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Abstract

In this paper, a method of hierarchical clustering
and a selection of fuzzy classification algorithms
are applied successively to the data set that con-
tains measured characteristics of folk verses col-
lected from 104 historical parishes of Estonia. The
aim of the study is to detect the groups of parishes
that are similar in terms of folk verse characteris-
tics and to give us insight into the reasoning that
the separation into these groups is based upon.
The process of classification separates the initial
groups into further subsets represented by fuzzy
rules, which can be analyzed thanks to the inter-
pretability of such rules. To emphasize the lat-
ter, most important features in individual rules are
brought out by rule compression. The results of the
analysis are backed by what is known from linguistic
sciences.
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1. Introduction

Over a decade, interpretability of fuzzy systems has
been a topic of keen scientific interest [1, 2, 3.
However, most of this debate has focused on in-
terpretability definitions, measures and novel algo-
rithms that improve interpretability of fuzzy sys-
tems in a way or another. Only rarely, interpretabil-
ity itself has been exploited for a specific practical
purpose.

This paper, in which an interpretable fuzzy clas-
sifier is employed to explain the geographical vari-
ation of the metre of Estonian folksongs, however,
provides one such example.

The data set on which the classifier is based, orig-
inates from an earlier study [4] where the occur-
rence of seven metrical features in folk-verse sam-
ples from each of 104 Estonian parishes was deter-
mined. The choropleth maps of individual features
were geographically quite coherent in visual obser-
vation. The attempts to divide the whole area into
a few "metrical regions" based on all features as to
summarize the results, however, were not that suc-
cessful. The isolines of the features observed did
overlap in some cases but not always, and it was
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not clear enough, which ones of them should be of
higher priority in making the division.

The procedure that is applied in this paper to
accomplish the goal mentioned above is twofold.
Firstly, we apply a method of hierarchical cluster-
ing to determine the clusters of parishes that exhibit
similarities in terms of the verse metre. The cluster
membership obtained this way is assigned to each
parish. Secondly, we identify a data-driven fuzzy
classifier to facilitate the analysis of the obtained
clusters and to identify which features of the verse
metre are critical in cluster assignment.

2. The data set

In [4], 500 folk-verse lines from each of 104 Estonian
historical parishes were used as the source material,
totalling in 51,382 lines (for some parishes a lesser
number of lines was available). The metre of a poem
is a generalization of rhythm regularities expressed
by linguistic means; in Estonian language those are
the number of syllables, the quantity and the stress.

In the case of Estonian archaic tradition, the com-
mon poetic form (including the metre) has formed
a separate register used creatively in several occa-
sions, thereby the metre is in dependence of the
prosodic peculiarities of the language (dialect) in
which it is used. During the times of most active
collection (ca 1880-1920), Estonian folksongs were
in transition stage from the quantity based metre to
the stress based metre; linguistic changes that sup-
posedly were behind that, took place mostly from
13th to 16th centuries.

All the lines in the study corpus were divided into
four groups according to the metrical system used:
the lines that are possible in both metrical systems
(ca 50% of all the lines), lines characteristic to the
stress based system, lines characteristic to the quan-
tity based system and, finally, the lines which did
not follow the rules of either of the two systems
(a certain amount of exceptions is regular and ex-
pected in the case of oral tradition).

For each parish, the percentage of the lines be-
longing to each group was calculated and these fig-
ures were used as the values of four features that
characterize each parish. Expectedly, there is a
strong negative correlation between the second and



third feature (the percentage of lines characteristic
to quantity based system and the percentage of lines
characteristic to stress based system, respectively).

In addition, the occurrence of the lines with spe-
cific syllabic structure was detected: the percentage
of lines containing disyllabic verse positions (instead
of regular one syllable corresponding to each of 8
verse positions), the percentage of heptapositional
lines (instead of regular octapositional ones), and
the percentage of the lines with a pre-beat (one or
two additional syllables in the beginning of line).
These figures were used as values of features 5, 6
and 7, respectively.

3. Creating the groups of parishes

To detect the groups of parishes that belong to-
gether, we opt for a well-known hard clustering
method, known as hierarchical clustering [5], which
is based on the intuitive idea of objects being more
related to nearby objects than to objects farther
away.

