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Abstract

One of the common features of decision–theoretic
rough set models is that they rely on total back-
ground (available) knowledge in the sense that the
knowledge covers the discourse universe. In the pro-
posed framework the author gives up this require-
ment and allows that available knowledge about the
discourse universe may be partial. It is shown by
introducing optimistic, average and pessimistic par-
tial membership functions that a decision–theoretic
rough set model can be based on a very general
version of partial approximation spaces. Different
membership functions may serve as a base of the
semantics of a partial first–order logic. The pro-
posed logical system gives an exact possibility to
introduce different semantic notions of logical con-
sequence relations which can be used in order to
make clear the consequences of our decisions.

Keywords: Approximation of sets, rough sets,
decision–theoretic rough sets, partial first–order
logic

1. Introduction

In last thirty years, a number of theoretical at-
tempts have appeared in order to approximate sets.
For example, rough set theory was originally pro-
posed by Pawlak (see in [1], [2]), its different gener-
alizations (see, e.g. in [3]) and granular computing1

play a crucial role in computer sciences. Rough set
theory provides a powerful foundation to reveal and
discover important structures and patterns in data,
and to classify complex objects.2
In most cases, we have a family of base sets —

as subsets of a universe of discourse. In philoso-
phy these sets represent our available knowledge,
we consider them as the extensions of our avail-
able concepts/properties, and their members are
the instances of these concepts/properties. The pri-
mary goal of different systems of set approximation
is to “approximate/learn/express an unknown con-
cept/property (represented by an arbitrary subset

1Rough set theory has served as a “pattern” of granular
computing developments, see, e.g. in [4], [6], [7], [8], [9].

2An overview of some research trends on rough set foun-
dations and rough set–based methods can be found in [13].

of the universe)” ([9] p. 520). A natural question
may appear: What do we know about our avail-
able knowledge? If our available knowledge is rep-
resented by a family of properties of objects, then
we can ask the following questions:

1. Does each object have at least one property
from the given family?

2. Does each object have at best one property
from the given family (or some of them have
more than one)?

Pawlak’s answers are ‘yes’ for both questions (so
in his system each object has exactly one property
from the given family), whereas covering rough set
systems say ’yes’ for the first question and no for
the second one. A generalization of the theory of
rough sets (see in [15], [16]) does not commit itself
to answer ’yes’ for any mentioned question: It does
not suppose either the representations of properties
belonging to mentioned family cover the discourse
universe or the representations form a pairwise dis-
joint family of sets. From the approximation point
of view the generalization can be considered as a
system of partial approximation of sets.

Decision–theoretic rough set models can be con-
sidered as the probabilistic extensions of algebraic
rough set models. Many papers deal with DTRS
based on different systems of theory of rough sets
(more details can be found, for example, in [5]). The
main objectives of this paper are the followings:

1. to show that a decision–theoretic rough set
model can be based on a very general version
of partial approximation spaces by introduc-
ing optimistic, average and pessimistic partial
membership functions relying on partial ap-
proximations of sets;

2. to present a partial first–order logic with pre-
cise semantics relying on different partial mem-
bership functions;

3. to introduce different notions of logical conse-
quence relations which can be used in order to
make clear the consequences of our decisions.

After introducing the general partial approxima-
tion space as a generalization of different systems
appeared in the theory of rough sets, three different

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 334



types of partial membership functions are defined.
They can be embedded in the semantics of partial
first–order logic. At the end different notions of log-
ical consequence are produced.

2. General systems of tool–based
approximation of sets

In the following definition a most fundamental (and
very general) notion of an approximation space is
given. This core notion serves as the set–theoretical
background of semantics of partial first–order logic
relying on different partial membership functions.

Definition 1 The ordered 5–tuple 〈U,B,DB, l, u〉
is a general partial approximation space with a
Pawlakian approximation pair if

1. U is a nonempty set;
2. B ⊆ 2U \ ∅, B 6= ∅;
3. DB is an extension of B, and it is given by the

following inductive definition:
(a) ∅ ∈ DB;
(b) if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB.

4. the functions l, u form a Pawlakian approxima-
tion pair 〈l, u〉, i.e.
(a) l(S) =

⋃
C l(S), where

C l(S) = {B | B ∈ B and B ⊆ S};
(b) u(S) =

⋃
Cu(S), where

Cu(S) = {B | B ∈ B and B ∩ S 6= ∅}.

