 200438, China

{oywm; hqh}@shupl.edu.cn

 Abstract - Association rules mining is a most of important tasks

in data mining research. While most of the existing discovery

algorithms are dedicated to efficiently mining of frequent patterns, it

has been noted recently that some of the infrequent patterns can

provide useful insight view into the data. As a result, indirect

association rules have been put forward. All the existing algorithms

for mining indirect association rules need get all frequent itemsets,

and confined to the traditional static database. Instead of this method,

we put forward an approach to discover both direct and indirect

association rules in data streams with a sliding window. Experiments

on the synthetic data stream are made to show the effectiveness and

efficiency of the proposed approach.
 Index Terms - Direct Association Pattern, Indirect Association

Pattern, Data Streams.

I. Introduction

A data stream is an ordered sequence of elements which

arrives one by one with positive real time intervals[1]. It is

often refer to as streaming data. Different from data in

traditional static datasets, a data stream is continuous, huge,

fast changing, rapid and infinite. Many applications generate

large amount of data streams in real time, such as sensor data

generated from sensor networks, online transaction flows in

retail chains, Web log and click-streams in Web applications,

call records in telecommunications, etc. The nature of

streaming data makes it essential to use online algorithms

which require only one scan over the data for knowledge

discovery[2].

Association rules mining is a most of important tasks in

data mining research. A number of algorithms have been

proposed to improve the running time for generating frequent

itemsets and association rules since the problem was pointed

out by R.Agrawal in 1993[3,4].

With the further research on the mining of frequent

patterns, it has been recognized that some infrequent patterns

can provide very useful insight view into the data set, and a

new kind of knowledge discovery problems called as indirect

associations has been proposed[5]. Consider a pair of item x

and y, which are rarely present together in the same

transaction. If both items are highly dependent on the presence

of another itemsets M, then the pair of x and y is said to be

indirectly associated by M called as mediator.

II . Related Work

A . Data Stream Mining

Due to the characteristics of data streams, the algorithms

for mining data streams require only one scan over the data

stream. Consequently, previous multiple-pass data mining

algorithms studied for static datasets are not feasible for

mining data streams.

According to the data stream processing model [2,6,7],

the research of mining data streams can be divided into three

categories: landmark windows, sliding windows, and damped

windows, as described briefly as follows. In the landmark

window model, knowledge discovery is performed based on

the values between a specific timestamp called landmark and

the present. In the sliding window model, knowledge

discovery is performed over a fixed number of recently

generated data elements which is the target of data mining.

Two types of sliding widow, i.e., transaction-sensitive sliding

window and time-sensitive sliding window, are used in mining

data streams. The basic processing unit of sliding window of

first type is an expired transaction while the basic unit of

sliding window of second one is a time unit, such as a minute

or an hour. In the damped windows model, knowledge

discovery is performed over the data set between the beginning

of data stream and the present.

B . Indirect Association Mining

The original indirect association mining approach [5] is

shown as follows.

Algorithm: INDIRECT for Mining indirect associations

1. Discover all frequent itemsets L1 , L2 ,… , Ln using

Apriori, Lk (k=1,2, … ,n)where is the set of all

frequent i-itemsets.

2.

3. for k = 2 to n {

4. Ck+1 = join(Lk, Lk);

5. k+1 {

if (sup(x, y)<ts AND dep({x},M)>=td AND

dep({x},M)>=td)

6. SIA = S

7. }

8. }

The algorithm is divided into two major phases: (1)get all

frequent itemsets using Apriori (step 1); (2) discover all

indirect associations by candidate generation (step 4) and

candidate pruning (step 5~8).During the candidate generation

step, frequent itemset Lk is used to generate candidate indirect

associations Ck+1 for pass k+1.Each candidate in Ck+1 is a

triplet <x,y,M>, where x and y are the items which are

indirectly associated by mediator M. Ck+1 is generated joining

the frequent itemsets in Lk. During the join, a pair of frequent

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013)

© 2013. The authors - Published by Atlantis Press 339

itemsets {x1,x2, … , xk} and { y1,y2, … , yk } are joinable if the

two itemsets have exactly k-1 items in common.If so,they

generate a candidate indirect association <x, y, M>, where x

and y are the different items,one from each k-itemset, and M is

the set of common items. For example, two itemsets {a,b,c,d}

and {a,b,d,e} can be joined together to generate a candidate

indirect association <c,e,{a,b,d}>. Since the candidate indirect

associations are generated by joining two frequent itemsets,

they certainly satisfy the mediator support condition.

Therefore, in the candidate pruning step, only the itempair

support condition and mediator dependence condition are

needed to be checked.

