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Abstract

An integrable interpolative (Pivotal) model for the (1 + 1)-dimensional Hyperbolic
Heisenberg and Hyperbolic sigma models is proposed and some solutions classifiable
by an integer winding number examined.

1 Introduction

Both the Heisenberg and sigma models in (1 + 1) dimensions are well known integrable
systems and have been discussed to date in some detail with respect to various target
manifolds and aspects of their integrability (see for example [1–8]). Whilst both systems
admit the same static equations, if time dependence is introduced the Galilean invariant
Heisenberg model admits an equation of motion of parabolic type whereas the equation of
motion for the Lorentz invariant sigma model resides in the class of hyperbolic equations. It
therefore seems unlikely that any direct interpolation between the time dependent models
might exist, however, this is indeed possible; in this note a third integrable model is
proposed which contains both the Heisenberg and Sigma models and facilitates, via a
single scalar parameter, just such an interpolation between the models and at least some
of their solutions.

The paper is set out as follows: to begin with the “Pivotal” equation is stated where,
in keeping with the discussions of the Heisenberg and sigma models of [9, 10], we choose
the hyperboloid of one sheet as the target manifold. The integrability of the model is then
established in the sense that a suitable Lax pair is shown to exist, and some conserved
quantities of the motion are briefly discussed. Some solutions classifiable by an integer
winding number are then given and their interpolative limits examined.

2 The Hyperbolic Pivotal model (HPM)

The field �ψ(t, x) =
(
ψ1, ψ2, ψ3

)
takes its values on the hyperboloid of one sheet H2 in

R
2+1 and satisfies the constraint ηabψ

aψb = 1, where ηab = diag (1, 1,−1). Here t ∈ R,
and x ∈ X is such that either X = R and the boundary condition �ψ(t,∞) = �ψ(t,−∞)
is imposed or, X has finite period and �ψ is periodic in x. With the metric on H2 taken
to be that induced by ηab, the manifold is a symmetric space SO(2, 1)/SO(1, 1) with
fundamental group Z so for each fixed t, �ψ is a continuous mapping from a circle into H2

with winding number N and may be visualized as a closed string wrapped around H2 and
evolving in time.
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Arising as a variation on an integrable extension of the non-linear O(3) sigma model on
Hermitian symmetric target spaces proposed in [11], the Hyperbolic Pivotal model (HPM)
has the following equation of motion:

(1−ω)ψa
t =?εabc?

(
ψbψc

xx − ωψbψc
tt

)
, (1)

where hyperbolic refers to the target manifold and the scalar parameter ω is such that
0 ≤ ω ≤ 1. In the limit ω = 0 the equation

ψa
t =?εabc?ψ

bψc
xx (2)

is produced which is exactly the Hyperbolic Heisenberg model (HHM) equation. And in
the limit ω = 1 the result is

?εabc?
(
ψbψc

xx − ψbψc
tt

)
= 0; (3)

when the hyperboloid is parametrized in terms of either stereographic coordinates or polar
angles (θ, φ), (3) is precisely the Hyperbolic sigma model (HSM) equation of [9, 10].

The integrability of the HPM may be established in the following way: using the identity
[S, [S, ∂µS]] = −∂µS (cf. [11]), where

S =
(

ψ1 ψ2 + ψ3

ψ2 − ψ3 −ψ1

)
∈ SL(2,R).

And with

α =
2ω

λ2 − ω
, β =

2λ
λ2 − ω

,

γ0 = β2(1−ω) =
4λ2(1 − ω)
(λ2 − ω)2

and

γ1 = β(ω−1)(1+α) =
2λ(ω − 1)

(
λ2 + ω

)
(λ2 − ω)2

,

(λ being the spectral parameter); the pair

U = α
[
S, ∂xS

]−βω
[
S, ∂tS

]
+γ1S, (4a)

V = α
[
S, ∂tS

]−β
[
S, ∂xS

]
+γ0S (4b)

satisfy the equation

∂tU −∂xV +
[
V,U

]
= 0

if and only if ψa satisfy the HPM equation (1). Hence the HPM equation satisfies the zero
curvature condition with the U , V pair (4) and is in this sense, integrable. Furthermore,
the integrability of both the HHM and HSM models may be verified similarly by taking
the limits ω = 0, 1, respectively.

