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Abstract
We present a scenario concerning the existence of a large class of reflectionless self-
adjoint analytic difference operators. In order to exemplify this scenario, we summarize
our results on reflectionless self-adjoint difference operators of relativistic Calogero-
Moser type.

1 Introduction

The following serves a twofold purpose. On the one hand, we present a short sketch
of some recent results on explicit eigenfunctions for A∆Os of relativistic Calogero–Moser
type, restricting attention to couplings for which the eigenfunctions are reflectionless. This
is a rather small family, but it contains various instructive examples that suggest a more
general scenario.
On the other hand, then, we would like to draw attention to some natural questions and

speculations concerning the existence and properties of a far larger family of A∆Os with
reflectionless eigenfunctions. The class of reflectionless A∆Os whose eventual existence is
at issue can be delineated as follows: It should not only give rise to the class of reflectionless
Schrödinger operators associated to soliton solutions of the KdV equation (by taking the
step size to 0), but also to the class of reflectionless Jacobi operators associated to soliton
solutions of the infinite Toda lattice (by analytic continuation and discretization). We
begin by recalling some salient features of the latter two families [1, 2, 3, 4].
The relevant Schrödinger operators are of the form

H = − d2

dx2
+V (x), (1)

with V (x) a real-valued Schwartz space function. They are reflectionless when there exist
eigenfunctions for all eigenvalues p2, p ≥ 0, satisfying

ΨH(x, p) ∼
{
exp(ixp), x → ∞,

aH(p) exp(ixp), x → −∞.
(2)

It has been known for half a century that such potentials V (x) exist [5]. The function
aH(p) (essentially the S-matrix or transmission coefficient) must be of the form

aH(p) =
N∏

n=1

p− iκn

p+ iκn
, 0 < κN < · · · < κ1, (3)
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and for each such S-matrix there exists anN -dimensional family of potentials parametrized
by normalization coefficients ν1, . . . , νN ∈ (0,∞). The Jost function ΨH(x, p) defined
by (2) has an analytic continuation to p ∈ C, and yields bound states

φn(·) ≡ ΨH(·, iκn), n = 1, . . . , N, (4)

satisfying∫ ∞

−∞
|φn(x)|2dx = 1/νn, n = 1, . . . , N. (5)

Thus H gives rise to un unbounded self-adjoint operator on L2(R, dx) with continuous
spectrum [0,∞) and discrete spectrum −κ2

1, . . . ,−κ2
N .

The pertinent Jacobi operators are infinite matrices of the form

Jjk = bjδjk+ajδj,k−1+akδj,k+1, j, k ∈ Z, (6)

with aj and bj sequences of real numbers rapidly converging to 1 and 0, resp., for
j → ±∞. They are reflectionless when there exist eigenfunctions for all eigenvalues
2 cos(αp), p ∈ [0, π/α], α > 0, satisfying

ΨJ(j, p) ∼
{
exp(ijαp), j → ∞,

aJ(p) exp(ijαp), j → −∞.
(7)

In this case aJ(p) must be of the form

aJ(p) =
N∏

n=1

sin[α(p− iκ+
n )/2]

sin[α(p+ iκ+
n )/2]

·
M∏

m=1

cos[α(p− iκ−m)/2]
cos[α(p+ iκ−m)/2]

, (8)

where 0 < κ+
N < · · · < κ+

1 , 0 < κ−M < · · · < κ−1 , and for each such S-matrix there exists
an (N +M)-dimensional family of Jacobi operators labeled by normalization coefficients
ν+
1 , . . . , ν

+
N , ν

−
1 , . . . , ν

−
M ∈ (0,∞). The above Jost function yields bound states

φ+
n (·) ≡ ΨJ

(·, iκ+
n

)
, n = 1, . . . , N,

φ−m(·) ≡ ΨJ

(
·, π
α
+ iκ−m

)
, m = 1, . . . ,M,

(9)

