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Abstract

We exhibit a class of Dirac operators that possess Huygens’ property, i.e., the support
of their fundamental solutions is precisely the light cone. This class is obtained by
considering the rational solutions of the modified Korteweg-de Vries hierarchy.

1 Introduction

The starting point of this article is a classical linear problem, namely the Cauchy initial-
value problem �ψ + uψ = 0,

(ψ, ∂0ψ)
∣∣∣
x0=0

= (f, g).
(1)

Here, � = ∂2
0 −

n∑
i=1

∂2
i and u = u

(
x0, . . . , xn

)
is a given potential in n spatial dimensions

and time x0.
With Hadamard [1], we consider the question: For which potentials is the domain of

dependence of the hyperbolic initial value problem at an arbitrary point y =
(
y0, . . . , yn

)
only the intersection of the initial data manifold x0 = 0 with the light cone with vertex
at y? This question leads to severe nonlinear restrictions on the potential u, which are
directly connected to Soliton theory. Operators with the above property are said to obey
Huygens’ principle (in Hadamard’s strict sense) or to possess Huygens’ property.
The physical significance of Huygens’ property is that a disturbance localized in a small

neighborhood of a given point would propagate in a small neighborhood of the positive
light cone. A minute’s thought reveals that such property is crucial for the meaningful
transmission of information. For an elementary account see P Günther’s delightful pa-
per [2]. Since Hadamard’s time it is known that if u = 0, then Huygens’ property holds if,
and only if, the number of spatial dimensions n is odd and greater than 1. In particular,
flat-landers do not like to attend classical music concerts!
Hadamard’s question has been the subject of intense interest. An early account can be

found in the Courant and Hilbert’s masterpiece [3], whereas for the more recent results
and direct connections with Soliton theory see [4].
Clearly, Hadamard’s question should be considered modulo certain trivial transforma-

tions. Those trivial transformations are generated by changes of independent variables
and by left or right multiplication of the operator by a non-vanishing function. Also,
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we consider the question only in sufficiently small domains, since the problem is already
interesting enough once considered locally.
For a long while it was conjectured that, modulo the trivial transformations, the only

potential u = u
(
x0, . . . , xn

)
such that � + u is Huygens was the trivial potential u = 0.

This turned out to be false! The “simplest” counter-example, which was given by Stell-
macher [5], holds in dimension 5+1 and consists of the potential u = −2/ (

x0
)2. In modern

Soliton theory language, the remarkable discovery of Lagnese and Stellmacher [6, 7] goes
as follows: Take the (real) Calogero–Moser potentials decaying at infinity that are given
by

uk

(
x0

)
= 2 (log ϑk)

′′ (x0
)
,

where ϑk is the k-th Adler–Moser polynomial [8] and ()′ denotes the derivative. Then,
�+uk is Huygens in a sufficiently high number of odd spatial dimensions. More precisely,
the minimal number of spatial dimensions for which this occurs is n = 2k + 3 for generic
choices of the parameters in the Adler–Moser polynomials1.
This connection with solitons is much deeper. See for example [4, 9] and references

therein.

2 Main goals and plan

The first goal of the present article is to show that an analogue to Dirac operators of
Huygens’ property is also an interesting question for Soliton theory. We do that by showing
that adding potentials associated to the rational solutions of the modified Korteweg-de
Vries hierarchy to (free) Dirac operators in sufficiently high (odd) spatial dimensions we
get Huygens operators. This is closely related to the fact that Huygens holds for �+ uk

as described above.
However, even in this simple context a novel phenomena occurs. The Dirac operators

that we construct possess Huygens’ property in a smaller number of spatial dimensions
than one would in principle anticipate.
The plan of this paper is the following: In Section 3 we recall the definition of Dirac

operators and their relevance. In Section 4 we discuss one of the main tools needed in our
analysis, namely the Hadamard expansion. Section 5 states and proves the main result.
We conclude with a small discussion of the results and suggestions for further research.