Hierarchical clustering is an agglomerative pro-
cedure in which the clusters are initially singletons
(single-member clusters). At each stage, the indi-
viduals or groups of individuals that are closest ac-
cording to the linkage criterion are joined to form a
new, larger cluster, which, of course, leads to a sin-
gle group consisting of all individuals, formed at the
last stage. This process can be represented using a
dendrogram, which can be cut to extract the desired
level of partitioning and there is a whole family of
hierarchical clustering methods that only differ by
the way the linkage criterion is computed.

In complete linkage clustering [6], the distance
between two clusters is computed as the maximum
distance between a pair of objects, one in one clus-
ter, and one in the other; as a result, in each step
these two clusters are merged whose merger has
the smallest diameter. Complete linkage cluster-
ing tends to find compact clusters of approximately
equal diameters and is therefore applied to our prob-
lem.

Table 1: The dendrogram. R is the number of clus-
ters and figures in table cells indicate the number
of objects in given clusters.

R

1 104

2 |8 96

38| 53 43
48] 53 18 |25
583716 18 |25
6|8 [37[16]10]8]25

For best results, the data has to be normalized
into the unit interval prior clustering. Although
the clustering algorithm is agglomerative by nature,
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[ class 1 (53)
W class 2 (43)
B class 3 (8)

Figure 1: The parishes of Estonia divided into three
groups by the hierarchical clustering method.

we are going to interpret the process the other way
round by turning the dendrogram upside down (Ta-
ble 1). It can be seen that the first to separate is
a small 8-parish cluster (south-east of Estonia). In
next step, the large cluster is split in roughly two
clusters (Figure 1). Although there are some loose
parishes, e.g. Suure-Jaani and NG6o on both sides of
the smallish lake Vortsjérv in the middle of Esto-
nia, there is a rather neat separation line between all
three clusters. We stop at this level because further
steps of clustering would only introduce geographi-
cal fragmentation to existing clusters.

4. Building a classifier

A fuzzy classifier is a fuzzy rule-based system that
utilizes fuzziness only in the reasoning mechanism
and consists of rules in the following format

IF €Tq is Al,,n AND T is AQ,« AND ...
... AND N is ANr
THEN y belongs to class ¢,

(1)

where ¢, is a class assigned to the r-th rule (¢, €
(1,..,7)) and A;. denote the linguistic labels of
the i-th feature associated with the r-th rule (i =
1,..,N).

Each A;, has its representation in the numerical
domain - a typically normal and convex membership
function p;;- such as a triangular membership func-
tion (MF), determined by three parameters a;;, b,
and ¢;,:

T—a
bii,_al;;’ Qi < Ty < bir

pir(zi) = &5, b <z <cr , (2)
0, otherwise

The reasoning mechanism of a fuzzy rule-based
classifier is usually implemented by the single win-
ner approach [2, 7, 8] that selects the class label



¢, associated with the rule that provides the high-
est rule activation degree (7,.) for the given feature
values x;.

Yy = ¢p, arg max(7,), (3)
1<r<R

where

N
Tr = Hﬂir(xi)a (4)

The goal in fuzzy rule-based classification is to ob-
tain the maximum possible classification accuracy
with as simple classifier as possible. Classification
accuracy that a data driven fuzzy rule-based classi-
fier is able to achieve, first and foremost depends on
the properties of the data set. The class distribu-
tions that do not separate naturally in the product
space typically need to be modeled with increased
level of granularity, unless optimal or near-optimal
decision border is provided by suitable rule place-
ment.

The algorithm that we apply to construct the
parish classifier consists of four steps: initialization,
rule base expansion, rule base consolidation and rule
compression, which are explained in the following
subsections.

4.1. Classifier initialization

The simplest classifier possible is a minimal rule
classifier (MRC) that specifies only one rule for each
class. The training data set is divided into T sub-
sets so that each subset contains only the samples
belonging to one of T' classes.

Given a subset of data S; that contains K; ob-
servations and its mean m; = (mj;1,mj2,...,M;N)
that is the geometric centroid of the data points in
Sj

m; = Y x/Kj, (5)

keS;

where x;, = (21(k), z2(k), ...,zn(k)) is a vector rep-
resenting k-th observation, triangular MFs y;; given
by parameters a;;, b;;, c;; are created in all dimen-
sions. For each ¢

Qir = ,grellsf;(ffi(k)% Cir = ggsf(-’fi(k))a bir = mji. (6)

Note that the MFs are then slightly' enlarged so
as to give nonzero membership values to the samples
located at the very edges of the rule [9]. Following
this, a rule of format (1) where ¢, is the class that
is assigned to the observations in subset S;, is con-
structed?.