∑
j∈Z

|φ+
n (j)|2 = 1/ν+

n , n = 1, . . . , N,

∑
j∈Z

|φ−m(j)|2 = 1/ν−m, m = 1, . . . ,M.
(10)

Thus the matrix {Jkl}k,l∈Z gives rise to a bounded self-adjoint operator J on l2(Z) that
has continuous spectrum [−2, 2] and discrete spectrum 2 cosh(ακ+

n ), −2 cosh(ακ−m), with
n = 1, . . . , N , m = 1, . . . ,M .
As is well known, the reflectionless Schrödinger operators give rise to the N -soliton

solutions of the KdV equation via the Inverse Spectral Transform (IST). More specifically,
the parameters κ1, . . . , κN determine the speeds of the N solitons, all of which move from
left to right, whereas the coefficients ν1, . . . , νN determine their positions for asymptotic
times.
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Similarly, the IST for the infinite Toda lattice ties in the Toda soliton solutions with the
above reflectionless Jacobi operators. In this case the parameters κ+

n and κ
−
m determine

the speeds of the N right-moving and the M left-moving solitons in a general soliton
solution, with the normalization coefficients yielding once again the asymptotic positions.
The A∆Os at issue here may be viewed as generalizations of the above ordinary second-

order differential and discrete difference operators H (1) and J (6). They are of the form

A = V+(x)1/2Tiβ+V−(x)1/2T−iβ+V0(x), β > 0, (11)

where the translations T±iβ are defined by

(Tzf)(x) = f(x−z), z ∈ C. (12)

We require that the functions V+, V− and V0 be meromorphic and satisfy

V±(x)→ 1, V0(x)→ 0, x → ±∞. (13)

Of course, the simplest case is V± = 1, V0 = 0. Then one can solve the eigenvalue
equation

AΨ = 2 cosh(βp)Ψ, p ≥ 0, (14)

by taking Ψ(x, p) = exp(ixp). But when one multiplies this solution by an arbitrary
iβ-periodic meromorphic function (which may also depend on p), then one obtains a
function Ψ̂ that also solves (14).
The importance of this infinite-dimensional ambiguity for eigenfunctions of A∆Os (as

opposed to the two-dimensional one for H and J) cannot be overestimated. It renders
various existence and uniqueness methods useless, and is responsible for the absence (to
date) of a well-developed Hilbert space theory. As a starting point for coping with this, we
require in addition that the meromorphic functions V± and V0 be such that A is at least
formally self-adjoint on L2(R, dx). (In particular, V0(x) must be real-valued for real x.)
With the above formal requirements in place, we can now introduce a notion of “re-

flectionless self-adjoint A∆O A”: The eigenvalue equation (14) should admit a solution
ΨA(x, p) satisfying

ΨA(x, p) ∼
{
exp(ixp), x → ∞,

aA(p) exp(ixp), x → −∞,
(15)

which can be used to define a self-adjoint operator (denoted by Â) on L2(R, dx). We
postpone an explanation of this procedure to the end of Section 4, in which we consider
Hilbert space aspects. In Section 2 we collect algebraic features of the simplest special
cases, and in Section 3 we discuss more general examples arising from relativistic Calogero–
Moser systems. (For background information on the latter integrable systems we refer to
Ref. [6].) In Section 5 we sketch further pertinent information on reflectionless A∆O-
eigenfunctions, and formulate some conjectures.

2 The one-soliton operators

Consider the following two functions:

Ψ+(x, p) ≡ eixp eiβκ/2 sinh(κx+ βp/2)− e−iβκ/2 sinh(κx− βp/2)
2(cosh[κ(x+ iβ/2)] cosh[κ(x− iβ/2)])1/2 sinh[β(p+ iκ)/2]

, (16)
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Ψ−(x, p) ≡ eixp eiβκ/2 cosh(κx+ βp/2) + e−iβκ/2 cosh(κx− βp/2)
2(cosh[κ(x+ iβ/2)] cosh[κ(x− iβ/2)])1/2 cosh[β(p+ iκ)/2]

