
Journal of Nonlinear Mathematical Physics 2001, V.8, Supplement, 42–47 Proceedings: NEEDS’99

Sp(2) Quantization of Solitonic Theories

V CALIAN

University of Craiova, Department of Physics, 13 A. I. Cuza, Craiova 1100, Romania

Abstract

The gauge-field theoretical formulation of solitonic theories is quantized by using an
extended version of the BRST Sp(2) symmetric formalism. The proposed method
is based on a modified triplectic geometry which allows us to incorporate the linear
and/or nonlinear global symmetries of the model and to perform the regularization
and renormalization stages in a systematic way.

1 Introduction

In this paper, the quantization of solitonic theories is addressed in the BRST framework,
starting from their gauge field theoretical formulation obtained by associating spectral
parameters with the global degrees of freedom. It was shown [19, 20] (and references
therein) that the (1+1) dimensional projection of Chern-Simons gauge interacting theory
contains the hidden hierarchy of integrable systems and that the nonlinear Schrödinger
(NLS) model integrability follows from a U(1) gauge invariance of the gauged NLS.

On the other hand, we should underline that even the non-solvability of the constraints
is treatable only by BRST methods ([2]–[7], [10]) if one aims to quantize the original
integrable systems. In this respect, a challenging problem might be solved as a conse-
quence, i.e. establishing the relation between the quantized integrable models and the
corresponding quantized gauge theories.

A typical model which may be studied in this framework is described by the following
Lagrangian [18] obtained by dimensional reduction from the (2+1) dimensional nonlinear
Schrödinger model interacting with a Chern–Simons gauge field:
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The following crucial problems may be identified whenever one tries to apply the BRST
Sp(2) formalism ([1, 9, 15]), which incorporates both the BRST and the anti-BRST sym-
metries, in order to perform the quantization, regularization and renormalization stages,
by taking into account higher perturbative orders:

i) treating theories having both local and global linear and/or non-linear invariances;

ii) choosing the regularization imposed by the “delta”-operators problems ([8, 11, 14])
such that to keep the advantages of the Sp(2) symmetric formalism;

iii) the trivial and genuine anomalies calculation and the cohomological problems asso-
ciated to the higher order expansions.
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The method which eliminates these difficulties is based on the extended version of the
Sp(2) quantization proposed in [16, 17] which will be given a geometrical interpretation in
what follows, enhancing the role of the global symmetries and enlightening the advantages
of the triplectic geometry.

2 Extended triplectic quantization

The starting point of our ψ∗-extended technique is the path integral of the gauge field
theory:

Z =
∫ [

exp
{
i

�

(
S̃ + X̃

)}]
0

ρ (z) [dz] [dψ] [dψ∗] (2)

after the complete set of fields and antifields is defined, according to the local and global
symmetries of the model.

In the previous expression, we assume that:

i) [F ]0 signifies the function F (ψ) in the expression F̃ = F (ψ)+FAaψ∗
Aa+F

A
ψA+ · · ·

which contains multi-vectors;

ii) the particular hipergauge in [1, 9, 15] is avoided, the parametric variables imposed
by the gauge-fixing process ψ∗

αa, ψα being kept manifest through the regularization
process;

iii) S̃ = S + ψ∗
αaf

αa + ψ
α
fα (extended master action) and X̃ = X − ψ∗

αaR
αa − ψ

α
Rα

(gauge-fixing master action), where both fαa, fα and Rαa, Rα depend on z, ψ, �

while S, X are also functions of z, ψ, �;

iv) the generalized “coordinates” z are local coordinates (their number being 3M if the
total number of fields, ghosts, ghosts of ghosts, . . . is M) on the antisymplectic
manifold M;

v) we introduced the set of constant “ghosts”
(
ψA

)
and the corresponding “anti-fields”

(ψ∗
Aa and ψ

A) associated to each representative of a basis of H∗ (stotal,M) over the
ring of functions in the coupling constants, while M∗ is the space of local functionals
in the fields and anti-fields;

vi) the extended anti-brackets (·, ·)ae and V a
e -operators are defined in order to include

the ψA, ψ∗
Aa and ψ

A by:

(A,B)ae = (A,B)a+(A,B)ψ,ψ∗
a,ψ , (3)