Definition 2 If 〈U,B,DB, l, u〉 is a general partial
approximation space with a Pawlakian approxima-
tion pair and S ⊆ U , then b(S) =

⋃
(Cu(S) \ C l(S))

is the border set of S.

Corollary 1 The followings hold for the approxi-
mation functions l, u:

1. l, u : 2U → 2U ;
2. l(2U ), u(2U ) ⊆ DB (definability of l, u);
3. the functions l and u are monotone, i.e. for all

S1, S2 ∈ 2U if S1 ⊆ S2 then l(S1) ⊆ l(S2) and
u(S1) ⊆ u(S2);

4. u(∅) = ∅ (normality of u)
5. if S ∈ DB, then l(S) = S (granularity of DB,

i.e. l is standard);
6. if S ∈ 2U , then l(S) ⊆ u(S) (weak approxima-

tion property).

Definition 3 Let GAS = 〈U,B,DB, l, u〉 be a gen-
eral approximation space and S ⊆ U .

1. If S ∈ DB, then the set S is definable in GAS.
2. If S ∈ DB, and U \ S ∈ DB then the sets S

and U \ S are totally definable in GAS.

Remark 2 Members of DB are definable, but not
necessarily totally definable.

In a given general approximation space, the
notions of well–approximated and totally well–
approximated sets can be introduced, and we call
these sets crisp and totally crisp sets:

Definition 4 Let GAS = 〈U,B,DB, l, u〉 be a gen-
eral approximation space and S ⊆ U .

1. If l(S) = u(S), then S is a crisp set in GAS.
2. If S and U \S are crisp sets, then S and U \S

are totally crisp sets in GAS.

Remark 3 In general case, the members of DB are
not crisp or totally crisp.

Informally, the set U is the universe of approxima-
tion; B is a nonempty set of base sets, it represents
our knowledge used in the whole approximation pro-
cess; DB (i.e. the set of definable sets) contains not
only the base sets, but those which we want to use
to approximate any subset of U ; the functions l,
u (and b) determine the lower and upper approx-
imation (and the border) of any set with the help
of representations of our primitive or available con-
cepts/properties. The nature of an approximation
pair3 depends on how to relate the lower and upper
approximations of a set to the set itself. A general
partial approximation space can be specified by giv-
ing some requirements for the base set.

3. Optimistic, average and pessimistic
partial membership functions

Relying on a given general approximation space
with Pawlakian approximation pair GAS =
〈U,B,DB, l, u〉 three different partial membership
functions (µos for optimistic, µas for average and µps
for pessimistic) can be introduced. In the defini-
tion4 we need the neighborhood of u (with respect
to B): NB(u) = {B | B ∈ B, u ∈ B}.

Definition 5 Let S ⊆ U , u ∈ U , and
VS(u) =

{
|B∩S|

|B| | B ∈ NB(u)
}
.

1. µoS(u) =
{

max(VS(u)) if u ∈ ∪B
undefined otherwise

2. µaS(u) =
{

avg(VS(u)) if u ∈ ∪B
undefined otherwise

3. µpS(u) =
{

min(VS(u)) if u ∈ ∪B
undefined otherwise

For the sake of simplicity it is useful to introduce
the crisp membership function (µcS) for any set and
any object. It is the partial characteristic function
of any set S.

Definition 6 If S (S ⊆ U) and u ∈ U , then
3One of the most general notion of weak and strong ap-

proximation pairs can be found in Düntsch and Gediga [12].
4Three different functions are used in the definition:
• the function min gives the minimum value of a finite set

of numbers;
• the function avr gives the average value of a finite set

of numbers, i.e.
avr({n1, . . . , nk}) = Σk

i=1ni

k
;

• the function max gives the maximum value of a finite
set of numbers.
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µcS(u) =

 1 if u ∈ S
0 if u ∈ ∪B \ S
undefined otherwise

Remark 4 If the general approximation space
GAS = 〈U,B,DB, l, u〉 is total (i.e. U = ∪B), then
all defined membership functions are total.