. (17)

Clearly, we have

Ψ+(x, p) ∼



exp(ixp), x → ∞,

sinh[β(p− iκ)/2]
sinh[β(p+ iκ)/2]

exp(ixp), x → −∞,
(18)

Ψ−(x, p) ∼



exp(ixp), x → ∞,

cosh[β(p− iκ)/2]
cosh[β(p+ iκ)/2]

exp(ixp), x → −∞,
(19)

so these functions have a reflectionless asymptotics. Moreover, they satisfy

AδΨδ = 2 cosh(βp)Ψδ, δ = +,−, (20)

where A+ and A− are the formally self-adjoint A∆Os

A± ≡
(
cosh[κ(x− 3iβ/2)] cosh[κ(x+ iβ/2)]

cosh2[κ(x− iβ/2)]

)1/2

Tiβ + (i → −i)

∓ sin2(κβ)
cosh[κ(x− iβ/2)] cosh[κ(x+ iβ/2)]

.

(21)

(This can be checked by a straightforward calculation, cf. also (29)–(32) below.)
Before explaining the context from which these A∆Os arise and entering into Hilbert

space aspects, let us add a few more features that can be directly verified. First, the
function

φ+(x) ≡ Ψ+(x, iκ) = (4 cosh[κ(x−iβ/2)] cosh[κ(x+iβ/2)])−1/2, (22)

with A+-eigenvalue 2 cos(βκ), is in L2(R, dx), provided

κβ �= (2k+1)π, k ∈ N, (23)

and the function

φ−(x) ≡ Ψ−
(
x,
iπ

β
+ iκ

)
= e−πx/β(4 cosh[κ(x−iβ/2)] cosh[κ(x+iβ/2)])−1/2, (24)

with A−-eigenvalue −2 cos(βκ) is in L2(R, dx), provided

κβ �= (2k+1)π, k ∈ N, κβ > π. (25)

Second, one easily checks

lim
β→0
[A+−2]/β2 = − d2

dx2
− 2κ2

cosh2(κx)
, (26)

lim
β→0
Ψ+(x, p) = eixp e

κx(p+ iκ) + e−κx(p− iκ)
2 cosh(κx)(p+ iκ)

, lim
β→0

φ+(x) =
1

2 cosh(κx)
. (27)
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Thus, this β → 0 limit gives rise to a Schrödinger operator associated with a 1-soliton
solution to the KdV equation.
Third, substituting

β → iα, x → jα, j ∈ Z, (28)

in Aδ, Ψδ(x, p) and φδ(x), yields Jacobi operators and eigenfunctions associated with
1-soliton solutions to the Toda lattice, moving to the right for δ = + and to the left for
δ = −.
Fourth, one can obtain all 1-soliton Schrödinger and Jacobi operators in the way just

sketched by taking the functions exp(ix0p)Ψδ(x−x0, p), δ = +,−, and the A∆Os Aδ (21)
with x → x−x0 as a starting point. Indeed, letting x0 vary over R, one obtains all positive
normalization coefficients (as is easily seen).

3 Relativistic Calogero–Moser A∆Os

The above A∆Os Aδ are derived from A∆Os Hδ given by

H± ≡
(
cosh[κ(x− iβ)] cosh[κ(x+ iβ/2)]
cosh[κx] cosh[κ(x− iβ/2)]

)1/2

Tiβ/2±(i → −i). (29)

Specifically, one readily checks that

A± = (H±)2 ∓2, (30)

and that the functions Ψδ(x, p) are Hδ-eigenfunctions as well:

H+Ψ+ = 2 cosh(βp/2)Ψ+, (31)

H−Ψ− = 2 sinh(βp/2)Ψ−. (32)

Thus, the eigenvalue property (20) may be viewed as a corollary of (30)–(32).
We proceed by relating H± to the three A∆O families

Hr(g) ≡
(
sinh[κ(x− igβ)]
sinh[κx]

