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Abstract

Solitons of the parametrically driven, damped nonlinear Schrödinger equation become
unstable and seed spatiotemporal chaos for sufficiently large driving amplitudes. We
show that the chaos can be suppressed by introducing localized inhomogeneities in
the parameters of the equation. The pinning of the soliton on an “attractive” in-
homogeneity expands its stability region whereas “repulsive” impurities produce an
effective partitioning of the interval. We also show that attractive impurities may
spontaneously nucleate solitons which subsequently remain pinned on these defects.
A brief account of these results has appeared in patt-sol/9906001, where the interested
reader can also find multicolor versions of the figures.

Motivation. The ability to synchronize populations of coupled nonlinear oscillators
would afford enormous technological benefits. A textbook example is provided by chains
of Josephson junctions. A single junction can serve as an unparalleled source of ultrahigh-
frequency voltage oscillations; however, its industrial utilization was hindered by anoma-
lously low power outputs. A natural way out would be to assemble a large array of
coupled identical junctions, in anticipation that the coupling would force them to pulsate
in unison. However — even if individual oscillators are nonchaotic — the synchronized
regime may be unstable and evolve into a highly incoherent state, usually referred to as
the spatio-temporal chaos.

In an exciting twist of events, recent numerical simulations revealed that the introduc-
tion of slight uncorrelated differences between the oscillators may result in a significant
improvement of the synchronization of the array [1, 2, 3]. The disorder was seen to suppress
the chaos! In an attempt to gain a deeper insight into the nature of this counter-intuitive
phenomenon, a numerical study of the effect of a single impurity on an otherwise homoge-
neous array was carried out [4]. Surprisingly, a single impurity was found to be sufficient
to “tame” the chaotic behaviour and produce simple spatiotemporal patterns in very long
chains.
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As a prototype nonlinear array, the authors of [4] (see also [2]) chose a chain of pendula
coupled to their nearest neighbours and driven by a periodic external torque. All individual
pendula in the chain were in their chaotic parameter regime whereas the natural frequency
of the central pendulum (the impurity) was out of the chaotic range. Consequently, the
proposed mechanism of stabilization was through the formation of a nonchaotic cluster
around the defect which subsequently pulls the whole array out of chaos [2, 4].

In the present note we study the effect of an impurity on a damped driven system by
considering it from the viewpoint of nonlinear waves. In other words we explore collective
stabilization mechanisms. As in Ref. [4] we study a chain of coupled pendula but unlike [4],
we focus on the regime where all individual pendula are nonchaotic. (This does not mean
of course that the array as a whole may not fall into the state of the spatiotemporal
chaos.) Another distinction from Ref. [4] is that we are considering the parametrically , not
externally, driven chain. (The main reason for this is the availability of explicit solutions.)

The collective stabilization mechanisms are activated when pendula are strongly cou-
pled. In this case they tend to form soliton-like clusters of coherent behaviour. Similarly
to externally driven systems, stationary solitons in parametrically driven chains are known
to be stable for small driving strengths but lose their stability to oscillating solitons as
the driver’s amplitude is increased [5, 6, 7]. Increasing the driving amplitude still fur-
ther, a spatiotemporal chaotic state sets in — with or without a series of intermediate
bifurcations [6].

We will demonstrate that “attractive” impurities may act as centres of spontaneous
nucleation of solitons and hence in extended systems with impurities, solitons are even
more generic and natural occurrences than in their homogeneous counterparts. We will
prove that pinning of a stationary soliton on an “attractive” (or “long”) impurity expands
its region of stability. In particular, by choosing a sufficiently long impurity pendulum, the
soliton can be stabilized in the parameter region where in the absence of the inhomogeneity
it would ignite the spatiotemporal chaos. On the other hand, although solitons pinned on
“short” pendula will turn out to be more prone to oscillatory instabilities, we will show
that such a pinning is an unlikely occurrence due to the repulsive nature of the short
defects.
The model. The angle the n-th pendulum in our chain makes to the vertical, satisfies

ml2nθ̈n+αlnθ̇n−k(θn+1−2θn+θn−1) = −mln
(
g + 4ω2ρ cos 2ωt

)
sin θn, (1)

where k is the torsion-spring constant, α the friction in the pivots, ρ and ω are the
amplitude and frequency of the driver, and the length ln = 1 for all n �= 0. In what follows
we set g = m = 1. Assume that the spring is very hard, or, equivalently, the distance
between the neighbouring pendula (which we define as a ≡ 1/

√
k) is very small: a → 0.