Conserved quantities of the motion may be found as follows: by taking the Laurent

expansion in λ with F (x;λ) =
∞∑

n=0

Fn
λn , (F0 = 1), in the linear problem (∂µ+Aµ)F (x;λ) = 0,
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(Aµ ∼ U, V ), and defining the conserved current as J
(n)
µ = εµν∂

νFn(x), which satisfy the
current conservation ∂µJ

µ = 0; to first order one has

(∂0−∂1)F1−2
(

[S, ∂1S]−ω[S, ∂0S]−(1−ω)S
)

= 0.

The current conservation here is just the equation of motion (1) and is in fact, a local
conservation law since (1) is a vector divergence equation. To second order one has

0 = (∂0 − ∂1)F2 + 2ω
(
[S, ∂0S] − [S, ∂1S]

)
+ 4(1 − ω)S

− 2F1

(
[S, ∂1S] − ω[S, ∂0S] − (1 − ω)S

) (5)

which is non-local as are the higher order currents which may be similarly obtained ad
infinitum.

3 Topological solitons

Since our main concern for the HHM and HSM in [9, 10] was the existence of topological
solitons, let us expand this investigation to the Pivotal model case; this may also give
some insight into how the interpolation holds up under scrutiny with respect to solutions
of the model.

3.1 Travelling waves

The hyperboloid H2 may be parametrized in terms of the polar angles (θ, φ) where θ ∈
(−∞,∞), φ ∈ [0, 2π] such that

�ψ = (cosh θ cosφ, cosh θ sinφ, sinh θ).

Further, using the characteristic variable ξ = x−vt so that θ(t, x) and φ(t, x) are replaced
by f(ξ) and g(ξ) respectively; in (1) and with the substitution p = sinh f one finds the
following equations for p and g:

2
(
1 − ωv2

)2
p′2 = 4qp2−v(1−ω)kp+4q−2

[
(1 − ω)2 v2 − k2

]
(6)

and

(
1 − ωv2

)
g′ =

vp(ω − 1) + k

1 + p2
, (7)

where “prime” denotes differentiation with respect to ξ and q and k are constants. On
integration, (6) yields the solution

p(ξ) = sinh f =

√
A

B
sin

[√
B(ξ − ξ0)

(1 − ωv2)

]
+p0, (8)

where the constants A = 2q − v2(1 − ω)2 + k2 − 2k2v2(1−ω)
q , B = −2q are both positive

and p0 = kv(1−ω)
2q . This solution is of topological type with X = S1, which may be

checked by substituting (8) into (7) and integrating with respect to x. Analyzing the
result (cf. similar result in [10]) one finds that the solution does indeed wind around the
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hyperboloid an integer number of times. Furthermore, in the limits of the parameter ω
the solution reduces to one for both the HHM and HSM models where in the sigma model
case the resultant solution is related to a Lorentz boost of the static case1. Hence the
above is a topological soliton of travelling wave type for X = S1 and is a solution of all
three models which can be seen by varying the parameter ω.

Investigation into the existence of travelling waves where X is the real line is omitted
due to space considerations and will be covered in a subsequent paper, however, in the
next section it will be shown that time dependent solutions not of travelling wave type
are possible for X = R.

3.2 Solutions from a stereographic parametrization of H2

If the hyperboloid is parametrized in terms of a stereographic projection such that �ψ =
ζ−1

(
1 − u2 + v2, 2u, 2v

)
, where ζ = 1 + u2 − v2; in the relevant limits of ω the HPM

equations reduce to both the HHM and HSM equations. Letting u2 − v2 = f(x)2 and
choosing

u(t, x) = f(x) cosh(mt), (9a)

v(t, x) = f(x) sinh(mt) (9b)

with m constant; substitution of (9) into the parametrized system produces a second order
equation for f which, on integration (cf. [12]) results in the first order equation

f ′2 =
1
4

(
m2ω

2
− k

)(
1 + f2

)2+
m(1 − ω)

2
(
f2 + 1

) (
f2 − 1

)−m2ω

4
(
f2 − 1

)2
. (10)

This is satisfied by the elliptic solution

f(x) = A sc [B(x− x0)|M ] , (11)

where

B2 =
1
8

[
2l + 3m2ω ± 2m

√
2 [2ωl + m2ω2 + 2(1 − ω)2]

]
, (12a)