)1/2

Tiβ

(
sinh[κ(x+ igβ)]
sinh[κx]

)1/2

+(i → −i), (33)

Ha(g) ≡
(
cosh[κ(x− igβ)]
cosh[κx]

)1/2

Tiβ

(
cosh[κ(x+ igβ)]
cosh[κx]

)1/2

+(i → −i), (34)

He(g) ≡
(
cosh[κ(x− igβ)]
cosh[κx]

)1/2

Tiβ

(
cosh[κ(x+ igβ)]
cosh[κx]

)1/2

−(i → −i), (35)

which we studied in Ref. [7]. The subscripts stand for “repulsive”, “attractive” and “ext-
ra”. They denote three regimes that can be associated with (reduced, two-particle) rela-
tivistic Calogero–Moser systems. The choice g ∈ N

∗ we made in Ref. [7] ensures that the
A∆Os (33)–(35) admit reflectionless eigenfunctions.
Clearly, when we take β → 2β in H+ and H−, we obtain Ha(2) and He(2), resp. Now

Ha(2) is of the form envisaged above (recall (11)–(15)), its reflectionless eigenfunction
Ψa(x, p) being given by Ψ+(x, p) (16) with β → 2β. The substitution (28) in Ha(2) and
Ψa(x, p) yields a Jacobi operator associated to a 2-soliton solution of the Toda lattice,
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consisting of solitons moving with equal speeds in opposite directions. Readers familiar
with the (Kac/van Moerbeke) ↔ (Toda) correspondence (see, e.g., pp. 71–75 in Toda’s
monograph [2]) will appreciate what is going on here.
By contrast, He(2) is not of the form (11)–(14), since the coefficient of T−iβ goes

to −1 for x → ±∞; accordingly, one obtains eigenvalue 2 sinh(βp) for its reflectionless
eigenfunction Ψe(x, p) (given by Ψ−(x, p) (17) with β → 2β). However, Hr(2) does give
rise to the properties (11)–(15), its reflectionless eigenfunction being given by

Ψr(x, p) ≡ eixp eiβκ cosh(κx+ βp)− e−iβκ cosh(κx− βp)
2(sinh[κ(x+ iβ)] sinh[κ(x− iβ)])1/2 sinh[β(p+ iκ)]

. (36)

On the other hand, the substitution (28) in Hr(2) does not yield a self-adjoint Jacobi
operator. Similarly, its limit

lim
β→0
(Hr(2)−2)/β2 = − d2

dx2
− 2κ2

sinh2(κx)
, (37)

yields a singular potential, which is not allowed for KdV solitons.
More generally, the A∆Os Hs(N + 1), with s = r, a, e and N ∈ N, admit reflectionless

eigenfunctions that are explicitly known. For lack of space we refrain from detailing them
here, but we do specify the S-matrices that arise. For Hs(N + 1), s = r, a, one gets

ar(p) = (−)N
N∏

n=1

sinhβ(p− inκ)
sinhβ(p+ inκ)

, aa(p) = (−)Nar(p), (38)

whereas He(N + 1) yields

ae(p) =
N∏

n=1

coshβ(p− inκ)
coshβ(p+ inκ)

. (39)

The relation of the A∆Os Hs(N +1) and their reflectionless eigenfunctions Ψs(N +1),
s = r, a, e, to KdV and Toda solitons is similar to the N = 1 case already detailed.
Specifically, for s = a the “Toda substitution” (28) yields a Jacobi operator associated
to a 2N -soliton solution in which N solitons move to the right and N to the left. For
the operators Ha(N + 1)2 − 2 and He(N + 1)2 + 2 with β → β/2 (28) yields Jacobi
operators encoding N Toda solitons moving to the right and left, resp. Moreover, taking
the nonrelativistic limit forHa(N+1) and Ψa(N+1) yields the KdV N -soliton Schrödinger
operator with potential −N(N + 1)κ2/ cosh2(κx) and its reflectionless eigenfunctions.

