
Journal of Nonlinear Mathematical Physics 2001, V.8, Supplement, 139–144 Proceedings: NEEDS’99

Beyond Nonlinear Schrödinger Equation

Approximation for an Anharmonic Chain

with Harmonic Long Range Interactions
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Abstract

Multi-scales method is used to analyze a nonlinear differential-difference equation. In
the order ε3 the NLS eq. is found to determine the space-time evolution of the leading
amplitude. In the next order this has to satisfy a complex mKdV eq. (the next in the
NLS hierarchy) in order to eliminate secular terms. The zero dispersion point case
is also analyzed and the relevant equation is a modified NLS eq. with a third order
derivative term included.

Many one-dimensional systems of biological interest are very complicated structures,
formed from complexes of atoms — we shall call them “molecules” — connected by hydro-
gen bounds. It is usually assumed that only one of the intra-molecular excitations plays an
active role in the storage and transport of energy in these systems. In the case of α-helix
structure in protein this corresponds to the amide I vibration (C = O stretching). We
shall call this intra-molecular excitation the vibronic field. Localized excitations of soli-
tonic type can exist in these systems, due to a nonlinear interaction between the vibronic
field and the acoustic phonon field, describing the molecule oscillations along the chain.
The simplest model starts from a Fröhlich Hamiltonian and with an ansatz — coherent
state approximation — for the state vector describing this type of localized excitation
([1]–[3] and references therein).
After eliminating phonon variables a nonlinear differential (time) — difference (space)

equation for the vibronic coordinate is obtained;

L({yn}) = G({yn}), (1)

where L is the linear part and G the nonlinear one. For the specific example we have in
mind, originating from Takeno’s model [2], L and G are given by

L({yn}) = d
2yn
dt2

+ω2
0yn−

∑
m�=n

Jmnym, (2)

G({yn}) = 1
2
Ayn

(
y2n+1 + y

2
n−1

)−By3n. (3)
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In the linear part the last term is a long range interaction between vibrons, and we shall
assume that Jmn decreases exponentially (Kac–Baker model)

Jmn = J|m−n| = ω2
LR

1− r
2r

e−γ|m−n|, r = e−γ . (4)

The first term in r.h.s. of G results from the nonlinear interaction between vibrons and
phonons, while the second one from a quartic anharmonicity in the vibron Hamiltonian.
The linear equation admit plane wave solutions eiθ, θ = kan− ωt, where ω(k) is given

by the dispersion relation

D(ωk) = ω2(k)−

ω2

0 − 2
∞∑

p=1

Jp cos kap




= ω2 −
(
ω2

0 − ω2
LR

1− r
2r

(
sinh γ

cosh γ − cos ka − 1
)) (5)

describing an optical vibrational branch with ω2(k) a monotonously increasing function of
k from ω2(0) = ω2

0 −ω2
LR to ω

2
(

π
a

)
= ω2

0 +ω
2
LR

1−r
1+r . We shall assume that a no-resonance

condition takes place

Dν = D(νω, νk) �= 0, ν ∈ N∗, ν �= 1. (6)

It is well known that the effect of a weak nonlinearity occurs at large space-time scales,
determining a redistribution of energy on higher harmonics, and a modulation of ampli-
tude. In order to investigate these effects we shall use the multi-scales method (reductive
perturbation method) [4]. The method starts by introducing slow space-time variables

x = εan, tj = εjt (7)

and expanding yn in an asymptotic perturbative series, which due to the form (3) of the
nonlinearity G is given by

yn =
odd∑
ν=1

eiνθ
∞∑

p=ν

ενYp,ν(x; t1, t2, . . .)+c.c. (8)

