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Abstract 2. Fuzzy numbers

This paper presents a practical analytical approach Fuzzy numbers [1] are a special class of fuzzy sets

to evaluating continuous, monotonic functions of in- [8], which can be defined as follows:

dependent fuzzy numbers. The approach is based on A normal, convex fuzzy set & over the real line R

a parametric a-cut representation of fuzzy numbers is called fuzzy number if there is exactly one z € R

and allows for the inclusion of parameter uncertain- with pz(Z) = 1 and the membership function is at

ties into mathematical models. least piecewise continuous. The value Z is called the
modal or peak value of T.

Keywords: Engineering design computations with Theoretically, an infinite number of possible types

uncertain parameters, monotonic functions of fuzzy of fuzzy numbers can be defined. However, only few

numbers, analytical fuzzy calculus of them are important for engineering applications
[6]. These typical fuzzy numbers shall be described

1. Introduction in the following.

There is an increasing effort in the scientific commu- 2.1. Triangular fuzzy numbers

nity to provide suitable methods for the inclusion of
uncertainties into mathematical models. One way to
do so is to introduce parametric uncertainty by rep-
resenting the uncertain model parameters as fuzzy
numbers [1] and evaluating the model equations by

Due to its very simple, linear membership function,
the triangular fuzzy number (TFN) is the most fre-
quently used fuzzy number in engineering. In order
to define a TFN with the membership function

means of ZADEH’s extension principle [2]. The eval- r—T _ _
uation of this classical formulation of the extension 1+ Lo T ST,
principle, however, turns out to be a highly complex pa(z) = rT—T _ _ R 1)
task [3]. Fortunately, BUCKLEY & QU [4] provide an 1- R TS STHTY

alternative formulation that operates on a-cuts and

is applicable to continuous functions of independent we use the parametric notation [6]

fuzzy numbers. Powerful numerical techniques have 7 = th(z, - TR),

been developed to implement this alternative formu-

lation [5]. These techniques are particularly suitable where Z denotes the modal value, TV the left-hand,
for very complex simulation models [6]. In engineer- and 7% the right-hand spread of % (cf. Figure 1). If
ing design [7], however, the mathematical equations % = 7R the TFN is called symmetric. Its a-cuts
are usually less complex and hence analytical meth- z(a) = [2%(a), 2R ()] result from the inverse func-
ods might be more suitable for the inclusion of para- tions of Egs. (1) with respect to a:

meter uncertainties into the computations. For this

LN _ ~_ L
purpose, a practical analytical approach to evaluat- () =r-7'(1-a), 0<a<l,

ing continuous, monotonic functions of independent Ra)=z2+™1-0a), 0<a<l.
fuzzy numbers is introduced in this paper, which is
based on the alternative formulation of the exten- 2.2. Gaussian fuzzy numbers

sion principle.

An outline of this paper is as follows: In Section
2, we give a definition of fuzzy numbers and present
two important types. In Section 3, we briefly recall
ZADEH’s extension principle and introduce the al-

Another widely-used fuzzy number in engineering is
the Gaussian fuzzy number (GFN), which is based
on the normal distribution from probability theory.
In order to define such a GFN with the membership

ternative formulation based on a-cuts. In Section 4, function .2

. . . l/z—=x _
we describe our analytical approach and give three exp [_( - > } , <z,
illustrative examples. In Section 5, a practical engi- iz (z) = 2\ o
neering application is presented. Finally, in Section 1/z—-7\° _
6, some conclusions are drawn. exp T 9\ gR » T >T,
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Figure 1: Triangular fuzzy number.

we use the parametric notation [6]

i = gin(z,o", o"),
where z denotes the modal value, o™ the left-hand,
and o® the right-hand standard deviation of & (cf.
Figure 2). If o = o®, the GFN is called symmetric.
Its a-cuts z(a) = [2%(a), 28(a)] result to:

(o) =7 —o"/—2In(a), 0<a<l,
)=z +o%/—2In(a), 0<a<l.