IBy 1 % of the feature domain.

2The rule generation/update procedure described here is
used throughout the paper whenever a rule is built on a sub-
set of data.

Unless the classes are well separable in the prod-
uct space, the MRC usually comes with a num-
ber of misclassified samples, which is also the case
presently, as the MRC of the folk verse data set has
4 misclassifications (Figure 2).

4.2. Rule base expansion

To get rid of the classification error we do the ob-
vious - increase the number of classification rules
until the error disappears, using a procedure that is
termed as rule base expansion. However, the expan-
sion does not stop until what we obtain is a classi-
fier, in which there is no overlap between the rules
that represent different classes. This property be-
comes useful in later stages of the algorithm.

At each iteration of the procedure, a subset of
data corresponding to the rule with the highest
number of erroneous samples is split into two fur-
ther subsets using the very same clustering method
described in Section 3. If the classification error is
already zero but the overlap between the rules rep-
resenting different classes is still detected, we split
the subset that corresponds to the rule with the
maximum number of samples. Upon those two sub-
sets, two new rules and corresponding MFs are built
that ultimately replace the original one.

4.3. Rule base consolidation

The expanded parish classifier has 30 rules (the er-
ror itself disappears at 9th iteration). Obviously,
so high number of rules is not acceptable and most
likely, there are many rules which can be considered
redundant and thus merged with neighboring rules.

The procedure for reducing this kind of redun-
dancy is called rule base consolidation. During the
consolidation, weaker rules (governing few samples)
are constantly losing their samples to stronger rules
(those governing many samples). Each such transfer
is valid as long as accuracy is not compromised and
the overlap between the rules representing different
classes is not re-introduced. As a natural result,
many of the weaker rules become obsolete.

The rules are ranked by their strength (the num-
ber of samples they govern) in ascending order
p € {1,...,R}. The process starts from the lowest
ranked rule (p = 1).

1. pick a rule R, with the rank p

2. pick k-th sample (k = 1, ..., K,.) from the subset
S, governed by rule R,.

3. transfer this sample from S, to the subset S,
corresponding to next same class rule R, (¢, =
¢q) in the ranking.

4. update the MFs of both R, and R, on the basis
of modified subsets S, and S, respectively

Next we confirm if the merge can be actually ex-
ecuted. It depends on two conditions. The first one
is that there is no accuracy loss (for which we need



class 1
R1 57 samples
4 errors
0.45 0.6 02 04 0.1 03 0.02 0.1 0.2 04 0.2 0.4 0 0.05
class 2
R2 39 samples
0 errors
0.45 0.6 02 04 0.1 03 0.02 0.1 0.2 04 0.2 0.4 0 0.05
class 3
R3 8 samples
0 errors
0.45 0.6 02 04 0.1 03 0.02 01 0.2 04 0.2 04 0 0.05

feature 1 feature 2 feature 3 feature 4

feature 5 feature 6 feature 7

Figure 2: The minimum rule classifier of the folksong verse metre problem.

to evaluate the classifier). Secondly, we need to ver-
ify that the consolidated rule (R,) is not overlapping
with any of the rules representing classes other than
¢r. Depending on if the merge has received a con-
firmation, there are a number of different scenarios
on what to do next.

e if the merge is confirmed and k < K., incre-
ment k (select the next sample from S,.). If
k, however, already equals K, delete rule R,
along with associated MFs, update the ranking,
increment p and go back to step 1.

e if the merge is not confirmed, first discard the
changes to the MFs of R, and R, pick the next
same class rule from the ranking and go back to
step 3. If we already have reached the last same
class rule in the ranking, select the next sample
from subset S, (increment k) and go to step 2.
If k already equals K, as well, increment p and
return to step 1.

The process ends when we have reached the last
rule in the ranking (p = R).

When applied to the classifier at hand, this algo-
rithm reduces the number of rules from 30 to 8, in
which three rules represent class no. 1, four rules
class no. 2 and only one rule class no. 3 (Figure 3).
Of those, rules no. 3, 7 and 8 are the major rules
of classes 1, 2 and 3, respectively. Rules 2, 4 and 5
are minor rules describing smaller groups of parishes
that are not compatible with the major rules. The
classifier also contains two singleton rules (R; and
Rg corresponding to Torma and Mihkli parishes, re-
spectively).