V a
e = V a + V a|ψ,ψ∗

a,ψ . (4)

The extended BRST anti BRST transformations acting on functionals F̃ are given by:
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)a

e
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allowing us to derive:
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and: (
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)
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= ŝS

(
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where we denoted:

sa
SF = (S, F )a+V aF +(−)α+1 fα ∂F

∂ψα
(8)

and respectively:

ŝa
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(
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αbf
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α
fα, ·

)a
+V a

ψ . (9)

We must underline that if the theory is invariant with respect to the hiper-gauge
fixing (non-anomalous theory) then

〈
δ
S̃
F̃

〉
X̃

does not depend on the specific X, while〈
δ
X̃
F̃

〉
= 0 for any F̃ . The BRST invariant operators are thus the ones that satisfy the

condition δ
S̃
F̃ = 0.

The definition of δ
X̃
, sa

S , ŝa
S are perfectly similar to the ones given in (6)–(9) and may be

obtained by replacing the action S by the gauge-fixing action X, the corresponding terms
fαb, fα by Rαa, Rα respectively and taking care to the minus sign of the V a operator in
the case of the X action.

The structure of the terms that does not depend on ψ∗ is explicitly given by:

S = S0 +
∑
m=1

Sα1...αmλ
α1 . . . λαm ,

X = X0 +
∑
m=1

Xα1...αmλ
α1 . . . λαm .

(10)

The master equations being:

1
2
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)a
+ V aS̃ = 0,

1
2

(
X̃, X̃

)a − V aX̃ = 0
(11)

we derive as a consequence the following equations fulfilled by the ψ∗ independent and ψ∗

linear terms respectively:

1
2
(S, S)a + V aS + ΛaS = 0,

1
2
(X,X)a − V aX + ΛaX = 0,

(12)
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∗
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Bb + ψ
D
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)
−V

(
ψ

D
RD

)
= 0 (14)

encoding an entire set of equations for the coefficients Xα1...αm , Sα1...αm(in (10)) and the
generalized Jacobi identities.
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One has to remark that the involution problems encountered in the first version of the
triplectic quantization [1, 9] are now replaced by sets of equations of the type:

(X0, Xα1) = 0, (15)

(X0, Xα1α2)+
1
2
(Xα1 , Xα2) (−)α1(α2+1)+XβR

β
α1α2

= 0. (16)

The correspondence between the solution S of the master equation and the solution of
the extended one is now recovered, being now able to establish the connection between
the cohomology (using “ngh”number as degree) of the operator s = s1 + s2, if:

sa = (S, ·)a +V a +Λa (17)

and the quantum σ operator cohomology. One may straightforwardly check that all the
standard properties (see [16]) of the σa operators and V a are fulfilled by (5) and Ṽ a =
±V a + Λa respectively.

3 Regularization and renormalization steps

In this section the dimensional regularization is proposed in order to solve the problem of
ill-defined quantities and the renormalization stage for the general, anomalous case. The
consequences of regularization non-invariances and anomalies are treated in a compact
form, keeping the genuine anomalies manifest and the algorithm very systematic.

On this purpose, we start with the anomalous, extended master equations (treated in
[16, 17] for the Sp(2) formalism), written for a complete (�, τ) double-expansion of the
master action:

1
2
(S, S)a + Ṽ aS = −i�Aa

, (18)

where Aa (for a = 1, 2) incorporate the effects of: local contributions to the anomaly, the
quantum dressings of the non-trivial anomalies in the previous stages and the breakings of
the master equation due to the regularization non-invariances (if it is the case), at every
order in perturbation theory. The action S and the complex terms Aa are regarded, at
each perturbative step, as the ones generated in the previous one, after the divergences
substraction.