3. Extension principle

ZADEH’s extension principle [2] allows to extend any
real-valued function to a function of fuzzy numbers.
More specifically, let &1, ..., Z, be n independent or
non-interactive fuzzy numbers and let f: R® — R
be a function with y = f(x1,...,x,). The fuzzy ex-
tension § = f(Z1,...,Zy,) is then defined by

ng(y) = sup  min{uz, (z1),..., pa, (T0)}-
y=f(x1,...,Tn)
In case of interdependency between Z1,...,T,, the

minimum operator should be replaced by a suitable
triangular norm [9]. In this paper, however, we re-
strict ourselves to independent fuzzy numbers.

The evaluation of this classical formulation of the
extension principle turns out to be a highly complex
task [3]. Fortunately, BUCKLEY & QU [4] provide an
alternative formulation that operates on a-cuts:

Let z1(),...,zn(a) denote the a-cuts of the n
independent fuzzy numbers Z1,...,Z, and let f be
continuous. Then, the a-cuts y(a) = [y*(a), y*(a)]
of § can be computed from

o) € Qa)},
yan) € Qa)},

) | (21, ...

y (@) = min{f(x1,. ..
y" () = max{f (a1, ..., x0) [ (21, ..
where Q(a) = x1(a) X -+ X 2, () represent the n-
dimensional interval boxes that are spanned by the
a-cuts z1(a), ..., x,(@).

The proposed analytical approach, which is pre-
sented in the next section, is based on this alterna-
tive formulation of the extension principle.

290

Figure 2: Gaussian fuzzy number.

4. Analytical approach

Let the continuous function f be (strictly) monoton-
ic increasing in x;, 4 = 1,..., k, and (strictly) mono-
tonic decreasing in z;, 7 = 1,..., ¥, in the domain of
interest, and let k + ¢ = n. Then, the minimum val-
ues of f inside of every sub-domain Q(«) are always
found at the left boundaries of x;(a) and the right
boundaries of (), and its maximum values at the
right boundaries of x;(«) and the left boundaries of
zj(a), respectively. In such case, the a-cuts y(a) =
[¥*(a), y*(a)] of § become

v (a) = f(x}(oz),x?(a)), 0<a<l, @
yH(@) = f(zi(a),27(a)), 0<a<l,
with z,,(a) = [2L (), 2R (a)], m = 1,... n. If Egs.

(2) are invertible with respect to «, then the mem-
bership function of § yields

y" (o)~
)t
This reduced part of our approach can be viewed
as an analytical version of the short transformation

method [10]. Basically, it is equivalent to Lemma 3
from [11] or Corollary 2 from [12].

yh(0) <y <y"(1),
yR(1) <y < y*(0).

Example 1. The function f;: Ri — R4 with

T
T+ o

Y1 = f1($17$2) =

shall be evaluated for the two fuzzy numbers &, =
tfn(2,2,3) and Z2 = tfn(2, 2, 2). Since

df1 T

G T oy,
0x1 (,’El + .’132)2

df1 —1

— = —F075 <0,
({91’2 (1’1 + 1’2)2

the function f; is (strictly) monotonic increasing in
x1 and (strictly) monotonic decreasing in x5 in the
domain supp(Z;) x supp(Z2) = (0,5) x (0,4). Hence,
the a-cuts yi(a) = [y¥ (), yR(a)] of §; are

yr(@) = fi(21(e), 23 (a) = 5o,
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Figure 3: Solution candidates from Example 2.

() = i(af(e). o)) = 222

With 41(0) = 0, (1) = 05 = yR(1), and
y(0) = 1, the membership function of §; yields

2, 0<y<0.5,

~ f— _1

i (9) ﬂl—l,05<y<1
y—3

However, the above approach is only valid if the
function f does not change its monotonicity within
the domain of interest. We know from [13, 14] that
the global extrema of any monotonic function f are
always found at the corner points of Q(«). Hence,
in order to compute the analytical solution, we can
always proceed as follows:

1. Evaluate the function f for all the 2" permuta-
tions of the interval boundaries of x,,(«); e. g,
if n = 2, then compute

Yy (a) = f(a1(a), 25 (a)),
Yy (a) = f(a1 (@), 25 (a)),
Y (a) = f (o' (o), 23(a)),
Y (a) = f(a1 (@), 25 (@)

2. Plot these solution candidates in the same dia-
gram.

3. The analytical solution then corresponds to the
maximum envelope formed by the possible so-
lution candidates.

This general part of our approach can be viewed
as an analytical version of the reduced transforma-
tion method [15]. Basically, it is equivalent to Lem-
ma 2 from [11] or Corollary 1 from [12].

