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Abstract

In the present work we discuss arguments in favour of the view that massive fermions
represent dislocations (i.e. topological solitons) in discrete space-time, with Burgers
vectors parallel to the axis of time. If we assume that the symmetrical parts of
tensors of distortions (i.e. derivatives of atomic displacements on coordinates) and
the mechanical stresses are equal to zero, then the equations of the field theory of
dislocations assume the form of the Maxwell equations. If we consider these tensors
as symmetrical, we obtain the equations of the theory of gravitation, and it appears
that the sum of the tensor of distortions and of the pseudo-Euclidean metrical tensor
is the analogue of the metrical tensor. It is shown that we can also get Dirac equation
with four-fermion interaction in the framework of the field theory of dislocations. This
model explains quantization of electrical charge: this is proportional to the topological
charge of dislocation, and this charge accepts quantized values because of the discrete
structure of the 4-dimensional lattice.

The concept of discrete (in other words quantized) space-time has been discussed in
physics of elementary particles already for a long time. One of variants of this approach
is the lattice quantum field theory, within the framework of which significant success was
already achieved. This theory is based on approximation of space-time by a discrete
lattice, which is actually 4-dimensional analogue of crystal lattices. But from the theory
of solid state it is well known that the ideal crystal lattices do not exist in a nature. The
real lattices always contain defects, in particular, dislocations. From the geometrical point
of view the dislocations are the one-dimensional topological solitons. The first homotopy
group which classifies them is the group of translations. Therefore it is quite natural to
assume that similar defects should exist in 4-dimensional space-time lattice. Dislocation
in (2 + 1)-dimensional discrete space-time with a Burgers vector, parallel to the axis of
time, is shown in Fig. 1. The dislocation line in the figure is parallel to a Burgers vector.

As is known, solitons are particle-like objects; various soliton models of elementary
particles were offered by many authors. Ross [1] has assumed, that fermions represent
topological defects in space-time, namely, dislocations with Burgers vectors, parallel to
the axis of time and taking only quantized values. Unzicker [2] offered another topological
model of electron: a disclination in space-time. The author of work [2] also used the
analogy between elementary particles and dislocations in crystals. Our approach is closer
to the hypothesis by Ross [1]. But the consideration by Ross was based solely on the
relation between fermionic spin density and space-time torsion. In the present work we
bring a number of other arguments, favouring the view that fermions represent dislocations
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Figure 1. Dislocation in (2+1)-dimensional discrete space-time with a Burgers vector, parallel to
an axis of time. The dislocation line on the figure is parallel to a Burgers vector.

in discrete space-time with Burgers vectors, parallel to an axis of time. We assume that
the discrete space-time represents a 4-dimensional lattice. There are some objects (we
shall call them “primary atoms”), which can be displaced from equilibrium positions, in
lattice sites. We suppose that the movement of these “primary atoms” obeys only the
laws of classical Newton mechanics. This naive assumption is not absolutely justified. It
is conceivable that the movement of these “primary atoms” can be described by the much
more complex laws. But it turns out that this “naive” assumption allows us to obtain,
in a rather simple way, several of the important formulae of electrodynamics, gravitation
theory and quantum field theory. Probably, accounting for deviations from the laws of
“primary atoms” behaviour from the laws of the classical mechanics will allow to describe
other phenomena (for example, strong or weak interactions).

We recall that torsion is, by definition, an antisymmetric part of connection multiplied
by two:

T λ
µν = Γλ

µν −Γλ
νµ.

The integral of this function over any 2-dimensional surface, which intersects a dislocation,
is the value referred to as Burgers vector in solid state physics:

bλ =
∫

T λ
µν dfµν ,

where dfµν ≡ dxµdxν − dxνdxµ is the element of area. From the geometrical point of
view the space-time, containing dislocations with Burgers vectors bi is the manifold with
torsion T i

ah(xζ) = 1
2eachd τ

cbiV dδ
(
xζ − x0

ζ

)
, where ecahd is the 4-dimensional Levi–Civita

symbol, τ c is the 4-dimensional unit vector tangential to the dislocation line, V d is the 4-
dimensional velocity of dislocations, δ(x) is the Dirac delta function, x0

ζ are the coordinates
of the dislocation line. On the other hand in the theory of gravitation it was shown [3], that
the particles with semi-integer spin are also sources of torsion. The relationship between
a spin density tensor Sλ

µν and a torsion is described by the formula [3]

T λ
µν =

16πG
c3

(
Sλ

µν +
1
2
δλ
µSν − 1

2
δλ
νSµ

)
. (1)
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Here G is Newton gravitational constant, c is velocity of light, Sλ
µν = vλSµνSµ = Sλ

µλ,
vλ is the 4-vector of the particle velocity, Sµν is the antisymmetric tensor. Its spatial com-
ponents form a 3-vector sk =