The following definitions will be used:

S =
∑
p=0

hpS
(p)
Rp−1

, (19)

where each term in the expansion may be explicitly given as:

S
(p)
Rp−1

=
∑

n=np

τnS
(p)n
Rp−1

(20)

after the (p− 1) step (p ≥ 1) has been completed by eliminating the divergencies. This
necessary step is the one that determines the value of the lower limit np of the power series
in τ . We denoted by: S(1)

R0
≡ S(1); S(0)n ≡ Sn; n1 = −1.
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The tower of equations obtained for higher order terms encodes all the contributions
we had mentioned:

−i (Aa)(p)

Rp−1
=

(
S

(p)
Rp−1

, S
(0)
Rp−1

)a
+Ṽ aS

(p)
Rp−1

+
p−1∑
q=1

(
S

(p)
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, S
(p−q)
Rp−1

)a
. (21)

On the other hand, an important consequence of the “consistency conditions” in [17]
is that:((

A{a)(p)

Rp−1

, S
(0)
Rp−1

)b}
+Ṽ {a

(
Ab})(p)

Rp−1

= −
p−1∑
q=1

((
A{a)(p)

Rp−1

, S
(p−q)
Rp−1

)b}
(22)

for p ≥ 2 and plays an important role in the substraction procedure.
All of these equations (12)–(14) have to be written in τn, for n = np, . . . ,−1, 0, 1, . . .

at each value of p, while the limit τ → 0 may be taken (removing the regularization) only
when this process does not generate any divergencies, i.e. when the terms with poles in τ
have been substracted.

The order p = 0 in (21), shows us that the starting order of the
(Aa)(p)

Rp−1
-terms in τ

has to be chosen such that to allow us to eliminate the regularization:(
S(0), S(0)

)a
+ Ṽ aS(0) ≡ τθ(0)a, (23)

where we use a notation similar to the one in [14], in order to suggest the direct application
of our procedure to the anti-field and antisymplectic regularization formalism. One can
easily check that if the regularization is removed in (16), the master equation at classical
level is recovered.

The general algorithm may now be detailed in order to derive the well defined ex-
pressions of the anomalies and renormalized action. At each stage, S(n)−m and the trivial
anomalies may be eliminated by an appropriate �/τ -dependent BRST- anti- BRST change
of variables as the ones defined in [6, 9].

The µa functions in the corresponding transformations leave a total change in the action
equal to −�

τ S
(n)−m − �an if µa = γa, µ̃a = ψ∗

Aa

(
γA + aAa

)
where γ, γA, an, aAa are given

by S(n)−m = stotγ + ∂S
∂ψAγ

A and Ad
n = scan + ∂S

∂ψAa
Ad but with �

2/τ2 contributions that
have to be taken into account.

The corresponding action SR1 has for example the following form:

SR1 = S0
R1

+�

∑
n=0

τnS
(1)n
R1

+�
2

∑
n=−2

τnS
(2)n
R1

+O
(
�

3
)

(24)

while the new −i (Aa)(2)

R1
contain two type of terms: τθ(2)a

R1
and the renormalization dress-

ing of the non-trivial one loop anomaly τθ(1)a
R1

due to an auxiliary � -multiplication inherited
from SR1 .

One may obviously continue the procedure and obtain a completely regularized and
substracted SR∞ which fulfills the anomalous equations:

1
2
(SR∞ , SR∞)a+ Ṽ aSR∞ = −i� (Aa)

R∞
(25)

working only with well defined quantities and were the genuine anomalies are written as:

−i� (Aa)
R∞

=
∑
n=1

�
nθ

(n)a
Rn

. (26)
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4 Conclusions

The method we proposed here may be applied for higher loop expansions as previously
exposed, once one keeps in mind the “extended” picture which works with S (ψ) and defines
correctly the changes of variables involved in the substraction steps after the conditions for
S

(p)−n
Rp−1 (n ≤ p) to be s-closed and the “consistency conditions” for Aa

p are made explicit.
The algorithm also relates the non-trivial anomalous breakings of the master equation

to the cohomology of the total extended BRST differential in ngh = 1 and gives us the
opportunity to control the anti-bracket algebra of the observables, as in the standard case.

We must emphasize that the triplectic formalism proves to be an appropriate method in
treating the gauge-field theories corresponding to solitonic models, such that the involved
global linear and/or nonlinear symmetries play a major role in both quantization and
renormalization stages.

One can state once more that, in the modern sense of renormalizability given in [11], all
theories are renormalizable. However, the cohomological analysis and the specific higher
order maps in the triplectic formalism should also be carefully handled even the main
conclusions anticipated by us are in direct correspondence with the Sp(2) and standard
results.
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