3 Dirac operators

Dirac operators appear in Mathematical Physics in the framework of the construction of
a relativistic electron theory. In a celebrated paper [10], Dirac defined a Lorentz-covariant
Hamiltonian (and consequently first-order in space variables, as Schrödinger equation is
first order in time) whose square yields the Klein–Gordon equation.
Let {γ0, . . . , γn} be a set of matrices obeying the anti-commutation rule γµγν+γνγµ =

2gµνI, where ((gµν)) = diag[1,−1, . . . ,−1] denotes the Minkowski tensor. Dirac opera-
tors [11] are defined by

D = γµ∂µ+ v,

1We have used the privileged time variable x0 for the sake of simplicity. Similar results hold for the
other variables.
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where the summation for repeated indices is implied. Throughout this contribution, we
shall also adopt the notation �∂ = γµ∂µ and the Pauli–Dirac representation (generalized
for higher dimensions) where γ0 = diag[1,−1]. Furthermore, we restrict ourselves to the
case where v is a scalar and assume that it depends on only one variable.

4 Hadamard expansion

In this section we shall look for fundamental solutions of Dirac operators. A fundamental
solution for �∂+v is the solution of (�∂+v)Φ = δy, where δy denotes Dirac-delta distribution
supported at an arbitrary point y in space-time.
Let λ(x, y) =

√
(xµ − yµ)(xµ − yµ) denote the Minkowski distance between two points

x and y. The light cone, as usual, is given by C(y) = {
x ∈ R

n+1|λ(x, y) = 0
}
.

The first important concept to be recalled is the so-called Riesz kernel. It was intro-
duced by M Riesz in order to unify the treatment of elliptic and hyperbolic problems.
They are given by distributions in D′(Rn+1) defined first for Re(α) sufficiently large by

Λα =

{
N(α)λα, if (xµ − yµ)(xµ − yµ) ≥ 0;
0, otherwise.

Here, the normalizations constant N(α) is given by

N(α) =
[
2α+nπ(n−1)/2Γ

(
α+ n+ 1

2

)
Γ

(α

2
+ 1

)]−1

.

Then, Λα is extended analytically for all values of α in the complex plane by means of
�Λα = Λα−2, which is satisfied for all α with sufficiently large real part. It is not hard to
check that Λ−n−1 = δy. See [12].
We shall say that a fundamental solution Φ obeys Huygens’ principle if supp Φ ⊂ C(y).

More generally, we shall say that a distribution depending on a parameter y ∈ R
n+1

satisfies Huygens’ principle if it is supported on the light cone C(y).
Adapting Hadamard’s seminal idea from the wave operator situation to the one at

hand, we look for series expansion for the fundamental solution

Φ =
∞∑

m=0

�∂−mΘ−n+1sm =
∞∑

m=0

{
Θ−n+1+2ms2m + Λ−n+1+2ms2m+1

}
,

where sm is a matrix coefficient, Θα = �∂Λα, which we call Dirac kernels, and Λα are
Riesz kernels. It can be shown that Θα satisfies Huygens’ property for α = 0,−2,−4, . . .;
while Λα does it for α = −2,−4, . . ..
Imposing that Φ is a fundamental solution and using the properties of Riesz kernels,

we have the following recursion for the coefficients sm starting with s0 = 1:

s2m+1 = (�∂ −v)s2m, (2)

s2m+
1
m
(xµ − yµ) ∂µs2m = −(�∂+v)s2m−1. (3)