Example 2. Next, the function fs: IR?‘_ — R with

Yo = fo(w1,22) = —

shall be evaluated for the two fuzzy numbers from
Example 1. Since
Ofs  ma+i

—=—-=->0, 0< <4
8331 ($1 +$2)2 ’ 2 ’

_y:I;L
b~ LR
1.4 e : Y3
T 0.8 | N e
> 02\ =
-04p 7 .
-1 > | |

o —

Figure 4: Solution candidates from Example 3.

0xo (.’171 +$2)2

A t-m >0, 0<z; <02
<0, 02<z <5,

the function f5 changes its monotonicity within the
domain supp(Z;) x supp(Zz2) = (0,5) x (0,4). Hence,
the general part of our approach should be applied.
The solution candidates for ya(a) are

(@) = fo (e (o) 2 (@) =
@) = fa(eb (@), a8 (@) = Ja— o,
(@) = fa(efe), eh (@) = 3 2,
(@) = (R (o), afi (o) = 2208

We can see from their plots in Figure 3 that the
left branch of the maximum envelope, illustrated by
the gray area, is formed by 35* for 0 < o < 0.1 and
by yi® for 0.1 < a < 1, where the value 0.1 corre-
sponds to their intersection point. Its right branch,
on the other hand, is entirely formed by y&*. Hence,
the a-cuts ya(a) = [y (), y3'(a)] of Fo are

100 — 1
% . 0<a<o0.l,
yrla) =149,
Ca——, Ol<a<l
2a 207 0.l <a<l,
350 — 8
R
—2297°% gca<l
y2(06) 50[—57 <Oé_

With lim, 0 y5(a) = —o00, y5(0.1) = 0, y&¥(1) =
0.45 = y(1), and y}(0) = 0.96, the membership
function of g, yields

11 <y<0
01-2 2 °¥=0
1
wxw::2y+ﬁr 0<y <045,
125y — 24
ST 045 < y < 0.96.
5 y—3

Example 3. Finally, the function f3: Ri - R
with .
(z1 — 5)(@2 — 1)

= T1,T2) =
ys = fa(x1,22) P



shall be evaluated for the two fuzzy numbers from
Example 1. Since

fs (w2 —D(z2+3) [<0, 0<zy <1,
or1  (z1+22)? >0, 1<ay<4,
Ofs (w1 —H(@i+1) [<0, 0<a <02
0z N (éﬂl + 1’2)2 >0, 0.2<2 <5,

the function f3 changes its monotonicity within the
domain supp(Z;) x supp(Z2) = (0,5) x (0,4). Hence,
the general part of our approach should be applied.
The solution candidates for ys(a) are

(10 — 1) (20 — 1)
20a ’

(10 — 1)(3 — 2a)
20 ’

(b — 8)(2a — 1)

W) = (o (@) 2 (@)

P (@) = fa(k (). 28(@)

PE(0) = f3 (o (), 7 () = 3 XX
3

VER(a) = f5 (2R (), 25 (a)) = : (5ax —52)(_39— 20)

7

We can see from their plots in Figure 4 that the
left branch of the maximum envelope is formed by
yRL for 0 < o < 0.5 and by yi* for 0.5 < a < 1,
where the value 0.5 corresponds to the intersection
point between y{ and yi*. Its right branch, on the
other hand, is formed by 3" for 0 < o < 0.02 and
by yRE for 0.02 < a < 1, where the value 0.02 cor-
responds to the intersection point between yi* and
yRB. Note that the value 0.02 is only approximate.
Hence, the a-cuts yz(a) = [y5 (), y5 ()] of g5 are

3Ba=8)Ba=b <5
v =42 40
(00 - DEa=1)
20«
100 — _
(100 =D@a=1) o <02,
3 (ba —8)(3 — 2«
2 02<a<l.
5 Ba_9 o O02<as