Recently several papers have used this method to discuss the propagation of quasi-
monochromatic waves in weakly nonlinear media [5]–[8], or of long surface waves in shallow
waters [9]. Very interesting are the conclusions concerning the role played by the NLS
hierarchy [8], or the KdV hierarchy [9] in eliminating the secular terms which would
destroy the asymptotic character of the perturbative series. Of special interest for the
present paper is the reference [8], which will be followed as close as possible.
In calculating the time derivative we have to take into account that t appears in θ as

well as in the slow time variables t1, t2, . . .. Also in writing the expressions for yn±1, ym we
have to expand the corresponding amplitudes around the point n. Taken these precautions
the calculations are straightforward (although quite tedious in the higher orders): the
asymptotic expansion is introduced in (1), (2), (3) and the coefficient of each power of ε
and each harmonic eiνθ is equated with zero.
In the first order in ε we re-obtain the dispersion relation (5). In the order ε2 the

amplitude Y1,1 has to satisfy the equation

L+Y1,1 =
(
∂

∂t1
+ vg

∂

∂x

)
Y1,1 = 0 (9)
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and consequently Y1,1 will depend only on the variable ξ = x− vt, where vg = dω
dk = ω1 is

the group velocity.
In the next order ε3, from the terms proportional with eiθ we get

L+Y2,1 =
∂Y1,1

∂t2
−K2(Y1,1), (10)

K2(Y1,1) = iω2

(
∂2Y1,1

∂ξ2

)
+iq|Y1,1|2Y1,1. (11)

Here ωn = 1
n!

dnω
dkn and q = A

2ω

(
2 + cos 2ka− 3B

A

)
. As the r.h.s. of (10) is in the null space

of L+, Y2,1 will blow up linearly in t1 unless the r.h.s. is strictly equal with zero, i.e. Y1,1

has to evolve in t2 according to the cubic nonlinear Schrödinger equation
(
c = q

2ω2

)

∂Y1,1

∂t2
= iω2

(
∂2Y1,1

∂ξ2
+ 2c|Y1,1|2Y1,1

)
. (12)

In this case Y2,1 will depend also on the characteristic coordinate ξ only. From terms
proportional with the third harmonic e3iθ one obtains

D3Y3,3+(A cos 3ka−B)Y 3
1,1 = 0 (13)

and due to the no-resonance condition (6) it is an algebraic equation giving Y3,3 in terms
of Y1,1. The same thing happens for all the higher harmonics and the corresponding
amplitudes Yp,ν can be explicitly written in terms of Yp,1 and their derivatives. Therefore
we shall concentrate our attention to the amplitudes Yp,1, related to the first harmonic eiθ.
The solution of the NLS eq. (12) depends on the sign of ω2 and q. As ω1 vanishes at

k = 0 and k = π
a , there is a point kc ∈ (0, π) for which ω2(kc) = 0. If k < kc(k > kc) we

have ω2 > 0(ω2 < 0). The sign of q depends on the constants A and B. For A > 0 and
B < A

3 it is always positive, while for B > A it is negative. Depending on the sign of ω2

and q the NLS eq. (12) can have bright or dark soliton solutions.
In the order ε4 from the terms proportional with eiθ we get

∂Y2,1

∂t2
−K ′

2(Y2,1) = −∂Y1,1

∂t3
+ω3

∂3Y1,1

∂ξ3
−2cω1ω2

ω
Y1,1

∂|Y1,1|2
∂ξ

+q1|Y1,1|2∂Y1,1

∂ξ
. (14)

Here

K ′
2(Y1,1) = iω

(
∂2Y2,1

∂ξ2
+ 2c(Y 2

1,1Y
∗
2,1 + 2|Y1,1|2Y2,1)

)
(15)

is the Frechet derivative of K2, and q1 = dq
dk . The l.h.s. of (14) is the linearized NLS eq.

It is well known that the commuting symmetries σj of the NLS eq. are solutions of this
equation. As they are important for our further discussion we remained the expression of
the first ones (by Ψ we shall denote a solution of the NLS eq.)

σ0 = −iΨ, σ1 =
∂Ψ
∂ξ
,

σ2 = i
(
∂2Ψ
∂ξ2

+ 2c|Ψ|2Ψ
)
, σ3 = −

(
∂3Ψ
∂ξ3

+ 6c|Ψ|2∂Ψ
∂ξ

)
.