In all these cases sm should be smooth (in particular when yµ → xµ).
This expansion is unique in the following sense: Let us suppose that Φ and Φ̃ are both

fundamental solutions such that (�∂ + v)Φ = δy and (�∂ + v)Φ̃ = δy. So, their difference is
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a solution of the homogeneous equation (�∂ + v)(Φ − Φ̃) = 0. Let h be a solution of the
homogeneous equation, so Φ̃ = Φ + h. As h bears no relation to the support y of the
Dirac-delta distribution it is clear that it is immaterial to study the validity of Huygens’
principle in terms of Φ or Φ̃. Thus, we can fix a fundamental solution and study its
Hadamard series.
An important property of this series is that it is unique, provided we require sm to

be smooth. This can be easily seen from equations (2) and (3). Actually the uniqueness
for (2) is trivial. In the case of (3) it should be proved. Let s1 and s2 be two different
solutions of (3). So, the difference s1 − s2 = S2m is smooth and satisfies

S2m+
1
m
(xµ−yµ)∂µS2m = 0.

If we assume regularity near the vertex of the light cone, it is well known that the unique
solution to this equation is the trivial one. See, [1], Book 2, Chapter 3, Section 61.
Bearing in mind this fact it is easy to prove the equivalence between Huygens’ principle

and the truncation of the Hadamard series:

Remark. A Dirac operator in the form �∂ + v possesses Huygens’ property in odd spatial
dimension n ⇐⇒ its Hadamard series truncates at n, i.e, sm = 0 for m ≥ n.

A proof of this remark is quite simple. In the⇐ direction, it follows from the properties
of Dirac and Riesz kernels. In the other direction, it is a consequence of the uniqueness of
the Hadamard expansion.

5 Huygens property and the mKdV hierarchy

The modified Korteweg-de Vries (mKdV) equation

vt = 6v2vx − vxxx,

together with the Miura map, and the Korteweg-de Vries equation have been instrumental
in the development of the inverse scattering method in Soliton theory [13, 14]. Associated
to the mKdV one can find a full hierarchy of commuting flows which can be obtained
by different, though equivalent, methods. Lax pairs, bi-hamiltonian formalism, recursion
operators, to cite just a few. The rational solutions of the mKdV have also been subject
of a number of studies. We follow [8]. The Adler–Moser polynomials arise by considering
the recurrence relation

ϑ′
k+1ϑk−1−ϑk+1ϑ

′
k−1 = (2k+1)ϑ

2
k,

with the initial condition ϑ0 = 1 and ϑ1 = x. It is remarkable (although noticed already
by Burchnall–Chaundy [15]) that each ϑk is a polynomial in x. Furthermore, ϑk depends
on k − 1 free parameters which can be chosen so that

vk = ∂x log(ϑk+1/ϑk)

is a solution of the different flows of the mKdV hierarchy. See Section 4 of [8] for a proof
of this fact and many other interesting related results.
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Henceforth, for notational simplicity, we set the time variable x0 = t and ()′ will denote
derivative w.r.t. t. We also identify the polynomial variable in the Adler–Moser polynomial
with x0 = t. So,

(�∂+vk)(�∂−vk) = �−γ0v′k−v2
k = ✷−

(
v′k + v2

k 0
0 −v′k + v2

k

)
. (4)

It follows from the properties of the Adler–Moser polynomials we have uk = −v′k − v2
k and

uk+1 = v′k − v2
k. If we consider the fundamental solutions Ψk such that (✷+ uk)Ψk = δy,

the function

Φ = (�∂−vk)
(
Ψk 0
0 Ψk+1

)
(5)

is the fundamental solutions of �∂ + vk. So, if Ψk and Ψk+1 have Huygens’ property in a
certain dimension, then Φ as defined above has this property in the same dimension.
We should expect, from the above argument that �∂ + vk has the Huygens’ property

in the minimum dimension where ✷ + uk and ✷ + uk+1 are both Huygens. However, an
amazing fact happens and the dimension is reduced by two. We shall refer to this as the
reduction of the dimension. This property holds for the Dirac operator in the vacuum.
In this case, it is Huygens for every odd dimension, unlike the wave operator, which is
Huygens just from 3 on. We are now ready to state:

Theorem. Let ϑk denote the k-th Adler–Moser polynomial and

vk(x0)
def= ∂0 log ((ϑk+1/ϑk)(x0)) .

