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Università degli studi di Bologna, Bologna 40123, Italy

‡ Department of Mathematics and Mechanics, Moscow Lomonosov University

Abstract

We propose Dirac formalism for constraint Hamiltonian systems as an useful tool
for the algebro-geometrical and dynamical characterizations of a class of integrable
systems, the so called hyperelliptically separable systems. As a model example, we
apply it to the classical geodesic flow on an ellipsoid.

Consider an n-dimensional Hamiltonian system on the phase space x1, . . . , xn with
Hamilton function H(x) and Poisson bracket { , }. Let q1, . . . , qr, p1, . . . , pr be (local)
Darboux coordinates on a symplectic leave M of the bracket, so that the symplectic

form to M is Ω =
r∑

i=1
dqi ∧ dpi. Suppose that the restriction of the system on M is an

algebraically completely integrable system in the following sense [4]: there is a family of
algebraic curves of genus g such that the complex invariant manifolds associated to the
system are open subsets of customary (g = r) or generalized (g < r) Jacobian varieties of
such algebraic curves.

Following [7, 3], M can be regarded as a fiber bundle M → U with the base U
parametrizing the corresponding curves and the fibers being (generalized) Jacobians of
the curves. U is a subvariety in the moduli space of curves of genus g.

For simplicity, let us suppose g = r, the other case can be considered along similar
lines (see [7]). In particular, there exists a canonical transformation (p, q) → (λ, µ) to

separating variables such that Ω =
g∑

i=1
dλi ∧ dµi and on each invariant manifold the pairs

of conjugated variables satisfy algebraic relations

F (λi, µi; c) = 0, i = 1, . . . , g,

defining a family of algebraic curves Γc of genus g. c = (c1, . . . , cg) are, among the
coefficients of F , those which are independent first integrals of the system in involution.
Moreover, c form a basis of coordinates on the base U . Solving F (λ, µ; c) = 0 in terms
of µ, we obtain the generating function

G(λ, c) =
∑

i

∫ λi

λ0

µ(λ, c1, . . . , cg) dλ
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of another canonical transformation (λ, µ) → (c, φ) described explicitly by the Abel–Jacobi
mapping Γ(g) →Jac(Γ)

∂G

∂ci
≡

∑
i

∫ λi

λ0

∂µ(λ, c)
∂ci

dλ = φi, i = 1, . . . , g.

φ1, . . . , φg are coordinates on the universal covering of Jac(Γ) and are also the complex
angle variables.

There are many Liouville integrable systems, as well as integrable PDE, which are not
algebraically completely integrable, but enjoy the following property [1]: their complex
invariant manifolds are open subsets of r-dimensional nonlinear strata of customary or
generalized Jacobian varieties associated to algebraic curves of genus g. Notice that their
generic solutions are not meromorphic functions of complex time.

A trivial example is the one-dimensional system with the Hamiltonian

H =
1
2
p2+Rr(q) = h, h = const,

where Rr(q) is a polynomial of degree r > 4 with simple roots. Integration of the system
leads to the inversion of a single Abelian integral

t− t0 =
∫ q

q0

dq√
2(h−Rr(q))

,

associated to the genus g ≥ 2 hyperelliptic curve Γ =
{
w2 = h−Rr(q)

}
, which is the

generic complex invariant manifold of the system and which cannot be completed into an
Abelian variety. Moreover, the generic solution q(t) is a single-valued function only on
an infinitely sheeted covering of the complex plane t with an infinite number of algebraic
branch points whose projections on t form a dense set (except rare cases of reducibility of
the Abelian integral to elliptic ones).

Other examples are finite-dimensional reductions of the shallow water (Camassa–Holm)
equation and the Dym-type equation [5] and generalizations of the integrable case of
the Henon–Heiles system on R2 with potentials of degree ≥ 4, in particular with the
Hamiltonian

H =
1
2

(
p2x + p2y

)
+V (5)(x, y), V (5) = y5+y3x2+

3
16
yx4.

For the above system, separation of variables in parabolic coordinates gives rise to the
quadratures

dλ1

2
√
R(λ1)

+
dλ2

2
√
R(λ2)

= dφ1,
λ1 dλ1

2
√
R(λ1)

+
λ2 dλ2

2
√
R(λ2)

= dφ2,

R(λ) = λ
(
cλ− d− λ6

)
, dφ1 = 0, dφ2 = dt,

containing 2 holomorphic differentials on the genus 3 curve Γ =
{
w2 = R(λ)

}
. These

describe a mapping of the symmetric product Γ(2) to the (3-dimensional) Jacobian of Γ.
Its image is a 2-dimensional nonlinear subvariety (stratum) of Jac(Γ), which is a translation
of the theta-divisor of the Jacobian.