4 Hilbert space aspects

Thus far we have been discussing properties of an algebraic nature. (In essence, the
algebraic results we have been using can already be gleaned from Section 2 in our paper
Ref. [8].) We now turn to functional-analytic features. (These are established in Ref. [7],
cf. also Ref. [9].) For the reflectionless eigenfunctions at hand one would be inclined to
expect that the normalized eigenfunction transform

F : L2(R, dp)→ L2(R, dx), φ(p) �→ (2π)−1/2

∫ ∞

−∞
Ψ(x, p)a(p)−1/2φ(p)dp, (40)
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yields an isometry onto the orthocomplement of the bound states, if any. That is, setting

R2 ≡ F∗F−1, R1 ≡ FF∗−1, (41)

one expects

R2 = 0, R1 = −Pb, (42)

with Pb the orthogonal projection onto the subspace spanned by the L2-eigenfunctions of
the pertinent operator.
It is well known that this holds true for the Schrödinger and (with obvious changes)

for the Jacobi case, which is why this expectation seems reasonable in the A∆O case, too.
But as it turns out, it is not satisfied unless further restrictions are imposed.
To begin with, for Hr(N + 1) and generic κ one has R2 �= 0, so that Fr(N + 1) is not

an isometry. The existence of a discrete set of κ-values for which R2 = 0 and for which
Fr(N+1) amounts to Fourier transformation can be understood by taking κ = πl/(N+1)β,
l ∈ N

∗, in Hr(N + 1) (33): It then becomes free. In particular, one reads off from (36)
that for N = 1 and κ = πl/2β one obtains the plane wave exp(ixp) up to phases and sign
functions.
Turning to Ha(N + 1) and He(N + 1), let us first take N = 1. Then one reads off

from (16) and (17) (with β → 2β) that Fa(2) and Fe(2) amount to Fourier transformation
for κ = πl/2β, l ∈ N

∗, just as in the repulsive case. Excluding these values from now on,
the state of affairs is as follows.
For κ ∈ (0, π/2β) one has R2 = 0 in both cases. For Fa(2) the operator R1 equals

minus the projection onto the bound state subspace spanned by (cosh[κ(x−iβ)] cosh[κ(x+
iβ)])−1/2, whereas R1 = 0 for Fe(2). Thus the expectation (42) is fulfilled. For κ > π/2β,
however, the operators R1 and R2 are both nonzero, although they are still of finite rank.
(The rank increases to ∞ as κ → ∞.)
The situation for general N is similar. Requiring

κ ∈ (0, π/2Nβ), N ∈ N
∗, (43)

the expectation (42) is borne out by the facts, with Pb projecting onto an N -dimensional
bound state space for Ha(N +1) and with Pb = 0 for He(N +1). For generic κ > π/2Nβ
one has R2 �= 0, but R1 and R2 are still finite-rank for arbitrary N ∈ N

∗ and κ > 0.
With these results at our disposal, we can be more precise regarding the notion of

“reflectionless self-adjoint A∆O”. Indeed, using the eigenfunction transform Fa(N + 1),
we can define a self-adjoint operator Ĥa(N + 1) on (1 − Pb)L2(R, dx) as the pull-back of
the self-adjoint operator of multiplication by 2 coshβp on L2(R, dp), provided we choose
κ in the interval (43). The A∆O Ha(N + 1) has eigenvalues 2 cos(nβκ), n = 1, . . . , N ,
on the N bound states, and so we can extend Ĥa(N + 1) to a self-adjoint operator on
L2(R, dx) by letting its action on PbL

2(R, dx) coincide with Ha(N + 1). Likewise, the
operators He(N + 1) and He(N + 1)2 + 2 give rise to self-adjoint operators on L2(R, dx)
by pulling back the multiplications by 2 sinhβp and 2 cosh 2βp, resp., with Fe(N + 1),
provided we impose the restriction (43).