Then, �∂ + vk is Huygens in n = 2k + 3 spatial dimensions for every k ≥ 0.
Proof. Let us define µk = ϑk+1/ϑk, then vk = µ′

k/µk. It can be shown [8] that uk =
−µ′′

k/µk. The operator ✷+uk is known to be Huygens in dimension 2k+3. Let Ψk be the
fundamental solution of ✷+uk. As Ψk obeys Huygens’ principle, its Hadamard expansion
terminates. Let rk be the last term in the expansion. If we are in the minimal dimension
for the validity of this property, then rk is the coefficient of the Λ−2 term. Let us study
the behavior of this term:

(✷+uk)Ψk = (✷+uk)
(· · ·+ Λ−2rk

)
= · · ·+Λ−2

(
∂2

t + uk

)
rk.

As (✷+ uk)Ψk = δy = Λ−n−1 and n ≥ 3 we claim that (∂2
t + uk)rk = 0.

Using the definition of uk we write (∂t+vk)(∂t−vk) = ∂2
t +uk = (∂t−vk−1)(∂t+vk−1).

This gives rk = αkµk + βk/µk−1.
As µk is a ratio of two consecutive Adler–Moser polynomials, its asymptotic behavior,

in t → ∞, is given by µk = O (
tk+1

)
.

But the differential equation obeyed by rk, when t → ∞ (and remembering that uk =
−µ′′

k/µk → 0 ), is
(
∂2

t

)
rk → 0 or, in other words, rk = o

(
t2

)
when t → ∞. Thus,

rk = βk/µk−1. We define Φk = (�∂ − vk) diag[Ψk,Ψk+1]. The above properties yield that
Φk is the fundamental solution of �∂ + vk.
We shall study the last term in Φk. As Ψk and Ψk+1 should be acting in the same

spatial dimension n, and they obey Huygens’ principle in this dimension, we chose the
minimum n such that Ψk+1 is supported in the light cone, n = 2k + 5, and in this case
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the last term in the expansion of Ψk is Λ−4rk. In order to study the behavior of the last
term in Φk we write:

Φk = (�∂ − vk)
(
· · ·+ Λ−2

(
0 0
0 rk+1

))

= · · · − Λ−2(∂t + vk)rk+1

(
0 0
0 1

)
= · · ·+ Λ−2 · 0.

This equation shows that the last term in the Hadamard expansion of Φk is Θ−2. As Θ0

has the Huygens’ property, we can lower the dimension by two, to n = 2k + 3.

6 Discussion

We have shown that upon choosing v = vk(x0), where vk is a rational solution solution of
the mKdV hierarchy (with the variable x0 now replacing the spatial variable x of mKdV),
we get that �∂ + vk is a Huygens operator. The link between Huygens wave operators and
nonlinear evolution equations has been already noticed, and was particularly highlighted
in the recent work of Berest. See [16] and references therein. The connection with Dirac
operators is plausible once one is aware of the relations between Schrödinger operators
and ZS-AKNS operators. The latter are however only connected to Dirac operators in
1 + 1 dimensions. In this work we have shown that Huygens’ property holds for Dirac
operators in space-time dimension n + 1 for n = 2k + 3. This is a nontrivial fact if one
tries to use (4), since there we have diagonal wave operators that are Huygens in different
minimal number of dimensions.
As a consequence of the Theorem, �∂ is Huygens in dimension 1, �∂ + 1/t is Huygens

in dimension 3 and so on. Just to compare, ✷ is Huygens in dimension 3, ✷ − 2/t2 is
Huygens in dimension 5 and so on.
There are many follow up questions to the present work. To cite just a few, one

can consider potentials that are not scalar or that depend on more than one variable.
Presumably rational solutions of the AKNS hierarchy would play a role here. We are
presently exploring some of those avenues.
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