• µoS(u) = 1 if and only if there is a B ∈ NB(u)
such that B ⊆ S, i.e. there is at least one base
set which contains u, and subset of S.
• µoS(u) = 0 if and only if B ∩ S = ∅ for all
B ∈ NB(u).
• µaS(u) = 1 if and only if B ⊆ S for all B ∈
NB(u).
• µaS(u) = 0 if and only if B ∩ S = ∅ for all
B ∈ NB(u).
• µpS(u) = 1 if and only if B ⊆ S for all B ∈
NB(u).
• µpS(u) = 0 if and only if there is a B ∈ NB(u)
such that B ∩ S = ∅.

4. Tool–based partial first–order logic
(TbPFoL) relying on different
membership functions

4.1. Language of TbPFoL

At first we need a given language of first–order logic,
and a finite nonempty set T of predicate parame-
ters. Its members are called tools.

Definition 7 L is a language of TbPFoL with the
set T of tools, if

1. L = 〈LC, V ar, Con, Term, T , Form〉
2. L(1) = 〈LC, V ar, Con, Term,Form〉 is a lan-

guage of classical first–order logic;
3. T ⊆ P(1), where P(1) is the set of one–

argument predicate parameters;
4. T is finite and T 6= ∅.

The members of set T are called tools, and their
semantic values play a crucial role in giving differ-
ent types of rough membership functions because
they serve as the base of generated approximation
space. The semantic values of tools represent avail-
able knowledge in a given interpretation.

4.2. Semantics of TbPFol

Definition 8 Let L be a language of TbPFoL with
the set T of tools. The ordered pair 〈U, %〉 is a tool–
based interpretation of L, if

1. U is a finite nonempty set;
2. % is a function such that Dom(%) = Con and

(a) if a ∈ N (N is the set of name parame-
ters), then %(a) ∈ U ;

(b) if p ∈ P(0) (P(0) is the set of proposition
parameters), then %(p) ∈ {0, 1};

(c) if P ∈ P(n) (n = 1, 2, . . . ) (P(n) is the
set of n–argument predicate parameters),
then
%(P ) ⊆ U (n);

(d) if T ∈ T , then %(T ) 6= ∅.

In order to give semantic rules we only need the
notions of assignment and modified assignment:

Definition 9 Function v is an assignment relying
on the interpretation 〈U, %〉 if v : V ar → U .

Definition 10 Let v be an assignment relying on
the interpretation 〈U, %〉, x ∈ V ar and u ∈ U .
v[x : u] is a modified assignment of v, if

1. v[x : u] : V ar → U ,
2. v[x : u](y) = v(y) if x 6= y, and v[x : u](x) = u.

4.3. Generated tool–based general
approximation spaces

If we have a tool–based interpretation of a language
of TbPFoL, then the semantic values of tools (the
members of set T ) determine a general (maybe par-
tial) approximation space with respect to the given
interpretation. The generated approximation space
is logically relevant in the sense, that it gives the
lower and upper approximations (what is more, the
different partial membership functions) of any pred-
icate P to be taken into consideration in the defini-
tion of semantic rules.

Definition 11 Let L be a language of TbPFoL with
the set T of tools and 〈U, %〉 be a tool-based inter-
pretation of L.
The ordered 5–tuple

GAS(T ) = 〈PR(U),B(T ),DB(T ), l, u〉

is a logically relevant general partial approximation
space generated by set T of tools with respect to the
interpretation 〈U, %〉 if

1. PR(U) =
⋃∞
n=1 U

(n), where
U (1) = U, U (n) = U × U × · · · × U ;

2. B(T ) =
⋃∞
n=1 Bn(T ) where

Bn(T ) = {%(T1)× · · · × %(Tn) | Ti ∈ T };

The semantic values of tools (given by the inter-
pretation) generate the set B(T ). It contains those
sets by which the semantic value of any predicate
parameter is approximated.