(
S23, S31, S12

)
which is equal to 3-dimensional density of the

particle spin in reference frame of rest of this particle. In equations (1) and thereafter, all
the indices, unless otherwise specified, assume values from 0 to 3. Therefore, non-moving
particle having spin sk, k = 1, 2, 3 create the same torsion, as non-moving dislocations with
tangential vector τc = (τ0, τk) (vectors sk and τk are parallel) and Burgers vector, parallel
to an axis of time. This dislocation represents a line in the 4-dimensional space-time which
is coincident with a world line of fermion. At any moment of time this line intersects the
3-dimensional physical space only in one point, therefore fermions are observed as particle
objects. Continuity of a dislocation line is provided by the topological laws [4]. This fact
also was proved with use of the Noether theorem [5]. In continuous space-time torsion,
created by fixed particles, can accept continuous set of values and in quantized space-time
it accepts discrete one. It is well known that spins of elementary particles are quantized.
This fact results, in accordance with the formula (1), in discreteness of torsion, created by
fixed particles. It confirms hypothesis by Ross [1] of the discrete structure of space-time
and the dislocation nature of fermions.

At present,the gauge theory of dislocations [4–6] is very well developed. Many authors
paid attention to the analogy between this theory and both electrodynamics [4] and the
theory of gravitation [7, 8]. There are the equations of incompatibility in continuous theory
of dislocations

∂γ∂εun(xζ)−∂ε∂γun(xζ) =
2
c
Tγnε(xζ), (2)

where un is the vector of displacement of the 4-dimensional continuum particles (in contin-
uous theory the 4-dimensional lattice is approximated by continuous medium), ∂γ = ∂

∂xγ .
Equations (2) are a definition of dislocations and a statement that there are no disclina-
tions in the given lattice (since the term descriptive of the contribution from disclinations
is absent in the right-hand side of these equations). In other words, (2) are purely geo-
metrical equations.

Tensor βεn = ∂εun refer to as tensor of distortions. Let us introduce tensor Fεn which
equals an antisymmetric part of a tensor of distortions multiplied by two:

Fεn = βεn −βnε. (3)

By summing each three equations from equations (2), we obtain the following system of
the equations

∂µFαβ+∂αFβµ+∂βFµα =
2
c
(Tµβα+Tβαµ+Tαµβ). (4)

Let the vector tangential to a dislocation line be equal to τβ = (τ0, τ1, 0, 0). We suppose
that the quantities b0 and τ1 are very small, so that modern experimental techniques do
not allow nonzero members to be detected in the right side of (4). Then the equations (4)
get the form of the first pair of the Maxwell equations

eαβγδ∂βFγδ = 0. (5)

Newton second law for particles of the continuum containing dislocations has the
form [5]

∂γσgγ =
2
c
CgεiλT

εiλ. (6)
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The 4-dimensional tensor of mechanical stresses σgε by definition is equal to

σgε = Cgεiλ∂
λui. (7)

Here Cgεiλ is the 4-tensor of elastic modules of 4-dimensional continuum. In other words,
Lagrangian of “elastic” waves in 4-dimensional medium under consideration has the form

L0 = −1
2
Ciγjεβγiβεj . (8)

By virtue of the fact that the tensor Cgεiλ is sufficiently large the distinction from zero
of the right side of equations (6) can be detected in experiments. If it is possible to
neglect a symmetric part of the tensor of mechanical stresses, the equations (6) get the
form of the second pair of Maxwell equations. If to consider tensors of distortions and
mechanical stresses as symmetric, we shall receive the equations of the gauge translation
theory of gravitation (that is theory of gravitation in space-time with zero curvature and
nonvanishing torsion) [7, 8]. It is appear that the sum of tensor of distortions and the
Minkowskian (pseudo-Euclidean) metrical tensor is the analogue of metrical tensor in
gravitation theory. In a general case of dislocations in the 4-dimensional lattice these
tensors are neither symmetrical nor antisymmetrical and then we receive as a consequence
of our model variant of the uniform theory of electrodynamics and gravitation, offered by
Einstein [9]: tensor of electromagnetic field is an antisymmetric part of metrical tensor.
It is simultaneously possible to solve a problem, which considered by Einstein as the main
lack of the theory with the asymmetrical metric: to give geometrical definition of particles.

In the theory of dislocations, the Frenkel–Kontorova model of a dislocation, based
on the account of only one nonlinear member in Lagrangian of an elastic field, is well-
accepted [10]. In the one-dimensional case this results in the dislocation equation of
motion having the form of sine-Gordon equation. The Lagrangian of an elastic field in
this case has the form

LSG =
1
2
∂µφ∂

µφ+
m2

β2
[cos(βφ)−1]. (9)

Coleman [11] has rigorously proved equivalence of the sine-Gordon soliton and the funda-
mental fermion of the massive Thirring model in (1 + 1) dimensions. The Lagrangian of
the massive Thirring model has the form

LT = iψ̄γµ∂
µψ−mf ψ̄ψ− 1

2
g

(
ψ̄γµψ

) (
ψ̄γµψ

)
, (10)

where ψ is Fermi field, γµ are Dirac matrices in (1 + 1) dimensions. Lagrangians (9)
and (10) are equivalent on condition that

4π
β2

− 1 =
g

π
. (11)

The correspondence between these two models is established by bosonization relations:

m2

β2
cos(βφ) = −mf ψ̄ψ,

− β

2π
eµν∂νφ = ψ̄γµψ ≡ jµ.