Then we can neglect the O
(
a4

)
terms in the Taylor expansion θn±1 = θn±θ′na+ 1

2θ
′′
na

2+· · · ,
so that θn+1−2θn+θn−1 ≈ a2θ′′(zn). Here the function θ(z) is assumed to be differentiable
at all sites zn = na, −N ≤ n ≤ N , except the site with n = 0. At the site z0 it will only
have the left and right derivatives and hence the above expression should be replaced by

θ1−2θ0+θ−1 ≈ aθ′
∣∣∣z=+0

z=−0
+a2 θ

′′(+0) + θ′′(−0)
2

. (2)

It is convenient to choose the square of the inter-pendulum distance as a small para-
meter: ε = a2. For simplicity, we confine ourselves to the case when the driving frequency
is just below the edge of the continuous spectrum of linear waves, ω2 = 1− ε2, and α and
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ρ are small: α = ε2γ, 4ω2ρ = 2hε2. In this case we can assume that the pendula execute
nearly-synchronized small-amplitude librations of the form

θ = 2εψ(T,X)e−iωt+c.c.+O
(
ε3

)
, (3)

where the envelope ψ is only slowly varying in space and time: X = εz, T = ε2t/2. It
is this variable amplitude that contains the information on how disorganized the array
is. If ψ were constant, the pendula would be perfectly synchronized; however, ψ will not
generally be constant. Substituting (3) into eq. (1) with n �= 0 and sending a → 0 we
obtain the amplitude equation

iψT +ψXX+2|ψ|2ψ−ψ = hψ∗−iγψ, X �= 0. (4)

Next, let the central pendulum be slightly longer or slightly shorter than the rest of the
chain, l0 = 1+2q

√
ε, with q being positive or negative, respectively. Using (2) and sending

a→ 0, the equation (1) with n = 0 gives rise to the boundary condition

2qψ(0)+ψX

∣∣∣+0

−0
= 0. (5)

Eqs. (4) and (5) can be combined into the parametrically driven damped nonlinear Schrö-
dinger equation with a δ-function inhomogeneity:

iψT +ψXX+2|ψ|2ψ−ψ+2qδ(X)ψ = hψ∗−iγψ, −∞ < X <∞. (6)

Equation (6) with q = 0 was previously used to model the nonlinear Faraday resonance
in a long narrow water trough [8]. The inhomogeneous term 2qδ(X)ψ represents a local
widening (for q > 0) or narrowing (q < 0) of the trough. The same equation describes
an easy-plane ferromagnet with a combination of a static and hf field in the easy plane
[9, 5] and the planar weakly anisotropic XY model [10]; in both cases the inhomogeneous
term accounts for an impurity spin. Equation (6) was also used in studies of the effect of
phase-sensitive parametric amplifiers on solitons in optical fibers [11].

As in the spatially homogeneous case [5], the zero solution of eq. (6) is unstable against
continuous spectrum excitations for h >

√
1 + γ2. Next, the q > 0-impurities host a

discrete mode:

δψ = ε
(
cosΩT − i1 + h− q

2

Ω
sinΩT

)
e−γT−q|X|,

where Ω2 =
(
1− q2)2 − h2 and ε
 1 is the linearization parameter. When h exceeds the

value �q,γ ,

�q,γ ≡
√
(1− q2)2 + γ2, (7)

this localized mode also produces instability. For positive q <
√
2 (in which case the

curve �q,γ lies below
√
1 + γ2 ), the nonlinear development of this instability leads to the

formation of solitons (Fig. 1), stable or unstable.
Solitons. Thus we are naturally led to the consideration of localized solutions. For all

q, h and γ the soliton solutions of eq. (6) are available in closed form. In fact, there are
two stationary soliton solutions, ψ+ and ψ−, each having a cusp at the origin:

ψ±(X) = A±sech (A±|X|+ x̃) e−iθ± . (8)
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Figure 1. A stable pinned soliton emerging from a small-amplitude random spatial distribution.

Here cos 2θ± = ±√
1− γ2/h2, A2± = 1 ±

√
h2 − γ2, and x̃ = arctanh (q/A±). For weak

impurities, |q| < 1, the ψ+ soliton exists for any h and γ satisfying h > γ, whereas the ψ−
requires, in addition, that h < �q,γ with �q,γ as in (7). Strong impurities (|q| > 1) do not
support the ψ− soliton at all whereas the ψ+ exists only if h > �q,γ .