4.4. Rule compression

The last step of the classifier construction algo-
rithm is the rule compression that is designed to
improve classifier interpretability and removes the
features/conditions from individual rules.

We apply the rule compression only to non-
singleton rules (Rs,R3,R4,R5,R7 and Rg in the clas-
sifier at hand). For this, we construct a table (Table
2) in which each entry in the given row contains the
features in which the MFs of the given rule do not
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Ry | Rs Ry | Rs | R7 | Rs
Ry | - 6 7 4 | 7| 14
Ry | 6 - 7 6 | 6 | 1246
Ry | 7 7 - 67| 6 | 1-46
Ry | 4 6 67 | - | 7 1.4
R, | 7 6 6 7| - 4
Rs | 141246 | 146 | 14| 4 .

Table 2: The rule matrix that shows in which fea-
tures the considered rules are not overlapping with
each other.

intersect with the MFs of the rule determined by
the column.

The compression is based on the analysis of this
table. For example R3 can be compressed into fea-
tures 6 and 7 because either of them is represented
in all entries of the second row; the same applies
to R4. For Ry, Rs and R; we need to add feature
4. Rg only needs feature 4 for now obvious reasons.
These preserved MFs are highlighted in Figure 3.

5. Analysis

Although we constrained the rule consolidation so
as to ensure that the rules representing different
classes would not overlap with each other, inciden-
tally, there is no overlap even between these rules
that represent the same class (this is evidenced by
Table 2). This property becomes handy when inter-
preting the rules.

From Figure 3 it can be seen that class 3 (Rg)
is characterized by a low percentage of lines char-
acteristic to the quantity based system (feature 3)
and by a high occurrence of lines characteristic to
the stress based system (feature 2). These are, how-
ever, a low percentage of lines that are possible in
both metrical systems (feature 1) and high percent-
age of exception lines (feature 4) in particular that
set class 3 parishes apart from other classes. The
percentage of dissyllabic verse positions (feature 5)
is pretty low (similar to class 1 parishes), the per-
centage of heptapositional lines (feature 6) is about
average and percentage of lines with pre-beat (fea-
ture 7) can be also considered low.

The parishes of class 2 are described by four rules



class 1
R1 1 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 0.1 0.2 04 0.2 04 0 0.05
class 1
R2 9 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 0.1 0.2 04 0.2 0.4 0 0.05
class 1
R3 43 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 0.1 0.2 04 0.2 04 0 0.05
class 2
R4 3 samples
0 errors
0.45 0.6 0.2 04 0.1 0.3 0.02 01 0.2 04 0.2 04 0 0.05
:: class 2
RS m 8 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 0.1 0.2 04 0.2 0.4 0 0.05
class 2
R6 1 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 0.1 0.2 04 0.2 0.4 0 0.05
class 2
R7 31 samples
0 errors
0.45 0.6 0.2 04 0.1 0.3 0.02 01 0.2 04 0.2 04 0 0.05
class 3
R8 8 samples
0 errors
0.45 0.6 0.2 04 0.1 03 0.02 01 0.2 04 0.2 04 0 0.05
feature 1 feature 2 feature 3 feature 4 feature 5 feature 6 feature 7

Figure 3: The rules of the parish classifier before and after rule compression. The highlighted MFs indicate
the features preserved after rule compression in individual rules.

of which R7; covers the largest part. It can be ob-
served that there is quite a bit of variation in this
group, as the MFs of the rule tend to extend over a
large part of the domain. Despite that, in feature 1
the parishes remain on the higher side, in features 3
and 4 in the lower side and a clear distinction from
class 1 rules can be made in features 7 and 8.

43 of 53 class 1 parishes are described by R3 and
specifically characterized by very low values in fea-
tures 6 and 7. They also have lower values in fea-
tures 2, 4 and 5 and those on the higher side in
features 1 and 3.

Ry, Ry and Rj5 represent the deviations. For ex-
ample, R5 is every bit similar to Rz, except for
the percentage of lines with pre-beat (which is very
low). R is quite similar to the major rule R (note
that the parishes in Ry have a slightly higher oc-
curence of lines characteristic to the stress based
system and a lower percentage of lines characteris-
tic to the quantity based system than the parishes
in R3) except for feature 6, in which it has more in
common with R7. The parishes in R4, on the other
hand, are comptaible both with R3 or R; when it
concerns features 1-5. By feature 6, however, they
are similar to class 1 parishes in Rg and by feature 7
to class 2 parishes in R7. Because R4 has as much in
common with Rj3 as it has with Rz, for geographical
considerations alone it would make sense to reassign
R4 to class no. 1 (Figure 4).