(12)
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The issues of bosonization are considered in more detail in the book by Rajaraman [12].
In particular, it was shown there that the topological charge of the sine-Gordon soliton is
equivalent to the fermionic charge of the particle of the massive Thirring model. Thus,
the discreteness of the fermionic charge in our approach is a consequence of discreteness
of the topological charge of solitons (i.e. dislocations), which in turn directly follows from
discrete structure of space-time.

Many authors consider the incompatibility of a space-time lattice with a condition of
Lorentz invariance as traditional lack of models of discrete space-time. In the model pro-
posed, this contradiction is eliminated. The Lorentz transformations arise in this model
by a natural way as a consequence of finiteness of velocity of light. But only the values
relating to properties of particles — fields, forces of interaction, and so on — depend
on the velocity according to Lorentz law. This dependence is a consequence of the oc-
currence of Lorentz roots in expression for classical Green function of the equations (6).
Therefore quantities, expressed through Green function: fields, created by particles, force
of interaction between particles, and so on, depend only on the velocity through Lorentz
law. All other quantities, including the parameters of the lattice, are not subjected to any
transformations.

In this connection we shall notice that relativistic expressions always occur in soliton
theories, in particular, in the theory of dislocations in crystals. In this theory instead of ve-
locity of light velocities of sound appear in the formulae. As in solids even in isotropic case
not only transversal, but also longitudinal sonic waves can exist, in the theory of disloca-
tions in certain cases expressions, containing Lorentz roots of different kinds:

√
1− v2/c2λ,

λ = 1, 2 can occur. For example, in case of straight dislocation in isotropic medium paral-
lel to axis z with Burgers vector bi = (b, 0, 0), moving at the velocity v parallel to axis x,
the displacements of particles of continuum are described by the following formulas [13]:

u1(x, y, t) = bc21/
(
πv2

) [
arctg

(
y

(
1− v2/c22

)1/2
/(x− vt)

)

+
(
v2/

(
2c21

) − 1
)
arctg

(
y

(
1− v2/c21

)1/2
/(x− vt)

)]
,

u2(x, y, t) = bc21/
(
2πv2

) [(
v2/

(
2c21

) − 1
) (
1− v2/c21

)−1/2

× ln
(
(x− vt)2/

(
1− v2/c21

)
+ y2

)

+
(
1− v2/c22

)1/2 ln
(
(x− vt)2/

(
1− v2/c22

)
+ y2

)]
.

Here c1 = (µ/ρ)1/2 is the speed of transversal sound waves, c2 = [(λ + 2µ)/ρ]1/2 is the
speed of longitudinal sound waves, λ and µ are Lame constants. Such relations already
are not Lorentz-covariant in traditional sense. Formulae of the dislocation theory can be
Lorentz-covariant only in some special cases: for example, in case of straight dislocation
with a Burgers vector parallel to a dislocation line in isotropic solid. Therefore under
certain conditions Lorentz invariance violation in offered model is possible. May be, it will
allow to explain occurrence in the last years of a number of field theories, not satisfying
to a condition of Lorentz invariance.

Thus, in the present work, we propose a model describing electromagnetic and gravita-
tional properties of electrons and positrons. The inclusion of strong and weak interactions
in the model is left for future investigation. But the model already has allowed to unify ad-
vantages of soliton models and theories with discrete (quantized) space-time by removing
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at the same time their lacks. The model explains the quantization of electrical charge: it
is proportional to the topological charge of dislocation, and this charge accepts quantized
values because of the discrete structure of the 4-dimensional lattice. At the same time the
existence of the lattice allows to avoid occurrence of divergence, in particular resulting in
the finite mass of a particle. Within the framework of the given model the phenomenon
of annihilation of particle-antiparticle pair is easily explained. The process is similar to
the annihilation of dislocation pairs in solids. From topological arguments it follows that
at a meeting of two dislocations with Burgers vectors, which are equal in magnitude and
opposite in direction, the ideal structure of a lattice is restored. Both dislocations (that
is both particles) thus disappear, and their energy is radiated as elastic waves. As follows
from what stated above, the waves of antisymmetric distortions are perceived by us as
electromagnetic, and the symmetric ones as gravitational. It is important to note that the
relativistic and quantum properties of particles occur in this model as consequences of the
classical Newton mechanics of a 4-dimensional deformable solid.
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