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Abstract

An infinite number of families of quasi-bi-Hamiltonian (QBH) systems can be con-
structed from the constrained flows of soliton equations. The Nijenhuis coordinates
for the QBH systems are proved to be exactly the same as the separation variables
introduced by the Lax matrices for the constrained flows.

1 Introduction

For a finite-dimensional integrable Hamiltonian system (FDIHS) with degree 2n, a vector
field, X, is said to be a QBH vector field with respect to two compatible and nondege-
nerated Poisson tensors, 6y and 6, if there exist two integrals of motion Fj, E; and an
integrating factor p, such that [1, 2]

1
X = (90VF1 = ;91VE1. (1.1)

The Nijenhuis tensor ® = 616, has n distinct eigenvalues g = (u1, ..., i) [3]. One can
construct a canonical transformation (g,p) — (u,v) ((p,v) referred to as the Nijenhuis
coordinates) and the FDIHS in the Nijenhuis coordinates is separable. Several QBH
systems are presented and some relationship between BH and QBH structure is discussed
in [1, 2, 4, 5]. The aims of this paper is to show how to construct an infinite number
of families of QBH systems from the constrained flows of soliton equations [6-10] and
to prove that the Nijenhuis coordinates for the underlying families of QBH systems are
exactly the same as the separated variables introduced by the Lax matrices [11-13].

2 New QBH system

For Jaulent-Miodek (JM) spectral problem [14]

<Z;>m Uy <Z;> Ul A) = ( A2 — u(l))\ — ug (1) ) U= (Z;) (2.1)

the Jaulent—Miodek hierarchy reads

U1 bn+2 6Hn
= = = =1,2,... 2.2
utn <u0> ¢ J(bn_l’_l) J (5u ) n e Y ( )
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where H,, = %(2bn+3 — U1bpy2)

b b
bp=0b1 =0, by=1, (’“+2>_L<’““>, k=1,2,...,
br+1 by,

I <U1——D Ul gz %DQ‘FUO__D uOJ:)

1 0
9 -1 -1
D=2, DD '=D'D=1.
Ox
Under zero boundary condition we have g—f‘l = ():f;%) The constrained flows of (2.2) are
1
defined by [6-10]:
\1117;3 = \IJQ, \11271; = AQ\I/1—’U,1A\IH—U0\I’1, (2.3&)
N
OH; 1§~0X _ (biaz) 1 (AT, T1) —0 (2.3b)
ou 2 = ou bl+1 2 <\I/1, \I/1> . '

Hereafter we denote the inner product in RY by (-,-) and ¥; = (¢1,...,¥in) T, i = 1,2,
A =diag (A1,...,An) for N distinct A;.
The third constrained flow (I = 4) can be transformed into a FDIHS

Py =60 I, (242)
0 I,
T N+2)x(N42)
P = (\I'{,QMQ%‘l’QTaplapZ) ) 90 - ( ( )X ) 5
—I(Ny2)x(N12) 0
1 1 1 1 2.4b
Fy = 5(‘112, Uy) — §<A2‘1’1, V) + 5@11(1\‘1’1,‘1’1) + 5(12(‘1’1,‘1’1) (2.4b)
8pipr + 100173 — g — S —
2 16 g2 1281
) [ A(\) B\ .
The Lax matrix ¢ = ( O —AQN) for FDIHS (2.4) is given by the method [7, 8]
A(X) = 2p2A +2p1 — 2q1p2 — Z djlj%]
Ji
N
3, 1 P
B()\) = \? A J
(\) =%+ Q1+ SO+ 50t ZA .
(2.5)
1 1 1 1 1 1
2\ = )\4 - )\3 N - 2 AZ -3 - -
C(N) 51 <2(JQ + 8q1> + 1 + 51102 2<\I’1,\I’1> A
N 2
1, 54, 5 1 1 1 V3;
SR - 2 A (AT ) g (W, T — - :
1@~ gyt~ 4py — S (AYL Y1) 4 San (P, W) 22/\—/\]-

We can show the following propositions.
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Proposition 1. The FDIHS (2.4) possesses the QBH representation (1.1) with