Our main observation here (see also [2]) is that such systems can be obtained from
restrictions of algebraic integrable ones to subvarieties of the phase space using the Hamil-
tonian formalism with constraints developed by Dirac [6].
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A complete presentation of this formalism to generalized algebraically integrable sys-
tems will be considered elsewhere [2]. Here we present the main theorem in the case
of systems with invariant manifolds on strata of Jacobi varieties and a model example
associated to strata of generalized Jacobi varieties.

Let us constrain the algebraically integrable system onto the symplectic subvariety
N ⊂ M defined by 2d constraints

λg−d+1 = Cg−d+1, . . . , λg = Cd, Cg−d+1, . . . , Cd = const,
µg−d+1 = Eg−d+1, . . . , µg = Eg, Ei = const.

Theorem. The constraint variety N intersects the family of Jacobians along (g − d)-
dimensional nonlinear subvarieties (strata), the images of the mapping Γ(g−d) →Jac(Γ).
The latter are complexified invariant manifolds of the system restricted on N .

Now the angle variables φ1, . . . , φg play the role of redundant coordinates on the
strata [1].

A model example is the geodesic flow on an ellipsoid, which can be obtained constraining
the free motion in R3. Consider a family of confocal quadrics in R3

(
C3

)
= (X1, X2, X3)

Q(s) =
{

X2
1

D1 − s +
X2

2

D2 − s +
X2

3

D3 − s = 1
}
, s ∈ R, 0 < D1 < D2 < D3.

and associated ellipsoidal coordinates λ1, λ2, λ3 such that

X2
i =

(Di − λ1)(Di − λ2)(Di − λ3)
(Di −Dj)(Di −Dk)

, (i, j, k) = (1, 2, 3).

A free motion of a particle in R3 is described by the Hamiltonian

H = 2
3∑

i=1

(λi − λj)(λi − λk)
Φ(λi)

λ̇2
i =

1
2

3∑
i=1

Φ(λi)
(λi − λj)(λi − λk)

µ2
i ,

Φ(λ) = (λ−D1)(λ−D2)(λ−D3),

where µ1, µ2, µ3 are momenta canonically conjugated to λ. The canonical variables satisfy
algebraic relations

µ2
i =

c0(λi − c1)(λi − c2)
Φ(λi)

, i = 1, 2, 3,

defining genus 2 hyperelliptic curve Γ =
{
w2 = Φ(λ)(λ− c1)(λ− c2)

}
. The constants of

motion c1, c2 have a transparent geometric interpretation: in the configuration space R3

the straight line trajectory is tangent to the quadrics Q(c1), Q(c2) of the above confocal
family.

The Hamilton equations for λ, µ and the generating function

G(λ, c) =
3∑
i

∫ λi

λ0

√
c0(λ− c1)(λ− c2)√

Φ(λ)
dλ
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result in the following transformation (λ, µ) → (φ, c) written in a differential form

3∑
i=1

dλi

2
√
R(λi)

= dφ1,
3∑

i=1

λi dλi

2
√
R(λi)

= dφ2,
3∑

i=1

λ2
i dλi

2
√
R(λi)

= dφ3,

R(λ) = −c0Φ(λ)(λ− c1)(λ− c2), dφ1 = dφ2 = 0, dφ3 = dt,

which contain two holomorphic differentials and one meromorphic differential of the second
kind on the genus 2 curve Γ.

This defines the Abel–Jacobi mapping of the symmetric product Γ(3) to the (3-dimen-
sional) generalized Jacobian variety.

As a result of inversion of the mapping, we get theta-functional expressions

Xi =
φ3θ[ηi](φ1, φ2) − ∂V θ[ηi](φ1, φ2)]

θ(φ1, φ2)
, i = 1, 2, 3, (1)

where θ[ηi](φ) are theta-functions associated to Γ with certain half-integer theta-charac-
teristics ηi and ∂V is the derivative w.r.t. V = −2φ2. As expected, Xi are linear in φ3

and therefore in t.
Now let us restrict the system onto the symplectic subvariety N = {λ3 = 0, µ3 = 0} ⊂

TR3. N coincides with the cotangent bundle of the triaxial ellipsoid Q(0) on which the
constant of motion c2 = 0. The subvariety N intersects the family of generalized Jacobians
along 2-dimensional nonlinear strata W2 which, in the angle coordinates φ, have the form

W2 = {φ3θ(φ1, φ2)−∂V θ(φ1, φ2) = 0}.
Then, from the dynamical point of view, we restrict the free motion in the space R3 to
the geodesic flow on Q(0) ⊂ R3; from the algebraic geometrical point of view, by imposing
the constraint, we force the linear motion on the generalized Jacobians to take place on
their nonlinear strata W2, where the angle variables φ1, φ2, φ3 play the role of redundant
coordinates.

According to definition of W2, φ1 becomes a transcendental function of φ2, φ3. Sub-
stituting it into (1), we get the explicit solution for the geodesic problem in terms of the
natural parameter t = φ3.
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