4.4. Semantic rules of TbPFoL relying on
optimistic, average and pessimistic
membership function

In the semantics of TbPFol the semantic value
of an expression depends on a given interpre-
tation Ip = 〈U, %〉, a given logically relevant
general partial approximation space GAS(T ) =
〈PR(U),B(T ),DB(T ), l, u〉 generated by set T of
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tools with respect to the interpretation 〈U, %〉. For
the sake of simplicity we use a null entity to rep-
resent partiality of semantic rules. We use number
0 for falsity, number 1 for truth, numbers greater
than 0 and less than 1 for true degree and num-
ber 2 for null entity. In many cases, four possibly
different semantic values can be given: optimistic,
average, pessimistic and crisp ones. The forms of
semantic rules are similar in different cases and so
the superscript ? can be used to denote one of them
(? ∈ {o, a, p, c}). The semantic value of an expres-
sion A with respect to Ip = 〈U, %〉, GAS(T ) and the
assignment v is denoted by [[A]]?v.
The most important semantic rules are the fol-

lowing:

1. If T ∈ T , i.e. T is a tool and t ∈ Term, then

[[T (t)]]?v =

 2 if [[t]]?v /∈ ∪B;
1 if [[t]]?v ∈ %(T );
0 otherwise.

.

2. If P ∈ P (n) (n 6= 0), P /∈ T , i.e. P is an n–
argument predicate parameter which is not a
tool and t1, t2, . . . , tn ∈ Term, then
[[P (t1, . . . , tn)]]?v = µ?%(P )(〈[[t1]]?v, . . . , [[tn]]?v〉).

3. If A ∈ Form, then

[[¬A]]?v =
{

2 if [[A]]?v = 2
1− [[A]]?v otherwise

4. If A,B ∈ Form, then
[[(A ∧B)]]?v =

=

 2 if [[A]]?v = 2;
2 if [[B]]?v = 2;
min({[[A]]?v, [[B]]?v}), otherwise

[[(A ∨B)]]?v = max({[[A]]?v, [[B]]?v})

[[(A ⊃ B)]]?v =

=

 2 if [[A]]?v = 2;
2 if [[B]]?v = 2;
min({1, 1− [[A]]?v + [[B]]?v}), otherwise

5. If A ∈ Form, x ∈ V ar and
V?(A) =

{
[[A]]?v[x:u] | u ∈ U

}
, then

[[∀xA]]?v = min(V?(A))

[[∃xA]]?v =


2 if for all u ∈ U :

[[A]]?v[x:u] = 2,
max(V?(A)), otherwise

5. Different notions of logical consequences

From the logical point of view, flexibility is the main
advantage of our logical framework. It can be rec-
ognized on different levels:

1. The generated partial interpretations rely on
two theoretical points:
(a) the set of semantic values of tools given

by the total interpretation U . These se-
mantic values represent available knowl-
edge, i.e. the total interpretation gives

us the representations of available con-
cepts/properties and relations by which
we approximate any concept/property or
relation (with respect to the given inter-
pretation);

(b) the general partial approximation space
generated by tools with respect to the
given interpretation.

2. In a consequence relation the diffeent member-
ship functions can be used for different formu-
lae. So the consequence relation can rely on
possibly different semantic values determined
by total, optimistic, average and pessimistic
membership functions and so the investigations
of different decisions (based on different mem-
bership functions) are possible.

The notion of models plays a fundamental role in
the semantic definition of consequence relation:

Definition 12 Let L be a language of TbPFoL with
the set T of tools, Γ = 〈A1, A2, . . . , An〉 be an or-
dered n–tuple of closed formulae (A1, A2, . . . , An ∈
Form) and I is a nonempty set of interpretation of
L.

1. The ordered n–tuple ∆ = 〈δ1, . . . , δn〉 is a deci-
sion type of Γ if δ1, . . . , δn ∈ {o, a, p, c}.

2. Let ∆ = 〈δ1, . . . , δn〉 be a decision type Γ. Then
(a) 〈U, %, v〉 is a ∆–type model of Γ with re-

spect to I if
i. 〈U, %〉 ∈ I;
ii. v is an assignment relying on 〈U, %〉;
iii. [[Ai]]δi

v = 1 for all i (i = 1, 2, . . . , n).
(b) 〈U, %, v〉 is a ∆–type model of Γ with pa-

rameter α (0 < α ≤ 1) with respect to I,
if
i. 〈U, %〉 ∈ I;
ii. v is an assignment relying on 〈U, %〉;
iii. [[Ai]]δi

v 6= 2 for all i (i = 1, 2, . . . , n)
iv. [[Ai]]δi

v ≥ α for all i (i = 1, 2, . . . , n).
(c) 〈U, %, v〉 is a ∆–type partial model of Γ

with parameter α (0 < α ≤ 1) with respect
to I if
i. 〈U, %〉 ∈ I;
ii. v is an assignment relying on 〈U, %〉;
iii. [[Ai]]δi

v ≥ α for all i (i = 1, 2, . . . , n).