A2 =
3m2ω + 2l ∓ 2m

√
2 [2ωl + m2ω2 + 2(1 − ω)2]

2l −m2ω + 4m(1 − w)
, (12b)

M =
±4m

√
2 [2ωl + m2ω2 + 2(1 − ω)2]

2l + 3m2ω ± 2m
√

2 [2ωl + m2ω2 + 2(1 − ω)2]
, (12c)

l = −k > 0, M is the elliptic function parameter and the signs are ordered throughout.
Taking m > 0 and the positive square root in B2, one then has both M and B2 ≥ 0 and the
only constraints arise from A2 ≥ 0 and the fact that, with respect to the elliptic function,
things are simplified if 0 ≤ M ≤ 1. Both stipulations result in the single constraint

2l−m2ω ≥ 4m(1−ω). (13)

Taking the limit of the parameter M = 0, one then has A = ±1 and B = ±
√

l
2 so that if

l = 4, the static solution f(x) = tanx is recovered (and is a solution for all three models).

1Note that all static solutions of the HPM are also solutions for the other two models and vice versa
since the static equations are the same for all three models.
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If x is now shifted by the half period K : x −→ K − x then

A sc [K−x|M ] = µ cs [Bx|M ] (14)

(where µ = A√
1−M

) and the solution

f(x) = µ cs (Bx|M) (15)

is well defined with the parameters (12) and the constraint (13). Further, with (15) and u, v
as in (9), �ψ is a topological (t dependent) soliton with period 2K. Taking the limit M = 1
requires 2l − m2ω = ±4m(1 − ω) and choosing the positive case results in µ =

√
mω

(1−ω) ,

B =
√

m2ω + m(1 − ω) and the solution

f(x) = ±
(

mω

(1 − ω)
+ 1

) 1
2

cosech
[√

m2ω + m(1 − ω)(x− x0)
]
. (16)

This passes through the points �ψ = (±1, 0, 0) if X = R and hence winds once around the
hyperboloid, so that (16) is a topological t dependent soliton where X is the real line.

It remains now to examine how (15) behaves in the limiting models which we consider
separately as follows:

(i) If ω = 0 (i.e. for HHM), one has B = ±
√

l+2m
2 , A =

√
2l−4m
2l+4m , M = 8m

2l+4m and

µ =
√
M . Hence, if l ≥ 2m, (15) has a satisfactory reduction to a topological

soliton in terms of elliptic functions for the Heisenberg model. Taking the limit
M = 1 requires l = 2m and the corresponding solution (putting m = 1 for example),
is given by f(x) = cosech x which again winds once around the hyperboloid for
X = R.

(ii) In the w = 1 (i.e. HSM) limit the situation is not quite so straightforward; here one
has

B2 =
1
8

(
2l + 3m2 + 2m

√
2(2l + m2)

)
,

A2 =
3m2 + 2l − 2m

√
2(2l + m2)

2l −m2
,

M =
4m

√
2(2l + m2)

2l + 3m2 + 2m
√

2(2l + m2)

resulting in µ =

√
4m[2(2l+m2)]

1
2

2l−m2 . If 2l > m2 the solution (15) is perfectly valid for
the sigma model and is topological in its elliptic form (and of course, in the static
(M = m = 0) case). However, taking the limit M = 1 requires 2l = m2 so that f(x)
diverges. Nevertheless, it is interesting to note that as M gets close to unity the
solution does actually come close to a “cosech”. For example, taking l = 2.1 and
m = 2 one has M ≈ 0.999962 and µ ≈ 161.99 (with B ≈ 4) so that such a solution
is approximated as the limit is approached.
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4 Concluding remarks

There are few known parabolic or hyperbolic systems which are both integrable and ad-
mit topological solitons; the Heisenberg and sigma models are of this type. The Pivotal
system proposed here is also of this type and moreover, contains a parabolic system (the
HHM) which is Galilean invariant, and a Lorentz invariant hyperbolic system (the HSM).
Furthermore, as documented, at least some of the solutions and properties of this Pivotal
model “carry through” to the two constituent models via the scalar parameter ω. With
these combined properties it is therefore believed that the Pivotal model is unique among
known systems. Since the model is new, there are obviously many possibilities for further
investigation, for example, its complete integrability via the inverse scattering transform,
the symmetries of the model and its applications, however, these must be left for the
future.
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