(16)
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The eq. (14) is a forced linear equation for Y2,1. It is necessary to identify secular terms in
the r.h.s. of (14) and then to fix the t3 dependence of Y1,1 in such a way to eliminate their
effect. These secular terms have to be found between the members of the null space of
linearized NLS eq., i.e. between the commuting symmetries σj . Indeed if such a symmetry
σ would exists it will generate a t2σ contribution to Y2,1, and the asymptotic character of
the expansion (8) would be destroyed in a time t2 = O

(
ε−1

)
. One such symmetry (σ0, σ3)

is easily seen in the r.h.s. of (14), if it is written in the form

−∂Y1,1

∂t3
+ω3

(
∂3Y1,1

∂ξ3
+ 6c|Y1,1|2∂Y1,1

∂ξ

)
+N(Y1,1), (17)

where

N(Y1,1) = −2cω1ω2

ω
Y1,1

∂|Y1,1|2
∂ξ

+(q1−6cω3)|Ψ1,1|2∂Ψ1,1

∂ξ
.

In order to avoid this secular behaviour we require that the t3 dependence of Y1,1 is given
by the following complex modified KdV equation

−∂Y1,1

∂t3
+ω3

(
∂3Y1,1

∂ξ3
+ 6c|Y1,1|2∂Y1,1

∂ξ

)
= 0 (18)

which is the next equation in the NLS hierarchy. The influence of the rest N(Y1,1) on Y2,1

can be further treated using a Green function formalism [10].
Let us consider a single soliton solution [11]

Ψ = 2
P1√
c

e−iφ

cosh z
, (19)

φ(ξ, t2) = 2S1ξ+4ω2

(
S2

1 − P 2
1

)
t2+φ0, z(ξ, t2) = 2P1(ξ−ξ0+4ω2S1t2),

where S1, P1 are the real and imaginary part of the complex eigenvalue ζ1 = S1 + iP1 in
the inverse scattering transform method, and φ0, ξ0 are the initial phase and the initial
position of the soliton. Applying the above procedure, in order to eliminate the possible
secularities, the soliton parameters must be t3-dependent. This dependence can be found
introducing (19) in (18). The complex eigenvalue will remain unchanged, while for φ0, ξ0
the following linear equations are found [8]

dφ0

dt3
= −8ω3S1

(
S2

1 − 3P 2
1

)
,

dξ0
dt3

= −8ω3P1

(
3S2

1 − P 2
1

)
. (20)

A similar analysis was given by Kodama [12], and the same results are obtained using the
direct perturbation method of Keener and McLaughlin [10]. More complex situations and
details will be published elsewhere.
Let us consider now the situation when ω2 = 0, i.e. the propagation of a wave with the

wave vector kc. As ω1 has a maximum at this point it represents the wave propagating
with the highest group velocity. A similar situation is encountered in the case of pulse
propagation in nonlinear optical fibers where this point is known as the “zero dispersion
point” (ZDP) [13]–[15]. The power required to generate an optical soliton is minimal in
this point, and its evolution in space and time is governed by a modified NLS eq., with
a third order derivative included. We shall show that a similar situation appears in the
present case.
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In applying the multiple scale method we shall use the same asymptotic expansion (8)
for the vibronic variable. Then the nonlinearity contribution begins with terms of order ε3.
To have contributions of the same order from third order derivatives we have to change
the scaling of the ξ variable, namely

ξ = ε
2
3 (an−ω1t). (21)

We have to take into account also a dependence of the phase θ of the propagating wave
on the slow variable ξ. Defining the local wave number k as the derivative of the phase θ
with respect to (an) we find that k is slightly different from kc, and the simplest choice is

k = kc

(
1 + ε

2
3

)
. (22)

Expanding all the quantities depending on k around the point kc in the order ε3 the
following equation is found for the leading amplitude Y1,1 → Ψ,

iΨT +3ΨXX+iΨXXX+Q|Ψ|2Ψ = 0, (23)

where X = kcξ, T = Ωt2, Ω = ω3k
3
c and Q = q

Ω . It has the same form as the equation
describing the propagation of nonlinear pulses in optical fibers in the ZDP region [13]–
[15]. In our case it makes the transition between the two regions, where bright and dark
solitons exist. It seems that it is not completely integrable, but some analytical and
numerical results suggest that some long-living localized excitations exist [15]. Further
investigations are necessary.
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