3 1 1
p= B(A)’/\:O = §Q%+§Q2 - §<A 1‘1’17‘1’1%

—AT By

By = [2200) + BOYCO)] o, oy — ( Ov+2)x(N+2) Al ) |
(2.6)
A —%‘111 Onx1 OnxN i\PQ Onx1
A= | Oixn q1 1 , Bi=| —1vl 0 D2
20T —lgp—Lg} -3¢ Oixv —p2 0

The eigenvalues u1, ..., unio of 91961 are defined by the roots of the equation f(\) =
|IAI — A;| = 0 which gives rise to [4,5]

i = fj(\Ijla CI1,Q2), ¢1j = gj(ﬂ)a q1 = 9N+1(M)7 q2 = 9N+2(N>7 (2-73)
N
a5 393‘ Ogn+1 Ogn+2 .
T Oy ; 7 O, On; Opj 270

It is known [11-13] that the separated variables (g, ) for (2.4) can be constructed by
means of the Lax matrix in the following way:

R()\) N+2 N

B\ = =55, BV =[0-m), KO =[], (2.8a)
K(X) i i

v = —A(jg), k=1,...,N+2. (2.8Db)

Proposition 2. The Nijenhuis coordinates (p, v) defined by Eqs. (2.7) are exactly the
same as the separated variables (@, v) defined by Eqs. (2.8).

3 Infinite numbers of families of QBH systems

Consider the following polynomial second order spectral problem [15]

Y v (), v = —m%m ;. (3.1)
Y2/, (0 E)

In the same way, one obtains the first constrained flows associated with spectral prob-
lem (3.1) [10]

P, =00 1, (3.2)

where
0 I
p= (o w7 9:( NXN),
(7, 02) 0 —INxN 0

m

1 1\’ ! ,
Fi = (05, W2)+) (“) Do (AL T (AT, W),

j=0 i+ +ljp1=m—j
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Proposition 3. The first family of FDIHS (3.2) (m = 1,2,...) possesses the QBH

, _ Onxn A1
representation (1.1) with 61 = and
AT B,
1 T 1 r_ 1 T
Ay =2—50 ¥, B =S¥ -0,

1
p=BA)|r=0=1- §<A_1‘I’17‘I’1>v

1
(A~1Wy, Wy) + 1 (A1, Wo)? — (A1, Wy ) (A1 Wy, W)

m j+1
§=0

it tljp1=m—j
The second constrained flows associated with Eq. (3.1) is [10]
PI = 90VF1, (33)
where
0 1
T (N+1)x (N+1)
P = (\II{7Q>\Pg>p) ’ 90 = ( I ) ’
X

N+1)x(N+1) 0

1 1 m+2
F| = §<\I/2, W) + <—§q> — 4p?

(23

24D By D (AT AN, ).
i=0 =1

Il —mA2—i—2j

Proposition 4. The second family of FDIHS (3.3) (m = 1,2,...) possesses the QBH
representation (1.1) with

p Onv4+nyx(N+1) A1 y A -1y
1= 5 1= 5
—AT By 20T —1q

OnxN %‘1’2 1 1
B — = B\)|yo = =q — = (A1, @
1 ( —%\IJQT 0 ) Y ( )’,\_0 261 2< 1, 1>,

. 1 . ) 1 m—+2
Ey =2p(A™ 0, 0y) + Zq(A Wo, Uo) + 4p° — —§q

23

=04 D0 By D0 (AN ) (AN, )
=0 =1

li+-+lj=m+2—i—2j

m+1 [%H]
1 -1 2 -1 -1 1 %
+ Z [(A \Ifl, \I/2> — <A \I/l, \I’1><A \Ifg,\I/2>] — 5 Z q Z ﬁi,j
=0 7=0
X Z <Al1\I/1,\I’1> <Alj\I’1,\P1><Al'7+1_1\111,\1’1>.

l1+---+lj+1:m+17i72j
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The separation of variables for FDIHSs (3.2) and (3.3) was studied in [10]. We can
show that

Proposition 5. The Nijenhuis coordinates (p,v) for FDIHS (3.2) and (3.3) are exactly
the same as the generalized elliptic and the generalized parabolic coordinates (f, ) defined
by Lax matrixz for (3.2) and (3.3), respectively.

In general, we can obtain infinite number of families of QBH systems from the higher-
order constrained flows associated with Eq. (3.1).
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