First we demonstrate that the soliton ψ− is always unstable so we can safely forget
about it for the remainder of this study. Taking the linear perturbation in the form
δψ± = ε(f + ig)e−iθ±−γT gives

−gτ −Γg = L1f, fτ −Γf = L0g, (9)

where Γ = γ/A2±, τ = A2±T , and the Schrödinger operators L0 and L1 are given by

L1 = −∂2
x+1−6sech2(|x|+ x̃)−2Qδ(x), (10)

L0 = −∂2
x+1∓2H−2sech2(|x|+x̃)−2Qδ(x), (11)

with Q = q/A± = q
√
1∓H, H =

√
h2 − γ2/A2±, and x = A±X. The minimum eigenvalue

of the operator L0 associated with a nodeless eigenfunction sech(|x| + x̃), is ν0 = ∓2H.
Consequently, in the case of the ψ− soliton the operator L0 is positive definite and Eqs. (9)
can be rewritten as

L−1
0 fττ = Γ2L−1

0 f −L1f. (12)

The maximum exponential growth rate λ of solutions to Eq. (12) is given by [12]

λ2 = Γ2+sup
f

〈f(x)| − L1|f(x)〉
〈f(x)|L−1

0 |f(x)〉 . (13)

For any Q the operator L1 has a negative eigenvalue µ0 = 1− κ2 associated with an even
eigenfunction

y0(x) = e−κξ
(
3 tanh2 ξ + 3κ tanh ξ + κ2 − 1

)
, (14)

where ξ = |x|+ x̃ and κ is the root of κ3+2κ2Q+κ
(
3Q2 − 5Q− 4

)
+3Q3 = 0 with κ > 1.

Hence the supremum in (13) is positive, λ is > Γ and the soliton ψ− is unstable against
a symmetric nonoscillatory mode for all q, h and γ.
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Figure 2. The effect of the q < 0 impurity. For h < �q,γ , the growth of the asymmetric instability
leads to the soliton’s unpinning and repulsion from the impurity (a), while for h > �q,γ , the
asymmetric Hopf instability evolves into a two-humped soliton staggering in a seesaw fashion (b).

q < 0: Unpinning instability. A similar argument can be used to detect the disen-
gagement instability of the other soliton, ψ+, arising for impurities with q < 0. We simply
notice that the second lowest eigenvalue of the operator L0 which is associated with an
odd eigenfunction

w1(x) = sgn(x)eQ(|x|+x̃) {tanh(|x|+ x̃)−Q} ,

is equal to ν1 = 1− 2H −Q2. For 2H < 1−Q2 or equivalently for h < �q,γ , L0 is positive
definite on the subspace of odd functions. On the other hand, forQ < 0 the operator L1 has
a negative eigenvalue µ1 = 1−κ2 associated with an odd eigenfunction y1(x) = sgnx y0(x),
with y0 as in (14) and κ the root of κ2 + 3κQ + 3Q2 − 1 = 0 satisfying κ > 1. Hence if
we restrict ourselves to the space of odd functions, the variational principle (13) remains
applicable, λ is > Γ and the soliton ψ+ is unstable. The interpretation of this instability
is straightforward if one invokes the energy considerations. In the undamped case (γ = 0)
the equation (6) conserves the energy integral,

E =
∫ {|ψX |2 + |ψ|2 − |ψ|4 − 2qδ(X)|ψ|2 + hReψ2

}
dX. (15)

The inhomogeneous term produces a local decrease respectively increase of the energy
density for q > 0 respectively q < 0. Consequently, in the conservative and weakly
dissipative cases, the q > 0-impurity will attract and the one with q < 0 repel small-
amplitude tails of distant solitons. On the other hand, the energy of the pinned soliton is
EQ = 4

3A
3
(
1− 3Q+ 2Q3

)
. For Q > 0 (Q < 0) this is smaller (greater) than the energy

E0 of the infinitely remote soliton. These two facts indicate that Q > 0-impurities should
attract and trap solitons (cf. [13]). In the Q < 0 case, conversely, distant solitons should
be repelled while an initially pinned soliton is expected to unpin and move away from
the impurity regaining its cusp-free shape. This was indeed confirmed by simulations of
Eq. (6) (Fig. 2(a)).

It is important to emphasize that we are using the energy considerations only for
the interpretation of the instability detected by some other, rigorous, methods. The
negativity of q does not itself guarantee that the soliton pinned on the repulsive impurity
will necessarily unpin and escape. Moreover, the variational approach of the present section
works only for h < �q,γ while for greater h we can’t even claim that the soliton pinned
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Figure 3. An atlas of stability charts on the (γ, h)-plane. Above the dashed “almost-horizontal”
curve, h =

√
1 + γ2, all localized solutions are unstable w.r.t. continuous spectrum waves. Solid

“horizontal” curves are given by h = �q,γ . Below their corresponding �q,γ-curves, impurities with
q < 0 repel solitons. The family of “parabolas” depict the onset of (symmetric) instability of the
pinned soliton; the greater is q the larger is the stability domain. Finally, in the band between the
line

√
1 + γ2 and its corresponding �q,γ-curve, an attractive impurity will spontaneously nucleate

solitons.