With y%(0) = —0.96, y¥(0.5) = 0, y¥(1) = 0.45 =
yR(1), y8(0.02) ~ 1.57, and lim, 0 y§ (o) = oo, the
membership function of §3 yields

21 1 1
So - = —0. <
013V g VA 096 <y <0,
3 1 1
E+§y+EvB, 0 <y <045,
O 2 O, 045<y <157
20 127 6V <ysLoh
3L 1B im<y<co
10 2Y oV IS YSS

where

A = 25y% — 2370y + 1089,
B = 25y + 30y + 4,

C = 625y + 750y + 9,

D = 25y 4 30y + 4.
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Figure 5: Two-component massless rod.

5. Engineering application

In order to illustrate the analytical approach in a
more practical context, we consider a rather simple
but typical example from engineering mechanics [6]
consisting of a two-component massless rod under
tensile load as shown in Figure 5. The components
of the rod are characterized by the length ¢, the
elastic moduli F; and Es, and the cross sectional
areas A; and As. The left component of the rod is
clamped to a wall, whereas the right component is
subjected to a tensile force F'. In order to compute
the (static) displacement u of the tip of the rod, we
can proceed as follows:

Every component of the rod can be viewed as a
spring with the stiffness

= , 1=1,2.

L
Since both components are placed in a row, the total
stiffness cior of the rod is

1 1 1

Ci

Ctot 1 C2

According to HOOK’s law, the displacement u of the
tip of the rod yields

F 1 1
Ctot C1 C2

At first, the displacement u shall be computed for
crisp parameters ¢; and co, where the first compo-
nent is assumed to be made of steel and the second
component of aluminum with the following material
and geometry values:

Ey =2.0-10°N/mm®, A; =100 mm?,
Ey =6.9-10*N/mm®, A, = 75 mm?,

3)

and ¢ = 500 mm. The external force shall have the
absolute value F' = 1000 N. With these values, the
(crisp) solution for the displacement u yields

u~ 0.1216 mm.

In reality, however, exact stiffness values for both
rod components can usually not be provided due to
variations in the manufacturing process. In order
to include these uncertainties into the computation,
the stiffness parameters ¢; and co shall be modeled
as symmetric GFNs with the modal values

¢1 = 4.0-10* N/mm,
¢y = 1.035 - 10* N/mm.



0.25 |

u [mm)]

0 - - - -
0.1 0.11 0.12 0.13 0.14 0.15

Figure 6: Fuzzy displacement @ of the tip of the rod.

The standard deviations of ¢; and ¢ are assumed to
be 5% of their modal values. Hence, the parametric
representation of the fuzzy stiffness parameters is
In order to compute the a-cuts of the fuzzy dis-
placement @, we consider again Eq. (3), where we

can see that u is (strictly) monotonic decreasing in
both ¢; and ¢s for positive values. Hence, the a-cuts

u(a) = [ut(a), u?(a)] of @ are

L) = u(f(a),H(a) = 1007

u-(a) = (1(),2()) 414(204‘\/%)7
1007

u'(@) = u(cy(a), ¢z (@)

T 414(20 — \/=2In(a))’

and its membership function yields
1 d

:exp{— (b—c—i-Q)], u >0,
a U U

a = 342792, b = 68558400,
¢ = 16675920, d = 1014049.

The plot of ug(u) in the range 0.1 < u < 0.15 is
illustrated in Figure 6.

6. Conclusions

The proposed analytical approach turns out to be
a very practical tool for the inclusion of parameter
uncertainties into mathematical models. It is valid
for continuous, monotonic functions of independent
fuzzy numbers, but can also be applied to fuzzy in-
tervals as defined, e. g., in [3].

An analytical solution has the advantage that the
degrees of membership of the fuzzy output can be
computed for any value within the support, whereas
a numerical solution only provides a finite number
of values. Furthermore, our approach also allows a
symbolic processing of uncertainties.

In further research activities, this approach shall
be extended to general, non-monotonic functions of
independent fuzzy numbers, where the influence of
interdependency shall be investigated as well.
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