III . Problem definition

Let I = {i1, i2, …, im} be a set of items. A transaction T =

(tid, x1，x2， 。。。， xn), xi

n is called the size of the transaction, and tid is the unique

identifier of the transaction. A non-empty subset of I is called

itemset. An itemset containing k items is called k-itemset.

Definition 1: A transaction data stream TDS = T1, T2, …,

TN is a continuous sequence of transactions, where N is the tid

of latest incoming transaction TN.

A transaction-sensitive sliding window in the

transaction data stream is a window that slides forward for

every transaction. The window at each slide has a fixed

number, w, of transactions, and w is called the size of the

window. Hence, the current transaction-sensitive sliding

window is TransSWN-w+1 = [TN−w+1, TN−w+2, …, TN], where

N−w+1 is the id of current window SW.

Definition 2: The support of an itemset X in SW,

denoted as sup(X)
SW

, is the number of transactions in SW

containing X as a subset. Itemset.

Definition 3: An itemset X is called a frequent if

sup(X)
SW

 ≥ , where s is a user-defined minimum support

threshold, c is a user-defined minimum confidence. The value

 is called the frequent threshold of SW.

Definition 4: Given a transaction-sensitive sliding

window SW, and a user-defined minimum support threshold s,

The form (X,Y) is a association rules in window SW,, if and

only if sup(X Y)
SW

≥ and Conf(X,Y
 SW

/sup(X)
 SW

 ≥c.

Definition 5: Given a transaction-sensitive sliding

window SW, the form ({x, y} | M) is an indirect association

rule in window SW if the following conditions are satisfied:

(1) sup({x,y})
 SW

 <ts;

(2) There exists a non-empty set M such that:

(a) SW
 >=tf

 SW
 >=tf,

(b) dep({x},M)
 SW

 >=td, dep({x},M)
 SW

 >=td.

Where the thresholds ts、 tf and td are called itempair

support threshold, mediator support threshold, and dependence

threshold, respectively. We usually set tf >= ts in practice.

IV . Mining both direct and indirect association rules

According to the definitions of direct association and

indirect association rules in last section, we propose a

algorithm to discover both direct and indirect association rules

in data stream called MDIAR-SW (Mining Direct and Indirect

Association Rules in a Sliding Window). In the proposed

algorithm, for each item X in the current sliding window SW,

we construct a bit-sequence with w bits denoted as Bit(X). If

an item X is in the i-th transaction of current window SW, the

i-th bit of Bit(X) is set to be 1; otherwise, it is set to be 0. The

process is called bit-sequence transform.
For example, in TABLE I, the first sliding window SW1

consists of three transactions: <Tid1, (abd) >, <Tid2, (bcd) >,

<Tid3, (be) > and <Tid4, (bde)>, the window SW2 consists of

transactions: <Tid2, (bcd) >, <Tid3, (be) >, <Tid4, (bde)>

and<Tid5, (bd)> . Because item a only appears in the 1st

transactions of window SW1, the bit-sequence of a, Bit(a), is

1000. Similarly, Bit(b) = 1111, Bit(c) = 0100, Bit(d) = 1101,

and Bit(e) = 0011.

TABLE I Bit-sequences of items in window initialization phase of SW

Window-id Transactions Bit-Sequences of items

SW1 <Tid1, (abd) > Bit(a)=1000, Bit(b)=1111

 <Tid2, (bcd) > Bit(c)=0100,Bit(d)=1101

 <Tid3, (be) > Bit(e)=0011

 <Tid4, (bde)>

The proposed algorithm MDIAR-SW is described as

follows:

Algorithm MDIAR-SW

Input: TDS (a transaction data stream), minimum support

threshold: s;the minimum confidence threshold: c; itempair

support threshold: ts ; mediator support threshold: tf ;

dependence threshold and td; the user-specified sliding window

size w.
Output: Set of direct temporal association patterns: DAP;

Set of indirect temporal association patterns: IAP;
Begin

SW = Null; /* Window SW consists of w transactions */
Repeat:

for each incoming transaction Ti in SW
do

if SW = Full then
Do bitwise-shift on bit-sequences of all items in

SW;

else
for each item X in Ti do

Do bit-sequence transform(X);
Endfor

Endif

Endfor

for each bit-sequence Bit(X) in SW do
if sup(X) = 0 then

Drop X from SW;
Endif

Endfor

340

/* The following is the frequent and infrequent itemsets

generation phase. */

F1 = {frequent 1-itemsets};

for (k=2; FIk−1≠ Null; k++) do

Ck = Candiate_Gen(Fk-1)

Do bitwise AND to find the supports of Ck;

Fk = { ck k | sup(ck)
SW

Sk = Ck k;

k do

x = last_item(S); y = secondlast_item(S); M = S –

{x,y};

if (sup(x, y)
 SW

 <ts AND dep({x},M)
 SW

 >=td AND

dep({x},M)
 SW

 >=td)

IAP = IAP {<{x, y}|M>};

Endfor

FreS = FreS Fk;

 Endfor

 DAP = Construct(FreS);

End

The proposed MFI-TransSW algorithm consists of four

phases, window initialization phase, window sliding phase,

and frequent, infrequent itemsets generation phase and direct

and indirect association rules generation phase. Since the

approach to generate direct association rules is the same with

well known algorithm Apriori, and the method to generate

indirect association rules is straightforward, the description of

direct and indirect association rules generation phase is

omitted in this paper.