on the repulsive impurity is unstable! Another remark is that the unpinning instability is
not connected with overdriving the chain; it occurs already in the undriven NLS [13].

q > 0: Numerical stability analysis. In the region h > �q,γ (as well as in the case of
symmetric instabilities, and also for the attractive impurities) the variational principle (13)
is not applicable and we have to resort to the help of computer. Here we let f(x, t) =
u(x)eiΩτ and g(x, t) = −ω(Γ + iΩ)−1v(x)eiΩτ , where Ω2 = ω2 − Γ2. Then eq. (9) reduces
to an eigenvalue problem

L1u = ωv, L0v = ωu. (16)

Notice that a three-parameter (q, h and γ) linear system has been reduced to a two-
parameter (q and H) eigenproblem. Having found ω = ω(q,H), one immediately recovers
the instability growth rate |ImΩ(q,H)| − Γ for all q, h, and γ.

For small h < �q,γ the numerical analysis of the soliton pinned on the “repulsive” impu-
rity (q < 0) shows that there is only one unstable pair of imaginary eigenvalues ±ω1, with
the associated u and v being odd. As h is increased beyond �q,γ , the imaginary eigenval-
ues move onto the real axis (i.e. the soliton restabilizes) while another real doublet ±ω2

detaches from the continuous spectrum. Subsequently, the two collide and emerge as a
complex quadruplet after which the real and imaginary parts grow until an asymmetric
instability sets in. This is not a disengagement instability now; the stationary soliton is
replaced by a two-humped structure (still pinned on the impurity) whose left and right
wings stagger 180◦ out of phase (Fig. 2(b)).

For the soliton pinned on the “attractive” impurity, q > 0, the motion of eigenvalues ω
on the complex plane is similar to the homogeneous case [5]. The stationary soliton ψ+

is stable for h close to γ but loses its stability to a symmetric oscillating soliton as h is
increased. Fig. 3 shows the Hopf bifurcation curves h = hq(γ) obtained from the relation
|ImΩ(q,H)| = Γ for q = 0.1, 0.3, 0.4, 0.5 and −0.3. For q > 0 the stability domain is
wider than without an impurity. For example, taking q = 0.5 is sufficient to double the
size of this domain. On the contrary, the q < 0-impurity narrows the stability region.
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Figure 4. In the homogeneous equation with γ = 0.315, h = 0.95 the unstable soliton seeds
spatiotemporal chaos (a). Introducing an impurity with q = 0.3 is sufficient to stabilize it (b).
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Figure 5. Two q > 0 impurities placed in the middle and at the end of the periodic interval,
respectively.

Taming chaos with disorder? Finally let us summarize our conclusions and discuss
possible applications for chains of pendula with random distributions of widely separated
impurities. We have shown that for small h (h < �q,γ) “long” impurities (q > 0) attract
and trap solitons while for h > �q,γ , pinned solitons are spontaneously formed around the
long defects. (This can be looked upon the other way around: for given h and γ the solitons
will nucleate around attractive impurities with q close enough to 1:

(
q2 − 1

)2
< h2 − γ2.)

On the other hand, the soliton with h and γ such that it would ignite spatiotemporal chaos
in the homogeneous case [6], is stabilized when pinned on a sufficiently “long” impurity
(Fig. 4). Therefore the q > 0 defects should have a stabilizing effect on the chain. One
should keep in mind, however, that spatiotemporal chaotic states are not localized and a
single stable soliton will clearly be insufficient to suppress chaos in a long chain. The chaos
can always be triggered by choosing the initial condition far enough from the soliton. In
order to suppress chaos in a larger phase volume multiple impurities should be introduced;
one is therefore led to the necessity of examining stability of solitons and periodic waves
on finite intervals.

Next, the fact that short impurities enhance the symmetric instability should not play
a destabilizing role since solitons tend to avoid “short” defects. On the contrary, the
repulsive inhomogeneities will essentially partition the chain into smaller subintervals and
this will generally have a stabilizing effect since long-wavelength instabilities will not fit
in [14].
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The analysis of the effect of multiple impurities (as well as the related case of finite
intervals) is beyond the scope of this work. Here we only mention that introducing more
than one impurity can result in more complicated (though still regular) patterns. We
illustrate this by simulating the case of two impurities. As one could expect, when two
stable stationary solitons are pinned very far from each other, they do not interact and
remain time-independent. However, if the separation is smaller than a certain critical dis-
tance, they start exchanging weak radiation waves and develop spontaneous oscillations ...
which subsequently synchronize (Fig. 5)! It is important to emphasize that this latter
synchronization occurs not among individual elements but among solitons, i.e. clusters
of pendula. We have therefore a hierarchy of synchronizations: firstly, the pendula form
clusters of synchronous oscillation; secondly, different clusters start oscillating in unison.
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