5 Further developments and outlook

Our requirement that a bona fide self-adjoint operator Â on L2(R, dx) should be associated
to a given formally self-adjoint reflectionless A∆O A is not only inspired by the findings
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reported in the previous section. Indeed, if we drop the self-adjointness requirement,
then the three formally self-adjoint A∆O families (33)–(35) can be viewed as reflectionless
A∆Os for a dense set in the parameter space β, κ ∈ (0,∞), g ∈ R. For Hr(g) this can be
gleaned from our paper Ref. [8], whereas for Ha(g) and He(g) it follows by performing a
suitable analytic continuation of the Hr(g)-eigenfunctions introduced in Ref. [8].
Now as we have already mentioned, for Hr(N + 1) the reflectionless eigenfunctions do

not give rise to a self-adjoint operator on L2(R, dx). On the other hand, for κ < π/Nβ
the operators R2, R1 (41) are only nonzero on the even subspace of L2(R, dx). (Note that
Hr(g) commutes with parity.) Accordingly, it is possible to associate to Hr(N +1) a self-
adjoint operator Ĥr,−(N + 1) on the odd subspace (once more via pullback), provided κ
is restricted to the interval (0, π/Nβ) [7].
More generally, this holds true for Hr(g) when the parameters are suitably restricted,

and for the dense set mentioned above this involves the reflectionless eigenfunctions from
Ref. [8]. But for Ha(g) and He(g) one cannot use the reflectionless eigenfunctions obtained
by analytic continuation, since then isometry (and hence self-adjointness) breaks down.
Rather, quite different eigenfunctions (yielding a nonzero reflection) are needed to obtain
self-adjoint operators Ĥa(g) and Ĥe(g) for suitable parameters.
The pertinent eigenfunctions can be obtained via a generalization of the hypergeometric

function, which we introduced in Ref. [6]. (See also Ref. [10] and papers to appear.) This
generalized hypergeometric function is a joint eigenfunction of four hyperbolic A∆Os of
Askey–Wilson type. It is quite likely that a suitable specialization of parameters in this
function gives rise to further explicit examples of reflectionless self-adjoint A∆Os, but we
have not completed the details thus far.
The class of reflectionless self-adjoint A∆Os whose existence is suggested by the above

results is however far larger. Indeed, it should give rise to all functions aA(p) of the form

aA(p) =
N∏

n=1

sinh[β(p− iκ+
n )/2]

sinh[β(p+ iκ+
n )/2]

·
M∏

m=1

cosh[β(p− iκ−m)/2]
cosh[β(p+ iκ−m)/2]

, (44)

with

0 < κ+
N < · · · < κ+

1 < π/2β, 0 < κ−M < · · · < κ−1 < π/2β, (45)

and for each of these functions there should exist an (N +M)-dimensional family of self-
adjoint A∆Os labeled by arbitrary positive parameters ν+

1 , . . . , ν
+
N , ν

−
1 , . . . , ν

−
M .

From the above explicit examples one deduces, however, that one can only expect to
find N (not N +M) square-integrable eigenfunctions

φ+
n (x) ≡ ΨA(x, iκ+

n ),
∫ ∞

−∞
|φ+

n (x)|2dx = 1/ν+
n , n = 1, . . . , N. (46)

The point is that with the requirement (45) in force, the eigenfunctions

φ−m(x) ≡ ΨA

(
x,
iπ

β
+ iκ−m

)
, m = 1, . . . ,M, (47)

are not square-integrable when one chooses A equal to Ha(M + 1) or to He(M + 1)2 + 2
with β → 2β. (Note N =M for the first choice, whereas N = 0 for the second one.)
At present, the question whether self-adjoint A∆Os on L2(R, dx) with all of the prop-

erties just delineated exist, is wide open. But when they do exist (as we expect), then it
is also natural to conjecture that they will correspond to the soliton solutions of a soliton
hierarchy that may be viewed as a generalization of the KdV and Toda lattice hierarchies.
To be sure, this is for the time being a quite speculative scenario.
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