Finally, we have two outliers, Torma and Mihkli

parishes, which are described by singleton rules R;
and Rg, respectively. Torma parish has a higher
value of feature 7 than Rs and R3. Mihkli parish
would be compatible with R7, except for feature 7
in which it has a lower value (much like parishes in
rules Ro, R3 or R5). The exceptionality of Mihkli
parish can be explained by the earlier loss of tra-
dition - the Brotherhood Congregation movement
was very popular there and the "pagan" songs were
strongly deprecated. Torma on the other hand, had
mixed Estonian-Russian population and this can
have had the influence to the song tradition as well.

B rule1 (1)
rule 2 (9)
[ rule 3 (43)
B rule 4 (3)
B rule5 (8)
W rule6 (1)
W rule7 (31)
W e s (8)

Figure 4: The groups of parishes corresponding to
individual rules of the classifier.



Geographically speaking, we also have an outlier,
a class 2 parish NGo in Rj5 that is situated at the
border of class 3 parishes. Noo remains in the tran-
sitional area between class 1 and class 3, but having
no evidence of the main feature of class 3 (larger val-
ues of feature 4), it is similar to the other parishes
in the transitional area between quantity-based and
stress-based metrical systems, i.e. between classes
1 and 2. From numerical viewpoint, however, it has
the second largest 7, in Rs (expressed by the dis-
tance of the point representing the parish from the
x-axis in Figure 3), thus it is a rather typical parish
for its rule and class.

6. Conclusions

The hierarchical clustering process applied on the
data on the metre of Estonian folksongs succeeded
to solve the initial problem - to divide the whole
area into a few regions on the basis of seven metri-
cal features. The groups obtained as a result of two
first splits turned out to be geographically surpris-
ingly clear-cut, with only a few exceptions. Con-
sidering the metrical developments, the central re-
gion (especially its northern part) represents the
more conservative, quantity-based metre; the west-
ern and south-eastern regions represent the variants
of stress-based metre. From the geographical place-
ment of the classes, it is evident that the innova-
tions in the metre must have been launched from
two separate innovation centers - one in South-East
of Estonia and another on the western islands. The
nature of the innovations, though, has been similar
by large and can be related to the systematic loss
of the vowels in certain linguistic contexts in most
of the Estonian dialects. (The only dialect that re-
tained the vowels was the north-easternmost one.)
The loss of vowels resulted as the loss of the syllables
- the basic unit in the verse line - and brought about
the differentiation of long and overlong syllables in
the Estonian. The verse lines either preserved the
archaic word forms or had to be restructured.

At the first sight, it might seem surprising that
features 4, 6 and 7, not the features 2 and 3, which
reflect the most ontological change from the view-
point of metrical structure, are crucial for the classi-
fication. At the same time, it is clear that this would
not have sufficed for differentiation of the western
and south-eastern areas. The most clear rule of the
classifier segregates class 3 in South-East of Estonia
by abundance of the occurrence of feature 4 - excep-
tional lines that do not correspond to the regulari-
ties of neither system. At the closer look, it turned
out that the new metrical rule had been emerged al-
lowing overlong syllable to fill two positions in the
verse line. Southeastern region is the only one where
long and overlong syllables acquired separate func-
tions in the metrical system reflecting the change in
the prosodic system of language. Features 6 and 7,
representing the rhythmical variants by and large
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concurrent to the stress-based metre, are responsi-
ble for the differentiation of classes 1 and 2. What
considers the deviant rules, it is characteristic that
geographically these represent the transitional ar-
eas.

In addition to the geographical placement (the
western and south-eastern area separated by the
central area), the classifier makes it clear once more
that although the metrical innovations in two ar-
eas followed the same main pattern (from quantity-
based system to the stress-based system), the de-
velopments probably took place separately as the
different options were chosen to cope the loss of syl-
lables - in the western area this was compensated
by additional words or suffixes, in the south-eastern
area it was accepted and the metrical structure was
adjusted accordingly.
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