(1) Window Initialization Phase

The phase is processed when the number of transactions

come into the current window so far is less than or equal to a

user-predefined sliding window size w. In this phase, each

item in the new incoming transaction is transformed into its

bit-sequence representation. Before this phase, for each item X

in I, the bit-sequence Bit(X) is initialized with 0.

For example, in TABLE I, the first sliding window SW1

contains four transactions: Tid1, Tid2, Tid3 and Tid4. The bit-

sequences of items of SW1 in the window initialization phase

are shown in TABLE II.

TABLE II Bit-sequences of items in window initialization phase of SW1

Tid Items bit-sequence transformation in SW1

Tid1 (abd)
Bit(a)=1000, Bit(b)=1000,

Bit(c)=0000,Bit(d)=1000,Bit(e)=0000

Tid2 (bcd)
Bit(a)=1000, Bit(b)=1100,

Bit(c)=0100,Bit(d)=1100,Bit(e)=0000

Tid3 (be)
Bit(a)=1000, Bit(b)=1110,

Bit(c)=0100,Bit(d)=1100,Bit(e)=0010

Tid4 (bde)
Bit(a)=1000, Bit(b)=1111,

Bit(c)=0100,Bit(d)=1101,Bit(e)=0011

 (2) window sliding phase

The phase is activated after the number of transactions in

the sliding window SW is w. Before a new incoming

transaction is appended to the sliding window, the oldest

transaction is removed from the window.

For removing the oldest transaction, a simple method is

used in the proposed algorithm. Since the MDIAR-SW

algorithm use bit-sequence representation, we can uses the

bitwise left shift operation to remove the oldest transaction

from the current sliding window.

For appending a new transaction, the same as Window

Initialization Phase, bit-sequence transformation is processed.

After sliding the window phase, an effective pruning

method, called Item-Prune, is used to improve the memory

usage. The pruning method is that an item X in the current

sliding window is dropped if and only if sup(X)SW = 0.

For example, in Figure 1, before the fifth transaction

<Tid5, (bd)> is processed, the first transaction Tid1 must be

removed from the current window using bitwise left shift on

the set of items. Hence, Bit(a) is modified from 1000 to 0000.

Similarly, Bit(b)= 1110,Bit(c)= 1000, Bit(d)= 1010, and

Bit(e)= 0110. Then, the new transaction <T4, (be)> is

processed by bit-sequence transform. The result is shown in

TABLE III .

TABLE III Bit-sequences of items in window sliding phase of SW2

Window-id Transactions Bit-Sequences of items

SW2 <Tid2, (bcd) > Bit(a)=0000, Bit(b)=1111

 <Tid3, (be) > Bit(c)=1000,Bit(d)=1011

 <Tid4, (bde)> Bit(e)=0110

 <Tid5, (bd)>

Note that item a is dropped since Bit(a)=0000, i.e.,

sup(a)SW = 0.

(3) frequent and infrequent itemsets generation phase

In this phase, MDIAR-SW algorithm uses a level-wise

method to generate the set of candidate itemsets Ck from the

frequent itemsets Fk−1 according to the Apriori [1]. The step

is called Candiate_Gen. Then, the proposed algorithm uses the

bitwise AND operation to count the support of these

candidates in order to find the frequent and infrequent k-

itemsets Fk and Sk. The process is stopped until no new

candidates are generated.

For instance, consider the bit-sequences of SW2 in

Figure 3, and let the minimum support threshold s, itempair

support threshold ts and mediator support threshold tf to be

0.5，05 and 0.6 respectively. Hence, an itemset X is frequent

if sup(X)SW ≥ 0.5*4 = 2. In the following, we discuss the step

of frequent and infrequent itemset mining of TransSW2.