Definition 13 Let L be a language of TbPFoL with
the set T of tools, Γ = 〈A1, A2, . . . , An〉 be an or-
dered n–tuple of closed formulae (A1, A2, . . . , An ∈
Form), B ∈ Form be a closed formula and I is a
nonempty set of interpretation of L.

1. ∆ → δ is a decision driven consequence type
from Γ to B if
(a) ∆ is a decision type of Γ;
(b) δ is a decision type of B.

2. Let ∆ → δ is a decision driven consequence
type from Γ to B.
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(a) B is a strong consequence of Γ driven
by ∆ → δ with respect to I if all ∆–
type models of Γ are δ–type models of B
(Γ �s∆→δ B).

(b) B is a parametrized consequence of Γ
driven by ∆ → δ with the parameter
pair 〈α, β〉 with respect to I if all ∆–type
models of Γ with the parameter α are δ–
type models of B with the parameter β

(Γ �〈α,β〉
∆→δ B).

(c) B is a partial parametrized consequence of
Γ driven by ∆→ δ with the parameter pair
〈α, β〉 with respect to I if all ∆–type par-
tial models of Γ with the parameter α are
δ–type partial models of B with the param-
eter β (Γ �p,〈α,β〉

∆→δ B).

Next theorem shows some important connections
between different notions of consequence relations.

• It is the set of interpretation such that the gen-
erated general approximation space is a total
(or covering) one:
It = {〈U, %〉 | U = ∪T∈T %(T )}
• Id is the set of interpretation such that the gen-
erated approximation space is one–layered:
Id = {〈U, %〉 | %(T ) ∩ %(T ′) = ∅, T 6= T ′}

Theorem 14 Let L be a language of TbPFoL with
the set T of tools, A1, A2, . . . , An, B be closed for-
mulae containing only tools as predicate parameters
and Γ = 〈A1, A2, . . . , An〉.

1. If Γ �s〈c,...,c〉→c B with respect to It, then

(a) Γ �s〈p,...,p〉→p B with respect to It;
(b) Γ �s〈o,...,o〉→o B with respect to It.

2. The following four consequence relations are
equivalent with respect to It ∩ Id:
(a) Γ �s〈c,...,c〉→c B

(b) Γ �s〈o,...,o〉→o B

(c) Γ �s〈a,...,a〉→a B

(d) Γ �s〈p,...,p〉→p B

Theorem 15 Let δ ∈ {o, a, p, c}.

1. If 0 < β ≤ α ≤ 1 then {A ⊃ B,A} �〈α,β〉
〈δ,δ〉→δ B.

2. If α = 1, 0 < β ≤ 1, {A ⊃ B,A} �〈1,β〉
〈δ,δ〉→δ B.

3. {A ⊃ B,A} �s〈δ,δ〉→δ B.

6. Conclusion

If we want to investigate decision theoretic rough
set models from the logical point of view or we
want to apply its results in inferences, we have to
face a certain problem. What happens if in the
semantics of first–order logic we use optimistic, av-
erage and pessimistic partial membership functions
as the semantic values of predicate parameters in-
stead of total characteristic functions given by their

total interpretation? In this paper the semantic sys-
tem of a partial first–order logic with three differ-
ent types of partial membership functions is pre-
sented. The semantics relies on a very general no-
tion of approximation spaces generated by available
knowledge (appearing in properties), and so it gives
a very flexible common framework of different sys-
tems of set approximation. By using two notions of
parametrized consequence relations the logical con-
sequences of decisions based on decision theoretic
rough set models can be investigated. The next
step has to be made in future is to give the most
important logical laws of the presented logical sys-
tem.

Open questions:

• Can Pawlak’s original decision logic be inter-
preted in the given logical system?
• How can some important concepts known in
the theory of rough sets (e.g. reduct and su-
perreduct) be expressed in the introduced log-
ical framework?
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