Firstly, MDIAR-SW algorithm find out frequent 1-

itemset F1={(b),(d),(e)}, then generates three candidate 2-

itemsets, (bd), (be) and (de), by combining frequent 1-

itemsets: (b), (d) and (e), where Bit(b) = 1111, i.e., sup(b) = 4,

Bit(d) = 1011, i.e., sup(d) = 3, and Bit(e) = 0110, i.e., sup(e) =

2. 1-itemset (c) is an infrequent itemset, since its Bit(c) =

1000, i.e., sup(c) = 1. After using bitwise AND operations to

count the supports of these candidates, (bd) and (be) are

frequent, (de) is infrequent, because the Bit(bd) =1011,

sup(bd) = 3, Bit(be)=0110, sup(be) = 2, Bit(de) =0010,

341

app:ds:straightforward

sup(de) = 1. Secondly, MDIAR-SW generates one candidate

3-itemset (bde) and uses bitwise AND operation to count the

sup(bde) = 1, i.e., Bit(bd) AND Bit(be) = 0010. The 3-itemset

(bde) is infrequent. Because no new candidates are generated,

the generation of frequent and infrequent itemset process is

stopped. Hence, there are five frequent itemsets, (b), (d), (e),

(bd), (be), infrequent itemsets, (c), (bde), generated by

MDIAR-SW algorithm in TransSW2.

V . Experiment

In this section, we evaluate the performance of our

proposed algorithm for mining indirect temporal sequential

patterns. The computation environments are i5-3470, 4G

RAM, Windows 7 operating system. The algorithm is

implemented with C++. The synthetic experiment data set is

generated by Assocgen[4].

The synthetic data stream, denoted as T5I4D1000K, of

size 1 million transactions (D1000K) has an average

transaction size of 5 items (T5) with average maximal frequent

itemset size of 4 items (I4). In the experiments, the

transactions of T5I4D1000K are looked up in sequence to

simulate the environment of an online data stream.

The size of a sliding window w, the minimum support

threshold s itempair support threshold ts , mediator support

threshold tf, dependence threshold and td are set to 20,000,

0.1% ,0.1%, 0.2% and 50%, respectively. As shown in these

experiments, the processing times of MDIAR-SW algorithm

are shown in Figures 1 and 2.

Fig.1 shows the processing time of window initialization

phase under different window sizes from 20,000 (200K)

transactions to 100,000 (1,000K) transactions. Fig.2 shows the

total time of window sliding time and pattern mining time at

each 100K transactions using various window sizes from 200K

transactions to 1000K transactions. As shown in Figures 1 and

2, MDIAR-SW algorithm.

T5I4D1000K

0

10

20

30

40

50

20 40 60 80 100

Window Size(*1000)

R
u
n
n
i
n
g

t
i
m
e
(
s
e
c
)

MDIAR-SW

Fig.1 Running time in window initialization phases of algorithm MDIAR-SW

under different window size.

T5I4D1000K

0

200

400

600

800

10 30 50 70 90

Incoming
Transactions(*10000)

R
u
n
n
i
n
g

t
i
m
e
(
s
e
c
)

MDIAR-SW

Fig.2 Running time including window sliding time and rule generation time

of algorithm MDIAR-SW under different window size 200K transactions.

VI . Conclusions and Future Works

In this paper, we proposed an efficient one-pass

algorithm, called MDIAR-SW, for mining direct and indirect

association rules over online data streams with a sliding

window. Experiments show that the proposed algorithm is

efficient and scalable.

References

[1] N. Jiang, and L. Gruenwald. Research Issues in Data Stream Association

Rule Mining. In SIGMOD Record, Vol. 35, No. 1, Mar. 2006.

[2] Babcock B, Babu S, Datar M, et al. Models and issues in data stream

systems. In Proc. of the 21th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems.Wisconsin: Madison,

2002: 1-16.

[3] Agrawal R,Srikant R. Fast Algorithms for Mining Association Rules In

the Proc. of the 20th International Conference on VLDB. Santiago, 1994.

pp.487~499.

[4] Agrawal R,Srikant R. Mining sequential patterns. In the Proc.1995 Int

Conf. on Data Engineering, Taibei,Taiwan,March 1995,pp3-14.

[5] P.N.Tan and V.Kumar. Indirect Association: Mining Higher Order

Dependences in Data. Proc. Of the 4th European Conference on

Principles and Practice of Knowledge Discovery in Databases,pp632-

737,Lyon,France(2000).

[6] Y. Chi, H. Wang, P. Yu, and R. Muntz. MOMENT: Maintaining Closed

Frequent Itemsets over a Stream Sliding Window. In Proceedings of the

4th IEEE International Conference on Data Mining, pp. 59-66, 2004.

[7] C.H. Lin, D.Y. Chiu, Y.H. Wu and A.L.P. Chen. Mining Frequent

Itemsets from Data Streams with a Time-Sensitive Sliding Window. In

Proceedings of 2005 SIAM International Conference on Data Mining,

2005.

342

